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Brillouin scattering from shear horizontal surface phonons in silicon
on insulator structures: Theory and experiment
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We used Brillouin scattering in p-s polarization to study shear horizontal (SH) acoustic surface
phonons in a silicon-on-insulator structure made of a Si/SiOz bilayer on a Si substrate. Two main

peaks were measured, the first belonging to the discrete part and the second to the continuous part
of the spectrum. The latter feature originates from a type of pseudosurface wave, or quasiresonance,
typical of the investigated structure [Bottani et aL, J. Phys. Condens. Matter B, L85 (1994)]. Be-
cause of the SH polarization of the phonons considered Brillouin scattering takes place only via the
elasto-optic mechanism, that is, by modulation of the bulk dielectric function of the material. To
fully explain the experimental data we performed a computation of the p-s Brillouin cross section.
The SH phonon spectrum, both discrete and continuous, was computed numerically using a slab
approximation. The guided-wave nature of the discrete mode and the strong surface localization
of the pseudomode are illustrated by means of the layer projected phonon density of states. We
computed the incident p electric field transmitted in the medium and the Suctuating polarization
vector radiating Brillouin light. The p-8 cross section was evaluated using a Green-function method
introduced some time ago by Lairs and Mills [Phys. Rev. B 20, 4962 (1979)]The computed intensity
of the scattered field is in good agreement with the experimental finding.

I. INTRODUCTION

The spectrum of long-wavelength surface acoustic
phonons in opaque or semiopaque materials has been ex-
tensively investigated by means of Brillouin light scatter-
ing. Most of the studies have dealt with surface acoustic
phonons polarized in the sagittal plane, defined by the
surface phonon propagation wave vector q~[ and the sur-
face normal. For this type of excitation, light scattering
occurs through the surface ripple and volume elasto-optic
effects and the Brillouin scattering cross section, which
depends on both these mechanisms, can show strong in-
terference features. ~ So far the case of shear horizontal
(SH) phonons, that is, transverse phonons polarized in
the plane of the surface, has received little attention at
least &om the experimental point of view. Although
a great deal of acoustic and geophysical literature ex-
ists about shear horizontal surface elastic waves2 and
although the corresponding mathematical treatment is
easier than that needed to treat sagittal waves, SH ther-
mal waves (phonons) have been considered as sources of
surface Brillouin scattering in a very limited number of
papers and only in the case of supported films.

Since SH waves are polarized parallel to the surface,
the mechanism of their interaction with the light is only
the volume elasto-optic effect and no interference phe-
nomena coming from scattering off the thermal surface
ripple (as in the case of sagittal modes) can appear in
the spectrum. Calculations of the Brillouin scattering
cross section for SH surface acoustic modes (in the dis-
crete part of the spectrum these modes are called Love
modes) have been performed by Bortolani et al. ,

s by Al-
buquerque et a/. ,4 and by Mayer5, who performed a full

quantum-mechanical computation of the cross section for
a dielectric layered film on a metallic substrate, but at
that time these authors could not compare their theoret-
ical predictions with any experimental data.

To our knowledge there are up to now only two re-
ported experimental works on the detection of SH sur-
face acoustic phonons using Brillouin scattering. The
first was conducted by Bell et aL in Nb/Cu superlat-
tice on a sapphire substrate. Those authors performed
their measurements by detecting the tails of the acoustic
modes in the sapphire substrate and gave no evidence of
SH acoustic modes in the continuum part of the spec-
trum.

The second, by Bottani et al. , announced the obser-
vation of SH surface acoustic modes in both the discrete
and continuum parts of the spectrum in the same silicon-
on-insulator structure that we are concerned with in the
present paper. In that paper the theory was limited to
the acoustic part and the Brillouin cross section was not
evaluated. In the present paper we investigate surface
p-s Brillouin scattering in a silicon on insulator (SOI)
structure composed of a silicon dioxide layer buried in a
Si(001) substrate. The structure was produced by oxy-
gen implantation and subsequent high temperature treat-
ment of a Si(001) wafer (SIMOX technology: separation
by implantation of oxygen).

