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Anisotropy of difFusion along steps on the (111) faces of gold and silver
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We present a molecular-dynamics simulation of adatom diffusion along the two close-packed
steps on the (ill) surfaces of gold and silver. Both metals are modeled by employing many-
body potentials derived within the second-moment approximation to the tight-binding model. The
simulation predicts very different behaviors for the two metals. For Au, the diffusion is much faster
along the step with (ill) microfacets (step B), whereas for Ag the diffusion is faster along the
step with (100) microfacets (step A). The difference between the diffusion coefficients along the
steps is more marked in gold and, for both metals, the Arrhenius plots show a dynamical lowering
of the activation barriers with respect to the static potential barriers; no evidence of an inversion
of the anisotropy of diffusion is obtained. As the diffusion along steps is quasi-one-dimensional,
the results of the simulations have been compared to those based on the Fokker-Planck equation
in a one-dimensional periodic potential. The agreement between the model and the simulations is
remarkable for B steps both in gold and silver; the model predicts the temperature dependence
of the rate, the correct proportion of long jumps, and the details of the behavior of the mean-
square displacement. In A steps, the agreement is satisfactory for Ag and qualitative for Au; in
the latter case, the diffusion path is rather different from a straight line and the application of a
one-dimensional model may be questionable.

I. INTRODUCTION

The diffusion of adsorbed atoms on crystal surfaces is
a topic of great interest from both the experimental and
the theoretical point of views since it plays a funda-
mental role in many surface processes, such as surface re-
actions, adsorption, desorption, and crystal and thin 61m
growth. The difFusion of single adatoms on flat surfaces
has been widely studied by experiments and simulations.
It has been shown that adatoms may diffuse by difFerent
mechanisms, such as single jumps, long jumps, and
exchanges.

Recently, the mobility of adatoms on stepped surfaces
and on islands has attracted much interest, as it is fun-
damental for the understanding of growth mechanisms.
For instance, the problems of step-edge descent on the
(111) face of fcc metals and of the kinetics of deposition
on top of the islands have stimulated much theoretical
and experimental work. On the contrary, much less
is known about the diffusion along step edges. There
are some results about the static barriers (at zero tem-
perature) for difFusion along the close-packed steps on
the (111) faces of silver2 and aluminum, is but com-
plete studies at zero and high temperature are still lack-
ing. The diffusion along island edges is the dominant
mass-transport mechanism in the two-dimensional spin-
odal decomposition of a half monolayer of Cu deposited
on Cu(100).2s Moreover, the anisotropy of difFusion along
the close-packed steps on the (111)face of Pt may give an
explanation of the temperature dependence of the growth
shapes of two-dimensional islands.

In this work we perform molecular-dynamics (MD)
simulations of diffusion along the two kinds of close-
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FIG. 1. A terrace on the (111) face of an fcc crystal, with
an A step (square microfacets on the step riser) on the left
and a B step (triangular microfacets on the step riser) on the
right.

packed steps on the (111) face of fcc transition metals,
in particular of gold and silver. The two steps are shown
in Fig. 1; step A has (100) microfacets on the step riser,
whereas step B presents (ill) microfacets. We have cho-
sen gold and silver mainly because these metals represent
two typical cases with opposite characteristics. In fact,
as we will see in the following, the static barrier (zero
temperature) for difFusion along the steps is higher along
A steps for gold and along B steps for silver. Therefore
we expect that gold and silver will display a rather differ-
ent behavior with respect to the anisotropy of diffusion
at steps. Moreover, the two metals present rather low
barriers for diffusion along both steps. At present, MD
simulations can be performed, with a reasonable amount
of computer time, at most on the time scale of nanosec-
onds. Therefore this technique allows the determination
of difFusion coefficients D of at least 10 s cm2/s. For
what concerns diffusion along the steps A and B, it turns
out that for gold and silver these values of D are attained
around 500 K, a temperature close to that of sputtering
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experiments on gold. For simplicity, the simulation of
gold has been done on the unreconstructed (111)surface.
The periodicity of this reconstruction is very large and
therefore the simulation of the reconstructed surface at
finite temperature is really cumbersome as it requires a
very large simulation box. Moreover, due to the charac-
ter itself of the reconstruction, we may expect that it is
not very important for the local environment at a step.

