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Within the tight-binding approximation, the consequences on the band spectrum of the lack of ortho-
gonality between orbitals are fully investigated for a one-dimensional monoatomic crystal with one orbit-
al per atom. The limitations of the nearest-neighbor approximation are first exposed and then, through a
set of reasonable assumptions, a general analytical result is obtained for this system. It is seen that orbit-
al nonorthogonality destroys the symmetry of the band spectrum with respect to the corrected atomic
level, decreasing the effective mass at the top of the band and increasing it at its bottom. As an applica-
tion, the errors involved in neglecting the multicenter integrals in the interaction matrix elements are
evaluated.

I. Ibl'I RODUCTION

In the extensively used tight-binding approach, extend-
ed one-electron states can be approximated (in the varia-
tional sense) as linear combinations of atomic orbitals of
the constituent atoms. The coeScients are the matrix
elements of the self-consistent-field Hamiltonian for one
electron in the crystal between basis states, and involve
the calculation of one-, two-, and three-center integrals
corresponding to on-site energies and hopping terms.
For a perfect crystal these coeScients contain Bloch
phase factors, so that the resulting band spectrum is
essentially a Fourier series in the wave vector k in which
successively higher terms correspond to interactions with
farther atoms.

The immense diSculties connected with the calcula-
tion of the multicenter integrals led Slater and Koster to
put the scheme forward not as a primary method of cal-
culation, but as an interpolation procedure in connection
with more accurate calculations made with other
methods. ' The Hamiltonian matrix elements, rather than
being directly computed, were treated as convenient con-
stants chosen to fit computations made somehow else at
restricted-symmetry points of the Brillouin zone.

A standard assumption, which greatly simplifies
single-particle and many-body calculations, is to consider
that the basis set is orthogonal (whereas atomic orbitals
belonging to the same atom are granted to be orthogonal
to each other, this is not necessarily true for orbitals be-

longing to different atoms once they interact). It is true
that an orthogonal basis set can always be built up from a
nonorthogonal one using, for instance, Lowdins pro-
cedure; however, the resulting orthogonal orbitals have
long tails, which require more-distant-neighbor interac-
tions be considered. An often resorted to alternative is to
absorb orbital-nonorthogonality effects altogether by
modifying the corrected atomic level and hopping terms.

The purpose of this paper is to investigate the effects of
orbital nonorthogonality (ONO) on a band spectrum,
within the framework of a simple model consisting of a
one-dimensional monoatomic crystal with one orbital per
atom. As a consequence of ONO the band spectrum be-
comes asymmetric with respect to the corrected atomic
level, so that the effective masses at the top of the band
decrease whereas those at the bottom increase. These
features cannot be adequately reproduced by a cosine
spectrum with modified parameters.

Section II is devoted to nearest-neighbor orbital
nonorthogonality (NNONO): it is shown that the result-
ing band spectrum is analogous to that of a crystal with
more-distant-neighbor interactions in an orthogonal
basis. ' As mentioned above, more-distant-neighbor in-
teractions are an unavoidable consequence or orthogonal-
ization. The interaction strengths are found to be func-
tions of the NNONO parameter S = ( n ~n + I ). Howev-
er, it will be shown that the NNONO approximation
gives a systematic way to account for ONO effects only
for small values of S, since not only the bandwidth tends
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to infinity for S=z ' (z being the coordination number
of the lattice, z =2 in our case), but the second derivative
of the energy spectrum shows an oscillatory behavior fo"
S as small as 0.125, which directly affects the effective
mass.

In Sec. III it is shown how this trouble can be over-
come by taking into account the nonorthogonalities be-
tween orbitals other than those corresponding to nearest
neighbors. In order to perform the calculation analyti-
cally, a basis set of exponential functions are chosen, to-
gether with 5-function atomic potentials, which allow us
to compute explicitly all the multicenter integrals in-
volved.