The thickness of the buried oxide I and of the top
silicon layer d was measured by cross-sectional trans-
mission electron microscopy to be respectively 110 nm
and 350 nm as in Ref. 7. Observations were conducted
for phonons propagating along (100). Experiments and
theory concerning p-p Brillouin scattering from sagittal
modes in similar systems are presented elsewhere by Niz-
zoli et al. The present paper is organized as follows:
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(i) We discuss the spectrum of surface SH phonons in the
structure presenting the layer projected phonon density
of states (LPPDS) for the SH polarization. This spec-
tral density was derived &orn the corresponding Green
function which, in turn, was obtained by a spectral ex-
pansion in terms of eigenfrequencies and eigenvectors of
the Sturm —Liouville equation describing SH wave motion
in the system adopting a slab approximation (for a short
review, see Ref. 9).

(ii) We analyze the fiuctuating polarization vector
field P„produced by the elasto-optic coupling when SH
phonons modulate the dielectric function of the medium.
The computation of the p-s Brillouin cross section is de-
scribed in some detail. For this we use an electromagnetic
Green function introduced some years ago by Laks and
Millsio to solve an analogous problem in a quite difFerent
context.

(iii) Experimental spectra for SOI SIMOX structures
are presented and compared to the theoretical calcula-
tions.

II. THE LAYER PROJECTED SPECTRAL
DENSITY OF SH PHONONS

We assume that the free surface coincides with the
z = 0 plane and that the z axis points downwards in
the medium. The first interface is at z = d and the sec-
ond interface is at z = L+ d. For SH waves propagating
along any direction parallel to the y = 0 plane (which
is both the sagittal and the scattering plane in our ex-
periments) the relevant displacement field component is
then u„. The SH surface waves propagate along the x
direction. We consider only [100] and [110]propagation
directions for which the sagittal motion is decoupled from
the SH one. The wave equation for u„, when the x axis
is parallel to [100], is written as

8 uy cPuy 8 Buy
(z) 2" ——C44(z) z" + —C44(z)

where the functions p(z) and C44(z) take within each
layer the value of the mass density and C44 elastic con-
stant of the corresponding material.

Since the system is translationally invariant in the z
direction parallel to the surface, we introduce the (~, q~~)

Fourier component of the u„SH displacement field (the
parallel wave vector is q~~

——q~~e ) as

u& (cd, q~ ~, x, z, t)

= Q(~, q(()4, (~, q((, z) exp[~(q((& —~t)] (2)

where Q(ur, q~~) is the normal coordinate of the SH
phonon (u, q~~). Introducing (2) in the wave equation

(1) we obtain the self-adjoint Liouville equationii

d d+„(cu, q)(, z)
C„(z) " ' + [p(z)~ 2

GZ dZ

C44(z)q()]gw (

The mode z profiles P„(u, q~~, z) are the real eigen-
functions of Eq. (3) corresponding to the real eigenval-
ues ~ = u (q~~), the SH phonon eigenfrequencies. The
P„(a, q~~, z) 's play, in the continuum model adopted here,
the same role as the polarization unit vectors in lattice
dynamics. A similar Liouville equation is obtained for
the (110) case substituting 2 [Cii(z) —Ci2(z)] for C44(z)
as the multiplying coefficient of

q~~
in (3).

Using a slab approximation to solve the above spectral
problem we impose the normalization conditionsii

f
h

p(z)(g (u), q~ ~, z) dz = 1, (4)

y»(~ q~~lz ') = ).V'p(z) p( ')&w(

x~~(&-(q~~) q~[ )~[~ —~ (%t)]-

the slab thickness being h » L + d. Also we as-
sume stress-free boundary conditions which are written
in terms of the vanishing of the z derivatives of the mode
profiles at both the slab outer surfaces

(dP (cd, q~ ~, z) ) f d(b (cd, q~ ~, z) )
) =&

Together with (4) and (5) Eq. (3) constitutes a well

posed singular (at least in the case of sharp interfaces)
Sturm-Liouville eigenvalue problem. i

In principle the spectrum of SH long-wavelength acous-
tic phonons in a semi-infinite (when the slab thickness h

goes to infinity) layered medium is the union of a dis-
crete and a continuous part. The latter starts at the
transverse threshold of the substrate u&

——c&q~~, where cq

is the shear horizontal sound velocity of the substrate in

the appropriate propagation direction. In fact, at fixed

q~~, only for u & urq do the partial plane waves in the un-

bounded substrate have a real perpendicular wave vector

q~
——(~ /c, —

q~ ~ ) ~, as it must be for a nondecaying bulk

wave. Thus, strictly speaking, only the discrete eigenval-
ues correspond to true surface modes (bounded states or
resonances). Yet also in the continuous spectrum (where
the mode profiles are not decaying in the substrate, cor-
responding to SH bulk waves refiecting at the surface)
one can find considerable structure of surface character
(quasi-resonances or pseudo-surface modes).