To perform a realistic MD simulation of gold and sil-
ver we employ many-body potentials of the tight-binding
type, as developed by Rosato, Guillope, and Legrand
(RGL).2 '2s These potentials provide a rather simple an-
alytical formula for the forces among the atoms; for that
reason it is possible to perform large-scale MD simula-
tions, with thousands of atoms. The RGL potentials
have been recently employed with good results in the
study of difFusion of Ir, Cu, Rh, and Pt adatoms on the
(100), (110),and (111)faces of the same metals~s and of
Ir dimers on the same Ir surfaces.

The diffusion along straight steps is essentially one di-
mensional (1D) as the difFusing atom is tightly attached
to the step. On the other hand, refined difFusion the-
ories are better developed in the 1D case. Therefore a
realistic MD simulation of diffusion along steps can be
used to test the validity of the theory, with much more
precision than the simulations of diffusion on the flat sur-
face. In this paper, the results of the simulation will be
compared to theoretical prediction given by the Fokker-
Planck equation (FPE) in a 1D periodic potential. The
use of the FPE and of similar approaches has a long tra-
dition in the field of surface diffusion with good
results.

The paper is organized as follows. In Sec. II the RGL
potentials are briefly described. In Sec. III the poten-
tial energy barriers for the different significant processes
that may happen while an atom diffuses along a step are
calculated. In Sec. IV the results of the MD simulation
are shown and the comparison with those by the FPE is
made. In Sec. V the conclusions are outlined.

II. MODEL

The many-body RGL potential has been developed on
the basis of the second-moment approximation of the
density of states in the tight-binding model. "' In
the RGL potential, the energy of an atom i is written
as the sum of two terms. The first term is the band en-
ergy E&, ' this term has a many-body character and it
models the efFect of the local electronic density, which is
important for describing the binding due to delocalized
electrons:

(r;;
E~ = —

& ) ( exp —2q I—
j )&ag &&c

The square root in Eq. (1) allows a correct description of
surface relaxations and reconstructions, 4s'4~ which is not
obtained by two-body potentials. The second term E„'is
a pairwise repulsive interaction of the Born-Mayer type

(2)

The total energy is given by

—) (Q' + E*)

The four parameters ((, A, p, q) are fitted to the experi-
mental values of the cohesive energy, the lattice param-
eter, the bulk modulus, and the elastic constants C44
and C' (for details see Appendix A in Ref. [27]). The
cutoff r, is taken as the second-neighbor distance and
the potential is linked up to zero at the third-neighbor
distance with a fifth-order polynomial in order to avoid
discontinuities both in the energy and in the forces. The
parameters values for gold and silver are given in Table
I together with the values of the lattice spacing at zero
temperature a(0) [a(0) = pro]. The values used here
are difFerent from those given in Ref. [26] because there

was taken to be equal to the nearest-neighbor distance.
Our system (see Fig. 2) is a (ill) slab with a width of

9 layers in the z direction, perpendicular to the surface.
On the surface plane, where periodic boundary condi-
tions have been applied, the size is of 9 rows and 15
columns. The topmost layer of the slab consists of a
smaller terrace of 7 columns, delimited by an A and a
B step on the left- and on the right-hand side, respec-
tively. Along each step there is a diffusing adatom. In the
following when we will speak of an "adatom" we mean
one of these atoms diffusing along a step, if not other-
wise specified. The minimization of the energy at 0 K
for a given structure has been obtained by a quenching
procedure;~ starting &om the unrelaxed positions of the
atoms, we solve the classical equations of motion; 2 the
quenching procedure consists in canceling the velocity
of a particle whenever its product with the force acting
on the particle is negative. This procedure allows a full
relaxation. The quenching is terminated when the crystal
reaches a temperature lower than 5 x 10 K. In order to
calculate the energy at saddle points the unstable degrees
of freedom of the system have to be fixed. For instance,
in the case of the saddle-point energy for the diffusion
of an adatom along a step, the coordinate to be fixed is
the displacement of the adatom along the step itself; the
other two coordinates of the adatom and all the degrees
of &eedom of the other atoms of the slab are allowed to
relax.

TABLE I. Nearest-neighbor distance at 0 K and parame-
ters of the potentials used in the MD simulations of gold and
silver.

