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We perform ab initio molecular-dynamics simulations using the higher-order finite-difference-

pseudopotential (FDP) method to calculate the interatomic forces. Our approach is compared to molecular-

dynamics-simulation calculations where the forces are calculated using a plane-wave basis. The ground-state

structures of small silicon clusters obtained from the FDP simulation are in excellent agreement with those of
the plane-wave method. The FDP method is performed completely in real space, and is easier to implement

than methods based on a plane-wave expansion.

A common approach to electronic structural calculations
utilizes ab initio pseudopotentials coupled with a plane-wave
basis. The smooth nature of the pseudopotentials and
pseudo-wave-functions often leads to rapidly converging
plane-wave expansions. For localized systems, plane waves
or Fourier expansions are not readily applicable. In this case,
often a large supercell is introduced to retain an "artificial
periodicity. "While the combination of supercells, pseudopo-
tentials, and a plane-wave basis can be a very useful ap-
proach, the combination does have certain limitations. For
example, the plane-wave basis may have to replicate large
regions of the supercell where the wave function vanishes.
This can result in the need for a large number of plane
waves. Moreover, the supercell geometry may allow signifi-
cant interactions between localized systems in neighboring
cells, if the cell is not made sufficiently large.

A method ' which solves the Kohn-Sham equation di-

rectly on a grid in real space has recently been introduced,
which avoids many of these problems. Within this method, a
higher-order finite-difference method has been combined
with the pseudopotential method. The combination of the
smooth pseudopotentials and a higher-order expansion for
the kinetic-energy operator (V ) allows one to perform ac-
curate and efficient electronic calculations, completely in
real space. This method eliminates the use of supercells for
localized systems, and avoids problems with electrostatic di-
vergences associated with charged systems. In previous
papers, ' this finite-difference-pseudopotential (FDP)
method has been shown to yield accurate eigenvalues, charge
densities, and bond lengths of several diatomic molecules.
However, this method remains untested with respect to some
key issues. Specifically, will this method prove to be useful
for performing molecular-dynamics simulations'

Here we illustrate the implementation of Hellmann-
Feynman forces for use in ab initio molecular dynamics
within the FDP method. The discretization of the wave func-
tion on a real space grid may not be conducive to "well-
behaved" forces. Consider the case of an isolated atom. Sup-
pose we place this atom at the origin of the grid, and then

dEtot ~Ee-i ~E

dR, BR, BR„
(2)

The interionic core interaction is simply the point-charge in-
teraction under the frozen-core approximation. It is the direct

displace this atom along some arbitrary direction. We would
find that the symmmetry of degenerate states may be broken

by such a displacement. This symmetry breaking occurs be-
cause the expansion of the wave function on the grid no
longer preserves the original symmetry. Although the differ-
ences between degenerate orbitals are small, such differences
might have a significant effect on the interatomic forces.

We have focused our first applications on silicon clusters.
Structures of small silicon clusters have been calculated us-

ing simulated annealing via pseudopotentials with a plane-
wave basis. We compare the results of such simulations with
the FDP method to compute interatomic forces, and assess
the accuracy of this approach.

In both the plane-wave-pseudopotential and the FDP ap-
proaches, we use the local-density approximation (LDA).
The total ground-state energy within the LDA is

E„,= T[p)+E, ;(R, , [p])+EH,„[p]+E„,[p]+E;;(R,),
(1)

where T[p] is the kinetic energy, E, ;(R, ,[p]) is the
ionic potential energy, E„„,[p] is the Hartree potential
energy, E„,[p] is the exchange-correlation energy,

E;;(R,) is the interionic core-interaction energy, p(r)
=X„ i'" "'"'~P„(r)~ is the ground-state valence-charge
density, and tel„(r) are the ground-state wave functions. In
Eq. (1), the contributions from the electron-ion and ion-ion
interactions are the only two parts that have explicit depen-
dence on the nuclear coordinates. Since the
Hellmann-Feynman theorem asserts that the first-order
change in the wave functions does not contribute to the
forces, only the E, ; and E;; terms are relevant. The total
force I', on an atom located at R, in the u direction for a
finite system is
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pair summation of Coulomb interactions for an isolated sys-

tem, and an Ewald summation for a periodic system. The
nonlocal ionic pseudopotential describing the interactions

between valence electrons and pseudoionic cores may be
separated into a local potential and a Kleinman and