The adoption of the slab approximation produces only
a discrete spectrum but the (still infinite but now numer-

able) eigenfrequencies separate into two classes: a limited
number of eigenvalues with cu & ~t, still correspond to the
Love waves while all the other eigenvalues tend to accu-
mulate from above toward urz and build a quasicontinuous
spectrum provided the slab is sufficiently thick. It is then
possible to compute the density of phonon states and to
simulate in this way the true continuous spectrum of a
semi-infinite medium.

The more or less surface character of these collective
excitations can be judged &om inspection of the layer
projected phonon density of states (LPPDS) for the SH
polarization
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computed for z = z':

gww(~~ q((lz~ z) = ) p(z)~y(~~(ql()~ q((~ z)

xh[(u —~ (q(()].

Although gyy(u, qll]z, z') in the ease of Brillouin light
scattering is not directly related to the cross section (see
Sec. IV), as it is instead in the case of, e.g. , low-energy
electron surface scattering, y this quantity is useful to look
at the surface localization of the phonon modes.

Introducing the retarded and advanced Green func-
tions of Eq. (3) Gyy(u P ie, qll, z, z') as the solutions of
the non-homogeneous equation

—&44(z) + [ (z)(~ + ie)
d dG„„ 2

d.= dz

—G44(z)q((]Gww = ~(z —') (8)

with the same boundary conditions as for the P» a
smooth representation gyy(u, qll~z, z) of the LPPDS for
SH phonons can be obtained as

susceptibility and thus the scattered field) the electric
field E '(z, z) transmitted in the medium can be con-
veniently computed in terms of the y component of the
magnetic induction field B '(z, z) = e'&"~~~~B(z), where

kll ——(2m'/A) sin8; = (up/c3sin8; is the component par-
allel to the surface of the wave vector of the incident
wave. i B(z) satisfies the ordinary difFerential equation

d ( 1 dB( (u~~

dz ~e(z) dz
~

c' ~(z)~

e(z) is the z profile of the complex relative dielectric
function of the structure at &equency up. In the ideal
case e(z) has a finite jump at each interface where the
continuity of B(z) and e i(z)(dB/dz) is imposed and
keeps a constant value in each layer. In the vacuum

(z & 0) B(z) = (Ep/c)(e'{"-L'~ —rye '~"~'~), where Ep
is the electric field amplitude of the incident p wave,
k~ ——(up/c) cos8; the component perpendicular to the
surface of the wave vector of the incident wave, and ry
the refiection coefficient. Because the substrate is absorb-
ing we impose also the condition that all electromagnetic
fields vanish for z ~ oo. Once B(z) has been computed
E '(x, z) and E, (oz, z) can be obtained as s

~(z)
gyy (u, qll (

z, z) = . [Gww (ur —ie, ql(', z, z)
27ri

Gww(~+—ie, qlll, )] .

c2 QB~o c2

ldp6 Z Z (dpi' Z Z

Once a sufficiently high number of eigenfrequencies and
eigenfunctions of Eq. (3) has been obtained numericallyr
the Green functions can be computed by means of the
spectral expansioni i

Gyy(u) Pie, q((, z, z) = ) " . . (10)
4y(~-(q(l), qll, z)
ld + l6 —4P

BB ' c2k
E o i w II B(z)e'(at( )

4)pE Z Z (do6 Z

The time dependence of all zeroth-order fields has been
omitted and is e * '~. The physical real fields are ob-
tained taking the real parts of the full expressions.

The fiuctuating part of the polarization vector in the
medium, at first order, is

III. ELECTROMAGNETIC WAVE EQUATIONS
FOR THE INCIDENT AND SCATTERED FIELDS

IN THE MEDIUM

Neglecting thermal fiuctuations cubic solids (to which
we limit our treatment) have isotropic dielectric proper-
ties. The perturbation caused by long-wavelength acous-
tic phonons can be accounted for by means of an istan-
taneous anisotropic susceptibility, a second-order tensor
the components of which are linear functions of the ffuc-
tuating elastic strains. Because of dispersion a simple
constitutive law relating the polarization vector P to the
electric field can be written only for monochromatic com-
ponents. We assume that the electric field impinging
&om the vacuum onto the outer surface of the structure
is a monochromatic plane p wave (E,0, E,) with circular

frequency cup and consider at 6rst only the presence of one

{~{q(I),qll) SH phonon [s«Eq. {2)].Taking into aee«nt
the linearity of Maxwell equations and the smallness of
thermal elastic strains the electromagnetic problem can
be solved by 6rst order perturbation theory.