$ is an efFective hopping integral, r;z is the distance be-
tween the atoms i and j, r is the cut-off radius for the
interaction, ro is the first-neighbor distance, and q de-
scribes the distance dependence of the hopping integral.

Metal
Au
Ag

a(0) (A)
4.07
4.09

( (eV)
1.855
1.190

A (eV)
0.2197
0.1031

p
10.53
10.85

4.30
3.18
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FIG. 2. The slab used in the simulations. The terrace on
the topmost layer is bounded by an A step on the left and a
8 step on the right. In both channels along the steps there is
an adatom.

u(T) = a(0) [1+n(T —To)] (4)

with a = 2.5 x 10 K and T() ——88 K for gold and
o, = 2.1 x 10 5 K and To ——81 K for silver.

III. ENERGY BARRIERS AT 0 K

The motion of an adatom along a straight step is ex-
pected to be essentially 1D, as the adatom is tightly
bound to the step itself, having five nearest neighbors
instead of the three on the (111) flat surface. In both
metals the adatom ln an equilibrium position along a
step has an energy lower by about 0.4—0.5 eV than in
an equilibrium position on the terrace. The minimum
energy of an adatom in the channel along a step is essen-
tially the same for the two steps in Ag and lower by 0.03
eV for step A in gold. Therefore the simple picture for
the motion consists of jumps between the fcc equilibrium
sites along the step. However, many different processes
may happen; in principle, the adatom can exchange with
an atom of the step, pushing the latter along the step or

The MD simulation at finite temperature is done in
the microcanonical ensemble. The classical equations of
motion are solved by the standard Verlet algorithm,
with a time step of 7 x 10 s ps. Data are taken after
a thermalization of 3000 steps, corresponding to 21 ps,
which are sufficient to achieve equilibration. After that
the simulation is performed for a considerable number
of steps, of the order of 105. A typical length for our
simulations is 560 ps. At each temperature considered,
eight to ten simulations are done, in order to have a large
number of events (essentially of jumps along the steps).

Our simulations have been performed in a rather wide
range of temperatures, from 450 to 650 K. These tem-
peratures are of the order of one-half of the melting tem-
peratures of gold and silver and therefore thermal dila-
tion must be taken into account. We have determined
the thermal dilation at each temperature, looking for the
value of the lattice parameter which corresponds to zero
crystal pressure. To a high degree of accuracy, the ther-
mal dilation is linear in that temperature range; the lat-
tice parameter a increases with T according to the law

on the upper terrace; atoms of the step can come out and
form a dimer with the adatom or diffuse along the step
itself. Clearly, the importance of these different processes
is determined by their time scales with respect to the time
scale for the simple hopping. In order to clarify the rela-
tionships among these time scales, the energy barriers for
the different elementary processes are computed by the
quenching procedure sketched in the previous chapter.

The different elementary processes are shown in Fig.
3 (the figures show them for step A; the correspondence
with the processes related to step B is trivial) and the
numerical results are summarized in Table II. First of all
we consider the simple hopping along the step [process (a)
in the figures]. The barriers for gold are 0.340 and 0.224
eV for steps A and B, respectively. The corresponding
barriers for silver are 0.254 and 0.289 eV. The values
obtained for silver are in rather good agreement with
those of embedded-atom calculations, which are 0.207
eV for step A and 0.275 eV for step B. The barriers
for hopping along the steps A and B are much larger
than those for hopping on the Hat surface both for gold
and for silver. In fact, the barrier between an hcp site
and a saddle point on the fIat surface is 0.121 eV for
Au and 0.067 eV for Ag [the embedded-atom result for
silver is 0.060 eV (Ref. 22)]. For a single adatom, the
fcc sites have a slightly higher energy, thus the barrier's
fcc site saddle point are 0.116 and 0.058 eV, respectively.
This is consistent with the results of field ion microscopy
experiments, which have shown that the hcp sites are
favored for a single adatom of Ir on Ir(111). It should
be noticed that a single jump along a step amounts to a
double jump on the fIat surface, because the hcp positions
near the steps are not equilibrium sites. All the barriers
for hopping along the two steps are of the order of 0.2—0.3
eV. However, the difference between the two barriers is
considerable for gold (about 0.12 eV), but rather small
(0.04 eV) and with the opposite sign for silver.

