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Short-wavelength phonon emission from a metal-semiconductor interface
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We believe that short-wavelength phonons (the phonons whose wave vectors correspond to the
edge points of the Brillonin zone) may be emitted by electrons when crossing the interface if it
is abrupt. To show this, we have obtained the exact solution of the Schrodinger equation for an
electron whose effective mass is a smooth steplike function of distance from the interface, where
an electrostatic potential is supposed to be unchanged. %e then analyzed the matrix element of
the electron-phonon interaction and 6nd it is exponentially small if the interface is smooth, so that
the mean width of the step is much greater then the phonon wavelength. This smallness should
disappear if the interface becomes abrupt.

It is well known that short-wavelength phonons
(phonons whose wave vectors correspond to the edge
points of the Brillouin zone) are emitted under tunnel-

ing in metal-oxide-metal structures and are not emit-
ted in metal-direct-band-semiconductor structures. i To
understand the difFerence between these two situations,
we have considered the emission of such phonons and
showed that it occurs only if the potential barrier pro-
file is abrupt, so that the mean scale for it deviation
is about the phonon wavelength. 2 This condition is sat-
isfied in metal-oxide-metal barriers, which are usually
thin (20—50 A) and high (a few eV). In regard to metal-
semiconductor structures, the barriers are wide (more
then 100 A), but low (a few tenths of an eV), and
they usually become smooth for tunneling electron at a
metal surface due to an electrical image. Experiments4
where the short-wavelength phonons were observed in
Au —superthin oxide —p-InAs structures and not observed
in Au —InAs structures support this assertion.

In the present paper we show that short-wavelength
phonons should be emitted as well at the interface where
the potential profile is smooth, but the efFective mass of
the electron has a discontinuity. To understand the ne-
cessity of such a discontinuity let us consider the transfer
matrix element corresponding to the electron-phonon in-
teraction at the interface,

+oo
T = g gfe'e'g; dz.

It becomes exponentially small if the phonon wave vec-
tor q is of the order of m/a (a is the lattice constant),
whereas the envelopes of the electron wave functions be-
fore, g;, and after, @y, are smooth, so that they do not
contain high-&equency Fourier components. We suppose
the interface between the two materials under study to
be Hat, so it is possible to reduce the problem to the one-
dimensional one. Thus in (1) z is the coordinate along
the normal to the interface, where z = 0, q is the wave
vector component along the z axis, and g is the constant
of the electron-phonon interaction. If the exact Bloch-
like wave functions ug, (r)e'"" were to replace vj; and vlf
in (1) this result would not change essentially, if the mean
scale for the Bloch amplitude us(r) is of atomic size and

so is much less than the lattice constant.
For @; and Qf, which have jump discontinuities, in-

tegral (1) is not so small. The main contribution to it
in this case comes from the vicinity (about the phonon
wavelength) of the break points. If we suppose the semi-
classical approximation to be valid, then these discon-
tinuities may be associated with breaks in momentum
p(z) = /2m(z) [E —U(z)j. They arise from singularities
of the potential U(z) (at the surface or near the short-
range impurities) or f'rom discontinuities of the effective
mass m(z) near the surface. The first possibility was
studied in detail in Ref. 2; the latter is the subject of the
present paper.

We shall consider only the variation of the efFective
mass, supposing U(z) to be unchanged through the in-
terface. Such an assumption can hardly be realized in
experiment. Nevertheless, the situation is quite practi-
cable when U(z) become sufficiently smooth, so that it
may be regarded as unchanged on the scale of about a. It
may occur, for instance, in metal-semiconductor contacts
due to electrical image charge. In fact, if it happens, one
can regard the interface as a surface where only the efFec-
tive mass has a discontinuity, but not the potential. This
is the reason for calling it an efFective-mass interface.

In the present paper we propose the exact solution of
the model problem where m(z) is a smooth steplike func-
tion of z, with a mean half-width of the step te. We shall
examine the matrix element (1) and show that it is ex-
ponentially small if qadi &) 1, and this is not the case if
qtu & l.