At zeroth order (neglecting the fluctuating part of the

P; ' = op[a(z) —1]E; ' + epbg;, [(up] + ~ (q(()]E.'.
(14)

In the above equation e(z) —1 = y(z) is the unper-
turbed isotropic susceptibility in the absence of phonons
[because u (qll) « cup we assume that e[z[cup +co~(q(l)]
e(z]cup) = e(z)] and bZ, ~(up] + u~(q(I) is the anisotropic
Buctuating part of the susceptibility due the excitation
of a single SH (~ {qll) qll) phonon mode. The s«ond
term in the right-hand side (rhs) of Eq. (14) is responsi-
ble for the radiation of the Brillouin light, that is, of the
scattered field E at frequencies ~, = up + ~ (qll).

Taking explicitly into account the elasto-optic coupling
one 6nds that the part of the Huctuating polarization vec-
tor radiating the scattered 6eld has only one component
{P„')Jiwhich ean be written in terms of the fluctua-
tin thermal elastic strains u„= ~ [Buy{w, ql()/Bx] and

u„, = —,'[au„{~., q(()/az] as'

(Py )R = +Pk44{z)[uy {~n oql()E ' + uw, {~,ql()E, ']
(15)

for [100] and as
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(P„)~= ep -', [k,i(z) —ki2(z))u„~(~~, qII)E

+k44(z)u„, (ur, qII)E '
~

(16)

for [110],where the k,~. (z) are the z profiles of the relevant
elasto —optic coefficients. Thus Brillouin scattering of an
incident p electromagnetic wave off a pure SH phonon
produces a scattered s electromagnetic wave, that is,
scattering rotates the polarization of 90'.

In order to write down the wave equation for the scat-
tered electric field component E„' in a way suitable to
compute the p-8 Brillouin cross section we write again
(P„')~ in the compact form (for the sake of simplicity
we report only the complex anti —Stokes term for [100],
radiating at the circular frequency u, = ur, + ur (qII), cor-
responding to the annihilation of preexisting phonons)

(P ')~ = Q((d~, qII)II&(z~(dp, kII', (d~, qII)e

where

Ilw(zlcup, kII', cu, qII)

c'epk44(z) dB

d4, ( -(qII), qII, )B, ,—
k(i Bt',zj

z

are spectral weights depending on both the phonon mode
profiles and the zeroth order incident electromagnetic
field in the medium. At thermal equilibrium the ther-
mal average of Q(~, qII) is zero and so is that of the
scattered field amplitude; thus the statistical properties
of the Brillouin light depend on the probability density
of the random variable Q(u, qII) and on its time auto-
correlation function (see below). An equation similar to
(18) is obtained for [110] using (16).

In the absence of &ee charge div E ' = —ep div P" .
Using this result together with Eqs. (14) —(17) in the
system of Maxwell equations one finds the inhomoge-
neous wave equation for the radiation of the scattered
field component E„' (x, z, t) = E„(z)e' "~~* '~ in the
medium (z ) 0)

d2Ea
e(z) —;—kI'I E„

2 OO

Q( qII) H. ( 'I kII» qII)
E0C 0

xD»(u)„kII i0, z') dz'.

E„(0)=—

In practice, because the skin depth of the electromag-
netic field is much shorter than the slab thickness h, the
integration in Eq. (20) can be stopped just at h.

The electromagnetic Green function can be expressed
in terms of a matrix d;~(u„kII~z, z') which depends on

kII only through its modulus. i4 It turns out that D» ——

d„„ for [100] and D» ——(d + d»)/2 for [110]. The
needed Green-function matrix d,~ has been taken from
Ref. 10 where explicit formulas are available. Although
the physical problem treated therein by Laks and Mills is
quite difFerent {photon emission from tunnel junctions)
the mathematics of the radiation problem is exactly the
same as that faced in the present paper.