The diffusion paths along the two steps are rather
different, as shown in Fig. 4. The path along step B
is substantially a straight line, both in gold and in sil-

ver. The saddle-point positions are slightly displaced to-
wards the step with respect to the minimum positions,
by Ay = —0.04 and —0.01 A. for Au and Ag, respec-
tively. In the z direction, the saddle point is at the same
level as the minimum for silver and 0.03 A. higher for
gold. Along this step the motion is really 1D. On the
contrary, the path along step A shows pronounced de-
viations from a straight line. These deviations are not
very important concerning the z coordinate (the saddle
points are slightly below the minima, by Az = —0.10k
for gold and Az = —0.071 for silver), but they are pro-
nounced in the direction perpendicular to the step. The
saddle points are displaced far away from the step, by
Ay = 0.71 and O.MA for Au and Ag, respectively. In
the case of gold, the diffusion path is very close to the hcp
position (see Fig. 4), which is displaced by Ay = 0.83 k
with respect to the minimum on the unrelaxed surface.
The considerable barrier for diffusion in gold may be re-
lated to this large displacement of the diffusion path away
from the step edge; however, the origin of the differences
between gold and silver and their relationships with the
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FIG. 4. Schematic representation of the diffusion paths
along the two steps in the case of gold. In the case of sil-
ver the diffusion paths are similar, but the curvature of the
path along step A is less pronounced.
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potential parameters are currently under investigation.
We remark that all the displacements b,y and b,z re-

fer to the fully relaxed crystal, after the quenching pro-
cedure. As the neighbors of the adatom are displaced
&om their positions with respect to a straight step, the
"reference kame" for computing positions, and then dis-
placements, is given by the step atoms far away from the
adatom, because their positions are not perturbed by the
presence of the adatom.

The adatom may leave the channel along the step to

FIG. 3. Elementary processes (a)—(f) concern the diffusion
of an adatom along a step and the disordering of the step.
The processes are shown in the case of step A; the correspon-
dence with those relating step B is trivial. In process (a)
the adatom jumps along the step; in process (b) the adatom
leaves the channel and reaches one of the nearest equilibrium
sites on the terrace; process (c) is the reverse of (b); in (d)
an atom of the step comes out in the channel; (e) is the re-
verse of (d); (f) follows (d) when the atom starts diffusing
in the channel instead of coming back as in (e). Elementary
processes (g)—(1) concern the formation and the dissociation
of dimers along the step. In (g) an atom of the step comes
out and a "stable" dimer (see text) in the channel is formed;
(h) is the reverse of (g), i.e., the dimer is broken; in (i) an
"unstable" dimer is formed; (j) is the reverse of (i); (k) and
(1) show the dissociation and the formation of a third kind of
dimer.

Process
(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(I)
(j)
(k)
(I)

Au step A
0.34
0.51
0.09
0.53
0.04
0.17
0.52
0.25
0.51
0.03
0.51
0.34

Au step B
0.22
0.51
0.12
0.67
0.15
0.04
0.60
0.33
0.54
0.04
0.42
0.22

Ag step A
0.25
0.52
0.04
0.71
0.08
0.08
0.63
0.26
0.65
0.07
0.49
0.25

Ag step B
0.29
0.55
0.06
0.69
0.07
0.10
0.59
0.22
0.65
0.05
0.50
0.28

TABLE II. Energy barriers related to the processes shown
in Fig. 3. All the data are in eV.
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FIG. 5. Trajectories of the adatoms for a 560 ps simulation
of Ag at 603 K. The trajectory along step A (on the left) shows
that the saddle points are really displaced away from the step
with respect to the minima.