H. NEAREST-NEIGHBOR
ORBITAI NONORTHOGONALi I'Y Ek FKCI'S

ON THE BAND STRUC=I tJRE

In this section we review and discuss some of the em-
erging features of the nearest-neighbor nonorthogonality
approximation. The model we work on is an infinite
monoatomic chain with one s-like orbital per atom (one-
band model), and interactions restricted to nearest neigh-
bors. The effective one-electron Hamiltonian for such a
system can be written in site representation as

H=tzgln &&nl —yg(In+1&&nl+ln &&n+il),

where a and y represent the correction to the atomic lev-
el and the nearest-neighbor hopping term, respectively (y
negative for s-like orbitals).

When ~%& is expressed as a linear combination of
atomic orbitals and the NNONO parameter S is taken
into account, the eigenvalue problem (E H)%&=—0
yields an infinite set of coupled difference equations of the
form
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FIG. 1. Band structure for two values of the nonorthogonali-
ty parameter t [Eq. (12) in the test]. As t decreases (S„ in-
creases) the efFective mass at the bottom of the band increases,
whereas the one at the top decreases. (ka is given in degrees,
and the bands have been normalized to the mone height. )

(ES+y„„+,)C„+,+(E a)C„—
+(ES+y„„ i)C„ i=0 . (2)

As can be easily seen from Eq. (2), orbital nonorthogonal-
ity introduces energy-dependent off-diagonal terms into

the secular equation. Using translational invariance the
coeScients acquire the usual Bloch form C„=exp(inKa ),
where a denotes the lattice spacing, so that the band
spectrum becomes

E=(a=2y coska)/(1+2s coska) . (3)

Equation (3) clearly reduces to the familiar cosine spec-
trum as S~O.

Figure 1 shows how, even for small values of S, the
NNONO approximation leads not only to a wider band,
by a factor 1/(1 —4S ), but to a clearly asymmetric band
with respect to the corrected atomic level. (Although one
could attempt to hide the nonorthogonality effects in the
Hamiltonian matrix elements, the resulting cosine spec-
trum will not reproduce these features. ) As S increases,
the band moves upwards by fiattening the bottom and
sharpening its top [but without changing the value of the
spectrum at the middle of the Brillouin zone, i.e.,
E(tt/2) =a], so that the effective masses are changed by
a factor 1/(1+2S ) . (See Ref. 5 for some enlightening ex-
amples. )

By means of a formal Taylor expansion of the denomi-
nator of Eq. (3), we can gain understanding about the
effects of the NNONO approximation. The resulting
band spectrum is formally analogous to that of a crystal
with more-distant-neighbor interactions in an orthogonal
basis. For instance, to Srst order in S we obtain

E=(a+2yS) —2(y+aS)cosktt +2yS cos2Ea . (4)

Equation (4) can be obtained by defining an effective
Hamiltonian acting on a new basis set in which each
atomic orbital has been orthogonalized with respect to
its neighbors to first order in S, i.e., ~N &

= ~n &—(S/2)(~n+1&+~n —1&) (all terms of higher order
than the first are neglected in the eigenvalue problem). It
should be mentioned, however, that this approximation
not only becomes poor as S increases, but the spectrum
becomes unstable for S~0.25. Such an instability arises
because the resulting interactions between even and odd
neighbors are competitive. Interestingly, instabilities
emerge only when an even number of interactions are
taken into account. It was found that interaction
strengths tend to the Fourier coeScients corresponding
to Eq. (3) when an infinite number of neighbors are con-
sidered, i.e.,

2(aS+y)a„=
S(1—4S )'

(1—4S')'"—1

2S
(5)

2(aS+y) —2y(1 —4S )'
ao/2 =

S(1—4S')'"
The term ao shows how the NNONO affects the electron-
ic part of the total energy.