In a scattering experiment the scattering geometry
fixes qII. Thus to obtain the total fiuctuating scattered
field component (~, k') one has to sum up (19) over all
a' s, that is, to consider the contribution of all phonons
having the same parallel wave vector. The differential
scattering cross section is proportional, through the fac-
tor 8 cos 8, (S is the illuminated area of the sample sur-
face and 8, the angle between k' and the outgoing surface
normal), to the thermal average of the power spectrum of
the total scattered field component, that is to the time
Fourier transform of its time autocorrelation function.
We write the approximate scattered far field within dA
around the direction of k' as

2

) A Q(~ni qII)

x g'I~o+~ (0]])j~

E„'(r, t) =—

(21)

where

where kz ——u, /c —
kI'I . In the far field approxi-

mation the total scattered field in the vacuum within
an infinitesimal solid angle dO around the direction of
k' = kz + kII coincides with its plane wave (Fourier)
component (u„k'). Thus the problem is reduced to
the determination of E„(0 ) = E„(0+) = E„(0). This
can be accomplished by means of the Green function
D„„(u„kI'I~z,z') of the above electromagnetic problem.

D» is defined as the function obeying the same equa-
tions as E„(z) does but with the rhs of Eq. (18) substi-
tuted by a delta function b(z —z'). Once D„„ is known
one immediately has

(d
zQ(~~, qll)Hw(z~~p, kll, ~~, qiI), ( 9)

EpC

h

A~ = II„(z'la» kI
I

I w~, qI I
)D»(~» kII I0, z') dz'.

0

(22)

where k' = k~ + q~I, expressing the conservation of par-
I

allel wave vector in an anti-Stokes event. In the vacuum
above the surface (z ( 0) the scattered field component

E„(z) obeys the homogeneous wave equation obtained
by equating to zero the rhs of Eq. (19) with e{z) = 1 and
takes the simple plane wave form E„(z) = E„(0 )e'"&'

Making use of the fact that the Q(u, qII)"s are in-
dependent random variables with mean square values
fixed by the thermal equilibrium conditions {Q )ih
k~T/Su (qII), one finds that the differential scattering
cross section for anti-Stokes Brillouin scattering from SH
phonons is proportional to
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oc cos8, 2 h[u —uo + uo(Q~~)]. (23)
dOdid (d~ (gi i)

The Stokes cross section is derived similarly.

IV. EXPERIMENTAL RESULTS AND
DISCUSSION

8

500—
n

A

silicon

silica

silicon

Brillouin spectra were acquired in backseat tering
at room temperature using a 3+3 passes tandem
interferometer. Measurements were performed using in-
ci en p-po'd t olarized light from an argon ion laser oscillating
in single longitudinal mode at Ao ——514.5 nm wave engt
and collecting only s-polarized scattered light. The laser

ower onto the sample surface was 150 mW. Spectra were
t ken at difFerent angles of incidence, &om 20' to 70', in
order to have different wave-vector components paraHe
to the surface q~~. To compensate for the parasitic broad-
ening caused by the finite collection aperture, a vertica
slit (LN +2') was used in the collection. This had
also the advantage of avoiding the splitting of Brillouin
scattering peaks in the spectra caused by the intercep-
tion of the backscattered photons by the mirror used to
direct the incident light onto the sample. With this con-
figuration the integration time was four hours per mea-
surenmnt.

A Brillouin p-s spectrum taken along [100] at 8 = 40'
is presented as the upper line in Fig. 1. Two peaks
are clearly visible and can be identi6ed as being due to
scattering f'rom SH acoustic modes by comparison with
the theoretical cross section which is drawn as the lower
line in the same Ggure. In the calculation we used the
dielectric (e), elastic (C;~), and elasto-optic constants of
bulk Si and Si02. The Si constants are e = 18.5+ 0.52i,
C~q ——166 GPa, Cq2 ——63.9 GPa, C44 ——79.6 GPa,
Kyy = 53.2 Ky2 = 25.0 K44 = 23.4, p = 2330 kg m
The Si02 constants are e = 2.16, Cqq ——78.5 GPa, C44 ——

31.2 GPa, Kyy = —0.55, K44 = 0.345, p = 2200kg m

14 &«6 18 20 22 24 26

FREQUENCY [GHz]

The theory does not contain any free parameter but the
theoretical cross section is convoluted with a Lorentzian
of 200 MHz width to account for the finite experimental
spectral resolution.