If the effective mass of the electron m(z) is a smooth
function of z, then Schrodinger's equation may be written
as

/

+ 2E@ = 0.
dz ~m z dz)

Here E is the energy of the electron (the potential energy
term is supposed to be constant and included in E), and
@ is its wave function. We have adopted nnits where
h = 1. Let @ = ~Q, .e Then y should obey the equation

2
(p + 2m(z)E(p = 0,6'
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which is similar to the usual Schrodinger one, and so it
could be solved in the semiclassical approximation, were
m(z) sufficiently smooth. However, we shall use another
way.

Let m(z) be of the form

z
mi + m2e

1+c~ (4)

Then Eq. (3) could be solved exactly. Its particular, lin-
ear independent solutions are

y2 ——e '""F(n —p + 1,P —p + 1, 2 —p, —e ) = yi.
Here I" is the hypergeometric function

ki = $2miE, k2 = /2m2E,

n = i(ki + k2)tu, p = i(ki —k2)tij,

p = 1 + 2ikiiij = n + P + l.

T=A| 'g e'q'
~ g+B 2 dz. (7)

To analyze integral (7), at first let us suppose that
qw )) l. It is convenient to evaluate (7) for the complex
variable z. The integration contour can then be shifted to
the half plane where the integrand is decaying; then ~z

~
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The wave functions Q; and @f can be found as linear

combinations of @1 —— "&~' and $2 —— "&', satisfying
the asymptotic conditions far from the interface. g; is
a superposition of incident wave and divergent scatter-
ing wave and Qf is a superposition of transmitted wave
and convergent wave, i.e., Q; Ix e'"'* for z ~ +oo and

gf oc e'"" for z -+ —oo. Then from (5) we find

4'i ~(01 + W'2) I 0f
r(&)r(n )r(I+ n*)

)r(P)l'(I + P)
Coefficients A and ( are determined from the normaliza-
tion conditions. For matrix element (1) we obtain

where B» and Bq are independent of q. Thus the ma-
trix element (1) for too smooth interfaces becomes expo-
nentially small. This is not the case only if by chance
q+ k» 2 6 k» 2 ——0 and the equation for energy conserva-
tion is satisfied simultaneously.

The lower qm is, the closer is zo to the real axis, so that
for qm 1 the factor e q becomes not so small. We
shall examine now the opposite limiting case, qto (& 1.
Then & )) 1 in the major part of the integration region,
so it is possible to replace the hypergeometric functions in

(5), supposing e = 0. If we suppose also k12tv (( 1,
then

and

Qi = ik, e'"", $2 ——-ikie '"" for z ( 0

$1 ——2i(ki —k2)e '""+ 2i(ki + k2)e'"",

@2 = —
2 i(ki + k2) e '""—

2 i(ki —k2) e

for z & 0. (S)

For g; and @f we obtain

~ikgz + C ~
—i(kj+i8)z»e

i(kg+iblz26

i(k1 —ib) z
3C

@f =
~ik~z + g —i(k~ —ih)z4e

ifz&0,
ifz)0,
ifz&0,
if z) 0.

There

k» —k2 2k2

k, + k, ' k, + k,

2k» k» —k2'
k, + k,

'
k, ' k,

k1,2 2ml, 2 (E ~ )

plane, if q & ki + k2 (Fig. 1). The magnitude of T is
then determined by singularities of the functions gi and
$2 in the upper half plane. They are singularities of the
hypergeometric functions I", which have only logarithmic
branch points at e= = —1 [i.e. , z„= iform(2n+ 1), n =
0, +1,+2, ...j, if n + P —p is an integer, as in our case. s

Thus the integrand in (7) is an analytical function on the
whole z plane except the cut, which should be done along
the iinaginary axis from zo (the point nearest to the real
axis) to infinity (Fig. 1). Integral (7) then turns into
that along the cut. The main contribution to (7) comes
from the vicinity (of the order of q ) of zo ——i7rm. Then
for qm )) 1 zo is far enough from the real axis so that
T (x e q . If q && k», q, then

—mqm

T = gAC'(Bi 1n q~+ B2)

and uq is the phonon energy. We also assume

FIG. 1. Integration contour used to evaluate Eq. (7).
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in order that the coefficients of the incident and transmit-
ted waves become unity, and introduce an infinitesimal
attenuation h ~ +0 for scattering waves to provide con-
vergence of (7) at z ~ koo. Then

iC2 iC3T=g I

l q+k, —k, q+k, —k,
'

iCi Cs iC2C4
, +

q —ki —ki q+ k2+ k2)

Metal

Fermi level

InAs
CB

VB

Fer mi level

We see that (11)does not contain any exponentially small
factor connected with the interface as in (8).