Bylander form of a nonlocal pseudopotential in real
space, ' '
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where r, =r—R, , and the ui are the atomic pseudopoten-
tial wave functions of the angular-momentum quantum num-

ber I,m from which the I-dependent ionic pseudopotential

V&(r) is generated. EVE(r) = V&(r) —V,~(r) is the difference
between the I component of the ionic pseudopotential and

the local ionic potential.
The energy from the electron-ion interaction, E, ;, can be

obtained by using Eq. (3) as

f
X

J
p(r) Vtoc(ra) d 1+ X (~VI~)[G,, l~] (6)

a a,n, lm

where the sum on n is over the occupied states. Combining
Eqs. (2) and (6), one can get an expression for the force,

8Vt„(r,) BGn lmF, = p(r) d r+2g (hY)' )G'„)

BE;;
BR,

The force from the electronic contribution comprises two
parts. The first term at the right-hand side of Eq. (7) is the
contribution from the local ionic potential, and the second
term is from the nonlocal potential. Within our finite-
difference procedure, the integrations are replaced by a direct
summation over the grid points.

As a first test, we have calculated the interatomic forces
for a silicon diatomic molecule. The method of Troullier and
Martins' was used to construct the nonlocal pseudopoten-
tials using the exchange-correlation functional of Ceperley
and Alder. "Nonlocal pseudopotentials were generated from
the atomic s and p valence-electronic states using a cutoff
radius of 2.5 a.u. The higher angular momentum components
in the wave function are negligible. The computational de-
tails of our calculation are as in our previous work: ' The
grid spacing used in this calculation is h=0.75 a.u. The
wave functions are forced to vanish outside a cutoff radius of

5 6
R (a.u.)

FIG. 1. (a) Total energy of the Si2 molecule vs bond length. The
calculated points have been fit to a sixth-order polynomial. (b)
Forces at the calculated points from both the derivative of the curve
in (a) (open squares) and from the calculation of the Hellmann-

Feynman expression in Eq. (7) (filled circles).

6.8 a.u. The kinetic-energy operator is expanded up to
twelfth order in h for our higher-order finite-difference
expansion. '

The force on an atom can be calculated either from the
numerical derivative of the total energy with respect to the
displacement of an atom, or from the evaluation of the ex-
plicit Hellmann-Feynman expression of Eq. (7). We display
the total energy of the Si2 molecule versus the bond length in
Fig. 1(a). To test the accuracy of Eq. (7) within the FDP
method, we determined the interatomic force for the silicon
diatomic molecule numerically by differentiating a sixth-
order polynomial fit to the energy versus bond length at the
calculated points. We show the calculated forces together
with the results of a Hellmann-Feynman explicit calculation
of Eq. (7) in Fig. 1(b). The forces from both procedures
agree with each other within 10 Ry/a. u. The difference
comes mainly from the errors in the polynomial fit. We ap-
plied the same test to a Si3 cluster, and obtained results as
accurate as for the diatomic molecule.

Ab initio molecular-dynamics simulations have been
implemented using the interatomic forces obtained from the
FDP method. We have used such simulations to determine
the structures of small Si clusters. Specifically, we employ
Langevin molecular dynamics to perform a simulated an-
nealing. Our results are compared to similar calculations us-

ing a plane-wave basis in the determination of forces. Lange-
vin dynamics is a very useful tool in the study of dynamic
and structural properties of clusters. ' In this method, par-
ticles are considered to move in a viscous medium. Within
this medium, the particles experience a rapidly fluctuating
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FIG. 2. Comparison of the structures of small Si clusters with

previous studies. The values in parentheses are from a plane-wave-

pseudopotential calculation (Ref. 5). Those in square brackets are

from a Hartree-Fock calculation (Ref. 16). The bond lengths are

in

random force. The random forces simulate a heat bath with
an adjustable temperature; the work done by the random
forces is dissipated by the medium. If the viscosity coeffi-
cient of the medium is set to zero, the Langevin simulation
reduces to a microcanonical simulation, i.e., the total energy
is conserved when the viscosity is set to zero.