reach one of the fcc equilibrium sites on the flat terrace
as in process (b) in Fig. 3. In any case, two nearest-
neighbor bonds must be broken in this process; therefore
the barrier is rather high, around 0.5 eV (see Table II),
for both steps in Au and Ag. The differences between
the two metals are small and the departure &om the step
should be a rare event on the time scales of process (a)
at any temperature of interest. Once the adatom has
reached the fcc site it can difFuse on the terrace or come
back and stick again to the step [process (c)]. In step
A in both metals, the barrier for this process is slightly
lower than the one for diffusion on the flat surface, by
about 0.03 eV. An atom reaching the fcc site from step
A has a definitely larger probability of coming back than
of diffusing on the terrace up to temperatures around 400
K. This means also that an adatom diffusing on the lower
terrace should be rather quickly trapped by the step, as
the barrier for jumping into the channel is lower than
that for difFusion on the fiat terrace. This fact should
lead to t;he deplet;ion of adatoms on the lower terrace
near a growing step, as it has been observed by Beld-ion
microscopy around Ir clusters on Ir(ill). 4s This is not
the case in step B, as the barrier for coming back is the
same as that for diffusion. Recently it has been found
in different metals, such as Pt and Al, ' that there is
an energy gradient on lower terraces attracting adatoms
towards steps. In our case we find that the potential
acting on an adatom on the terrace is distorted by the
presence of the step; however, the effect is important only
in the vicinity of the step. For instance, we consider step
A in silver. The energy of the system with the adatom
in the channel along the step is 0.48 eV lower than the
energy with the adatom on the lower terrace far away
Rom the step; the hey site near the step is not even an
equilibrium site, being close to the saddle-point position
for diffusion along the step. However, the energy of the
adatom in the position taken at the end of process (b) is
lower than that of the adatom far away from the step only
by 0.01 eV. Therefore the effective attraction exerted on
the adatom by the step seems to be rather short ranged.

Other possible processes are related to the displace-

ments of atoms of the step which are far away from the
adatom [processes (d)—(f)]. For instance, an atom of the
step may leave the step itself to reach a metastable equi-
librium position in the channel [process (d)]; from that
position the atom may come back, as in {e), or difFuse

along the step leaving a vacancy behind, as in (f) (we
will not consider the back and forth motion between the
two symmetric metastable sites on the two sides of the
vacancy). Simple bond-counting predicts that the bar-
rier for process (d) should be rather high, as the atom
has to cut three nearest-neighbor bonds to reach the fi-

nal position. This prediction is verified, but with some
differences. The barriers for both steps in Ag and for
step B in Au are of the order of 0.7 eV; these barri-
ers are significantly higher than those for process (b), in
which two bonds are broken. In step A in Au, the bar-
rier is smaller, slightly above 0.5 eV and then process (d)
might have a non-negligible frequency on the time scales
of the simulation at finite temperature (see below). For
instance, a rough estimate of the frequency of process

(d) can be given by the transition state theory (TST);47
according to TST the frequency of a process is given by
vexp( —AE/k~T), where v is a typical oscillation fre-

quency and AE is the energy barrier. Assuming v 1

ps i and taking T 600 K, process (d) should happen
on the scale of 10 ns for the step A of gold, of some 102

ns for step B, and on the scale of 1 ps for both steps in
silver. If process (d) alone is considered, then the con-
clusion is that in gold step atoms will leave much more
frequently step A to diffuse along the channel. However,
this conclusion is not correct, because process (d) is not
the whole history. From the metastable position in the
channel, the atom is likely to come back [as in (e)] in the
case of step A and to diffuse in the channel [as in (f)] in

the case of step B. For step A at 600 K the probability of
coming back is about ten times greater than the proba-
bility of starting diffusion in the channel; for step B, the
ratio of the probabilities is inverted. This means that
the difference in the barriers for process (d) is essentially
compensated. In silver, there is no substantial difference
between the steps; the very high barriers for process (d)
and the good balance between the frequencies of events

(e) and (f) should indicate that the kinetics of the disor-
dering of straight steps is somewhat slower in Ag than in
Au.

Another class of elementary processes that may take
place when an adatom diffuses along a straight step is

related to the formation and the dissociation of dimers.
In the following we will consider the events concerning
three different kinds of dimers, which are shown in Fig.
3.