Expressions (9) and (10) could be obtained if we im-

pose the appropriate matching conditions at z = 0, in-
stead of solution of (2). These matching conditions are

4(-0) = ~(+0)

4 (-o) = ~ (+o)

Equations (12) immediately ensue from (2). They are
necessary for the derivatives in (2) to exist.

It is important to note that Eq. (2) holds in the
effective-mass approximation only. It means that the in-

equality m )) a should be satis6ed. Otherwise, more
complicated matching conditions have to be imposed.
Such conditions depend on the material under study and
imply a jump discontinuity in the envelope wave function
as well (see Ref. 9 and references therein). Nevertheless,
the matching conditions may afFect the coefficients Ci-
C4 for the plane waves in (10) only, so that the result
(11) remains valid.

An interesting question arises when qm 1 and xo

a. This means that the main contribution in (1) comes
from a region, of size about a, so an applicability of any
matching conditions and envelope wave functions is not
clear in this case.

We believe the efFective-mass interface could be real-
ized in Schottky barriers with Ag as the metal. Unlike
other noble or transition metals Ag produces an abrupt
interface with AsBs semiconductors. io An interesting sit-
uation arise in the contact metal —p-InAs. The Fermi
level at the interface in this case is pinned 0.13 eV above
the bottom of the conduction band (Fig. 2). Tunneling
through the gap, where p(z) is a sinooth function, could
not result in emission of short-wavelength phonons. Nev-
ertheless, such phonons could be emitted at the interface
if it was sufficiently abrupt.

Emission of short-wavelength phonons at the efFective-
mass interface has an additional advantage in the absence
of a potential barrier there (or if it is too low). Indeed,
only an electron whose momentum is normal to the bar-
rier plane could tunnel eHectively. This makes difficult
the emission of phonons with nonzero wave vector, im-
ply~kg an additional c»dition for q Ii.e. Ipll + qlll «
h(Ad) i~z, where pll and qll are the components of the

FIG. 2. Schematic potential versus distance diagram for
metal~InAs contact. The arrows schematically indicate the
tunneling path of an electron which emits a short-wavelength
phonon at the abrupt interface (point a), but not at the turn-
ing point b, where p(z) is smooth. CB and VB denote the
bottom of the conduction and the top of the valence bands,
respectively.

wave vectors in the direction parallel to the interface, A

is the subbarrier wavelength, and d is the width of the
barrier]. Such restrictions disappear if emission occurs at
an interface without any tunneling. This is possible for
an electron which had been excited before. It seems to
us that the downshift of the threshold in the energy dis-
tribution of emitted electrons which has been observed
in photocathodes is connected with the mechanism of
phonon emission discussed here.

In conclusion, we have shown that an abrupt interface
makes the short-wavelength phonon emission more effec-
tive. This may be understood &om the following quali-
tative argument. From the point of view of an electron
as a quasiparticle, the interface is the place where the
efFective parameters of the energy bands have a disconti-
nuity. The sharper this break, the larger is the classical
force acting on the electron from the crystalline lattice.
It should increase the momentum, which could be trans-
ferred to the phonon emitted when an electron is cross-
ing the interface. This qualitative argument is verified by
the exact solution of the problem. We have shown that
the transfer electron-phonon matrix element for large q
is increased due to the high-&equency components of the
wave function arising when the interface becomes abrupt.
The mean range of this sharpness should be of the order
of or less than the phonon wavelength. Otherwise the
probability of phonon emission becomes exponentially
small. We propose a possible experimental test of the
effect.

We thank Dr. M. Entin for helpful discussions.
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