As can be seen for Eq. (3), the NNONO approximation
is valid only for S(0.5, since for S=0.5 the bandwidth
tends to infinity. Even worse, already for S)0. 125 there
is trouble with this approximation, since the second
derivative of the dispersion relation ceases to have a sin-
gle minimum, which leads to an artificial value of the
effective mass at the bottom of the band. This behavior
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arises as a consequence of neglecting the nonorthogonali-
ties between neighbors other than the first ones. For
S~0.5 it is unavoidable to consider overlap between
more-distant neighbors. That is done in the next section,
in the framework of a specific model.
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III. EFFR;CTS OF INTERACTION
AND NONORTHOGONALI'I Y BETWEEN
NON-NEAREST-NEIGHBOR ORBITALS

(7)

In order to analytically compute the multicenter integrals
involved in the overlap- and interaction-matrix elements
between any orbitals in the crystals, we assign to each
atom an s-type orbital of the form

4(x)=(xc) ' exp[ —(~x ~/x0)] .

We also assume that the crystal potential U can be ex-
pressed as a sum of individual atomic potentials, which
we choose to be Dirac's 5 functions, that is,
U(x)=Q„V„(x), with V„(x)=—A5(x —na). If we call
t =a/xc, we obtain the following expressions for the nor-
malized Hamiltonian matrix elements:

S„=[1 t(d /dt) —]e
a =e '/sinht,

I'„=(n+a)e
(10)

As expected, the successive S„and I „decrease rapidly
for a given value of the parameter t. By substituting
these expressions in Eq. (3) we obtain

Ap+ A ~coska + A2cos2ka
(k ta) =,

1+2tr cos a
(12)

where A=Exo/A ,represents the reduced energy and the
coefficients Ap, A &, A z, and cr are given by

Ac=cotht[[1+e '(cosht+e ')]/(cosht sinht t)], —

(13)

In what follows, the eFects of ONO are extended to all
neighbors. When interactions and nonorthogonalities be-
tween any neighbors are considered, the tight-binding
one-electron spectrum for an s-type band becomes

E (k) = [a—2+I „cos(nka )][1+2+S„cos(nka ) ]
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FIG. 2. Comparison of two spectra for t =1: a, the exact
one, Eq. {12),and b, the one obtained by neglecting three-center
integrals, Eq. (17}. The approximate spectrum appears to be
wider than the exact one. (ka is given in degrees. )

A
&

= cotht—j (3e '+e 'secht

+sinht)/(sinht cosht t )j, —

A2=e '/[sinht(sinht cosht t)], —

cr = [(t cosht —sinht )/(sinht cosht t ) ] . —

(14)

(15)

As a remarkable feature, the resulting band of this model
looks like the band corresponding to a problem with in-
teractions up to second-nearest neighbors, with an
effective NNONO given by 0.

Figure 1 shows the form of the spectrum of Fq. (12}for
two values of t As t dec.reases, S„, T„, and a increase,
and the band sharpens at the top and flattens at its bot-
tom. These results are in qualitative agreement with the
ones obtained in the NNONO approximation. It is
worth noting, however, that in the present case the
effective masses do not show the oscillatory behavior,
which in the NNONO approximation was present for
S &0.125, nor does the spectrum diverge for S=0.5. In-
terestingly, the bandwidth grows monotonically with S
and becomes infinite only for S=l (i.e., t =0). This
shows that limiting the ranges of overlaps and interac-
tions can be misleading, even when they mean an im-
provement over the orthogonal case.

We can exploit this analytical model to evaluate the
differences between the exact spectrum and one in which
the three-center integrals are neglected, namely,

(cosht —coska }{1 —cosht coska }
A, ka, t =

sinht [sinht {cosh t —coska )—t ( 1 —cosh t coska ) ]
(17)

We have found that by neglecting three-center integrals a
wider spectrum is generated for t ) 1 (i.e., for S &0.74),
such that the efFective masses at the top appear to be
smaller than in the exact model (see Fig. 2).

IV. CONCLUSIONS

(1) When the lack of orthogonality between orbitals is
explicitly taken into account, the band structure becomes
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asymmetric, decreasing the effective mass at the top and
increasing it at the bottom.

(2) The effective masses are extremely sensible to the
range of the interactions and overlaps. This means that
one could possibly be misled when interpreting correctly
calculated band structures, if overlaps between different
orbitals were not properly taken into account.

(3) The effects of nearest-neighbor orbital nonortho-

gonality can be simulated by considering more-distant-
neighbor interactions in a Slater-Koster scheme.
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