The first two kinds, whose formation and dissociation
are shown in (g), (h) and (i),(j), respectively, are formed
because the step atoms in the vicinity of the adatom feel
the attraction of the latter. In fact, the energy barriers
for the formation of these dimers are lower than those for
process (d), with difFerences of the order of 0.1 eV except
for step A on gold, where the differences are negligible.
Although the formation of the dimer of the first and the
second kind involves the loss of two and three nearest-
neighbor bonds, respectively, in all the cases the barrier
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for process (g) is not very difFerent from that for process
(i), i.e., the difFerences are in any case much smaller than
the strength of a bond and in the case of gold they are
reversed. This is another example in which bond count-
ing in the initial and final position can be misleading;
the important thing for giving a picture of the kinetics of
a process is the comparison between the initial and the
saddle-point configurations. In fact, if we consider the
atom coming out from the step in the saddle-point posi-
tion, we can see that both in process (g) and in process
(i) three nearest-neighbor bonds are broken; at the end of
process (g) a new bond will be created with the adatom,
but at the saddle point the distance is rather large and
the attraction of the adatom may be rather small. The
substantial difference between the two dimers is in their
stability once they are formed, as results comparing the
barriers for events (h) and (j). For instance, at 600 K,
the stability of the second kind of dimer is always on the
scale of few ps, while the first kind should survive on
times of the order of 102 ps. As for the differences be-
tween step A and step B, Au and Ag behave (as usual)
in the opposite way. In gold, dimers are formed easily
on step A, but survival times are likely to be longer on
step B; in silver the situation is reversed. As in previous
cases, the anisotropy is more important in gold. More-
over, the formation of dimers is, on the average, faster
in gold than in silver (especially for what concerns the
dimer of the second kind) and dimers of the first kind
are stabler in Au than in Ag. This is another indication
of the fact that the kinetics of the disordering of straight
steps should be faster in gold.

An important point related to the second kind of dimer
concerns a possible exchange mechanism for diffusion. In
fact, the situation represented in (j) is completely sym-
metric: the vacancy in the step can be filled either by the
atom which has come out of the step or by the adatom
which was in the channel at the beginning. In the lat-
ter case, the whole process [(i) and filling of the vacancy]
amounts to a single jump of the adatom along the channel
from the point of view of mass transport. If the exchange
process can be modeled in this way, i.e., by a two-step
process in which the atom of the step comes out and then
the adatom fills the vacancy, its barrier should be essen-
tially the one for process (i), which is the rate-limiting
step. This implies that exchanges should be much more
frequent in gold than in silver at any temperature of in-
terest and even in gold they should take place on the
scale of some ns at 600 K. However, the exchange pro-
cess may take place by a concerted motion of the two
atoms instead by the two-step mechanism creation of a
vacancy-filling of the vacancy; the barrier for a con-
certed motion may be lower, as happens for exchanges
on fiat (100) and (110) surfaces. Process (j) may remind
us of the migration of a vacancy on the fIat surface. We
remark, however, that process (j) presents much lower
barriers than vacancy migration [0.31 eV in Ag Ref. 22],
because in the latter case no bonds are gained.

The third kind of dimer is formed when two atoms
meet each other on an otherwise straight step. The bar-
riers for the formation [process (I)] do not difFer from
those for diffusion along the step [process (a)]. This is

essentially due to the short-range character of the poten-
tial: the atom on the saddle point is too far away from
the other atom in the channel to "feel" an appreciable
attraction. Once the dimer is formed, its stability is con-
siderable, the barriers for dissociation [process (k)] being
at least of 0.4 eV. However, in goM, there is a marked
difference between the two steps; at 600 K the time scale
for the dissociation of the dimer along step A should be
about five times longer than the one for the dimer along
B (both time scales should be of the order of ns). Of
course the ratio of these times increases at lower tem-
peratures. In any case, the formation of such a dimer
is a process hindering considerably the difFusion of both
atoms.

Finally, we consider a process not shown in the figure,
i.e., the exchange mechanism in which the adatom is in-
corporated in the step by pushing one atom of the step
onto the upper terrace (this is the reverse process of the
step descent by exchange). In gold, this process is char-
acterized by a barrier of about 0.6 eV for both steps; in
silver the barriers are somewhat higher, near 0.7 eV.

In conclusion, we remark that the times given in the
above discussion are only indicative, first because our
TST estiinate is rough and second because the activa-
tion barriers at finite temperature (which are free-energy
barriers) may be lower than the static energy barriers at 0
K. The latter fact implies that the overall kinetics may
be somewhat faster than indicated before. Therefore the
ratios between the time scales are more important than
the values given in the above discussion.