For Si„, 2&n~6, we start the simulation from a random
atomic configuration at an initial temperature of about 3000
K. The cluster is then annealed to 300 K by using a linear
annealing schedule with a temperature step of about 500 K.
The equations of motion are integrated using the algorithm
given in Ref. 15 and a time step of 300 a.u. (=7X10
sec). The system is equilibrated for about 50 time steps at
each temperature. The final structure is obtained from a
steepest-descent relaxation of the configuration at 300 K.
The ground-state structures of Siz-Si6 clusters are shown in

Fig. 2. Results from pseudopotential calculations using a
plane-wave basis and Hartree-Fock calculations * are also
given in the figure. The FDP method gives nearly identical
structures for these small Si clusters when compared to the
other methods. Bond-length differences between the results
of the FDP method and that of the plane-wave-pseudo-
potential method are typically less than 1%%uo. Since LDA bond
lengths often vary by —1—2% from experiment, this accu-
racy is quite satisfactory.

We illustrate here the Langevin molecular-dynamics

FIG. 3. Binding energy per atom during a Langevin molecular-

dynamics annealing from -3000 to -300 K for a Si6 cluster. The
initial structure and some typical structures during the simulation

are also shown. Bonds are drawn for interatomic distances smaller

than 2.6 k

simulation for the Si6 cluster in detail. The binding energy

per atom for the Si6 cluster during the annealing is plotted
versus the annealing time in Fig. 3. The initial and final

temperatures correspond to 3000 and 300 K, respectively.
The initial structure and some typical structures, which ap-
peared during the simulation, have been inserted into Fig. 3.
These results are similar to the simulation using a plane-
wave basis. As in the previous studies, ' ' we find two
structures which are quasidegenerate in energy for the

ground state of Si&. One is a tetragonal bipyramid IFig.
2(e)], and the other is an edge-capped trigonal bipyramid

IFig. 2(f)]. Both structures have singlet electronic ground
states. The edge-capped trigonal bipyramid structure is about
7.4 meV/atom lower than that of the tetragonal bipyramid
structure. This energy difference is almost the same as a
previous Hartree-Fock result of about 7.2 meV/atom. The
energy difference is so small that it is problematic as to the
"real" ground-state structure. Recent Raman-spectrum
measurements have suggested that the ground-state struc-
ture of a Si6 cluster is a tetragonal bipyramid.

There is another issue that needs to be addressed with

respect to ab initio molecular dynamics: conservation of en-

ergy. If the energy is not conserved, e.g., owing to poorly
converged forces or errors introduced by the discretization of
the wave functions, the dynamics of the system of interest
may not be well replicated. We have tested the energy con-
servation for a Si6 cluster. We started the simulation at a
temperature of 3000 K. After therrnalizing the system, we
turned off the Langevin heat bath. We then examined the
fluctuations in the kinetic energy EI„potential energy E~,
and total energy E, (=Ek+E„) over a time span of 100 time
steps. By examining the standard deviations from the mean
values, we obtained a measure of the quality of our energy
conservation. We found oz =6 X 10 eV/atom and

crE =oE =1X10 eV/atom, and there was no apparent
p k

drift present in the total energy. The standard deviation of the
total energy is roughly two orders of magnitude smaller than
that of kinetic energy and potential energy:
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(o.z /o.z ——6X10 ). To assess the accuracy of the FDP
t p

results, a similar molecular-dynamics simulation was carried

out using a plane-wave basis. The standard deviations of
o.E, o.z, and crz were found to agree within a few percentp' k t

between both simulations. The energy cutoff used in the

plane-wave simulation was 18 Ry. The Hamiltonian matrix

size was -8000X8000, which is about the same as that in

the FDP simulation.

In conclusion, we have implemented the molecular-
dynamics simulations using the FDP method. We have dem-
onstrated that the FDP method can predict accurate ground-
state structures of clusters. We have shown that the FDP
approach gives comparable accuracy to methods using a
plane-wave basis. However, the FDP method is easier to
implement, and all operations can be performed in real
space.
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