To explain the different acoustic nature of the pea s,
in Fig. 2 a contour plot of g„„(u,q~~]z, z) is shown for
a parallel wave vector

q~~
0.0157nm, corresponding

to an incidence angle of e; = 40'. The vertical line at
vt ——ui/2z separates the discrete from the continuou. -

spectrum. The mode below the threshold is highly local-
ized within the silica buried layer (the transverse soun
velocity of which is lower than that of silicon) and is
a true surface wave decaying in the Si substrate (Love
wave). The pronounced surface character of the pseudo-
mode in the continuum above vt (pseudo-Love wave) is

FIG. 2. Contour plot of the LPPDS as a function of depth
snd frequency calculated at 40' for propagation along (100).
In the contour plot the geometry of the sample and the trans-
verse threshold for silicon are evidenced. The first 300 eigen-
vslues aud eigeufunctions of Eq. (3) were found using the
NAG routine D02KEF based on a Prufer transformation and
a shooting method. A total slab thickness h of 46 000 nm was
taken. In Eq. (10) e was taken equal to 2s' x 200 Mrsd s

3x10 s

300

250—

200—

F5

150—
M
K

100—

50—

I I
I

I
I

I
I y

I

I i

I I
I
I I

I
I

I
I I

I
y

1 I
I I

2,5-
2

V3 2

a0 1.5 —,'

G'
M
K0
~~ 0.5 j'

I
I

I
I

I I
I

I
I
I

I
I

I

x 10

,L
0 2 8 10 12 14 16 18 20

0
0 100 200 :300

f

400 000 HAPP PPP

DEPTH [nm J

—- - - - -L-

800 900 1000

FREQUENCY SHIFT [GHz]

FIG. 1. Measured p-s Brillouiu anti-Stokes spectrum (up-
per ne aer line) and theoretical p-s cross section (lower line along
(100) for 8 = 40 . The peak tail immediately at the right of
zero shift belongs to the laser line while that growing near 20
GHz is due to an instrumental ghost of the interferometer.

FIG. 3. Mean square polarization radiating the Brillouin
light vs z at the frequency of the Love (full line) aud of the
pseudo-Love (dashed line) wave for 8; = 40' and propagation
directiou [100j. It is seen that the source of the Brillouin light
is confined in the Si layer immediately below the surface (see
text).
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The enhancement of the peak amplitude as q~
~

increases
is evidence of the greater confinement of this mode in
the silica layer. Since at sma

q~~

igs. a and 5(b)] its intensity increases. The pseudo-
Love wave, the confinement of which in the Si layer does

also visible.
can beThe higher visi i y o
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eak. The source of Brillouin light [Eqs. (19)—(21)]

due to the fact that the k44 elasto-optic coefficient o

d b the incident electric field trans-
mitted

'
the medium is maximum there. The exponen-

for z ~ oo in the Si substrate
is explained in terms of the vanishing of B(z) due to a-
sorption.

Although the Love wave is essentia~iy a wav g
'

see Fi . 2~, only its upper
tail contributes significantly to Brillouin scattering. T e

h hi h degree of localization in the
silicon layer and is therefore highly visible.

[E . (23)] are compared to the experimentalsections ~j q.
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not depend strongly on q~~, always remains highly visible.
In Fig. 4 the lowest line (in each subplot) represents

the thermal average of the integral of the LPPDS over
the thickness d of the Si layer. The choice of this limit
of integration is justified by the fact that only this re-
gion contributes to the intensity of the Brillouin light.
It can be seen that this purely acoustic quantity is in
reasonable agreement with the exact cross section. A
qualitative explanation for this agreement goes as fol-
lows. The numerical computation shows that in Eq. 18,
which gives the source for the radiation of the scattered
field, the first term [proportional to the phonon displace-
ment field (P„) j in the square brackets is dominant with
respect to the second. Using in Eqs. (21) and (22) the
fact that Dz„(u„k~'~ ~0, z') is a smooth function of z' for

0 & z' & d the coefBcients A become simply propor-
tional to the (P„) . Within this approximation the cross
section becomes proportional to the thermal average of
the integral of the SH LPPDS.

V. CONCLUSIONS

The computation of the cross section for Brillouin scat-
tering of light by shear horizontal phonons for a medium
consisting of a double layer on a substrate has been car-
ried out. Brillouin scattering experiments have been per-

formed on a silica layer buried in a Si(001) substrate using
a backscattering geometry at different incidence angles
and with an analysis of the s-polarized scattered light.
Two peaks have been detected. The lower-frequency
peak is the fingerprint of a shear horizontal mode (be-
longing to the discrete spectrum) which is confined in
the silica layer (Love wave). The high-f'requency peak
has been identified as a quasiresonance in the continuous
spectrum (pseudo-Love wave). The change in the visi-

bility of both peaks as a function of the angle has been
discussed. The relative intensity of the peaks is in good
agreement with theoretical cross-section predictions.
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