IV. MOLECULAR-DYNAMICS SIMULATION
AT FINITE TEMPERATURE

A. Jump rate and diffusion coefBcient

The comparison between the different time scales of
the processes considered in the preceding section shows
that an adatom put in the channel along a straight, close-
packed step will perform, on the average, a rather large
number of hoppings before the occurrence of events which
lead to the disordering of the step or before the adatom
itself will leave the step. This is of course true at low
temperature, but it retains some validity even up to tem-
peratures of the order of 600 K in both metals. In fact,
at 600 K, the time scale for simple hopping varies from a
maximum of some 10 ps for step A in gold to a minimum
of some 10 ps for step B in gold while the characteris-
tic times of processes (b), {d), {g), (i), and (k) in Fig.
3 are much longer. In a typical simulation on a time
of the order of 500 ps only jumps of the adatoms (see
Fig. 5) along the two close-packed steps occur. However,
sometimes one of the different events described in Sec.
III happens and the initial configuration consisting of
only of one adatom along an otherwise straight step may
change. As we are primarily interested in the diffusion
of adatoms along straight steps, in each simulation and
for both steps we have distinguished the total simulation
time to from the time tq in which only the adatom is in
the channel along the step. If one or more other atoms
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are in the channel, the motion of the adatom is considered
perturbed by their presence. However, to give some indi-
cations about the kinetics of the disordering of the steps,
we will keep record of all the different events which will
take place.

The highest temperatures at which the simulations are
performed are 592 K for gold and 635 K for silver. At
these temperatures the ratios between the barriers for
diffusion along the steps and thermal energy k~T are in
any case greater than 3 at least; therefore the adatoms
are expected to spend the largest part of their time in
small-amplitude oscillations in the vicinity of the equilib-
rium sites along the steps. In that case a jump-diffusion
model can be safely applied; the jump rate r - and the

2
J

mean-square jump length (l ) can be defined. The jump-
diffusion model furnishes a simple estimate of the diffu-
sion coefficient D in terms of r~ and (l ). In the case of
a 1D motion the relation is

g Jim glj Jl
'P"t

J. a~~.

100 200

I

300

& (Ss)
400 500

FIG. 7. As in Fig. 6, x displacement of the adatom along
the step in a simulation of Ag at 603 K. The arrow indicates
a triple jump.

D = —r, (l ).
1

2 2

Both r~ and (l2) can be easily extracted from the sim-
ulations by counting jumps and measuring their lengths.
If only single jumps occur, (l2) is simply the square of the
nearest-neighbor distance. However, in the field of sur-
face diffusion, evidence of long jumps has been found in
experiments ' and MD simulations and we ex-
pect that in our systems long jumps may play some role.
In order to discriminate between single and long jumps in
the simulations, some criterion is needed and we propose
a simple one. For the explanation of this criterion it is
better to start &om examples of the typical trajectories
of the adatoms during a simulation. Let us consider Figs.
5—7, where the results of a 560 ps simulation of silver at
603 K are shown. In Fig. 5 the trajectories of the two
adatoms on the surface plane are plotted (step A and
step B are on the left and on the right, respectively); in

Figs. 6 and 7 the displacements in the direction along

the steps are given as functions of time. In this simula-
tion the two adatoms diffuse by hopping in the channels
and none of the other events described in Sec. III take
place. The adatoms spend long time intervals by per-
forming small oscillations at thermal equilibrium around
the stable sites in the channels and sometimes they make
sharply de6ned transitions &om a cell to another. These
transitions are rare events on the typical time scales of
the oscillatory motion. This clearly shows that the dif-
fusion along the channels can be modelized as a jump
diffusion. In order to map the jump-diffusion model on
the continuous trajectories of the diffusing particles, we

have to de6ne the condition for considering a particle as
thermalized in a given lattice cell. The natural condition
can be expressed in terms of the time spent in that cell,
which, at least, should be longer than the characteristic
times of the intracell motion, ' as the small-oscillation
period ~ „andthe thermal time ~t,h, with

B

wth is simply the time taken to cross the lattice spacing

!

I

ai~~& sW~~aL1
~Vl vry ~ ~ r ~~Tl

I

3 1

0 100 200 300 400 500

FIG. 6. Displacement x of the adatom along the step in
a simulation of Ag at 603 K. The adatom spends long time
periods by performing small oscillations around the equilib-
rium positions and sometimes makes sharp transitions from
one cell to another. The arrows indicate a double jump at

30 ps and an unsuccessful attempt (see text) at t 90 ps.

1/T 410 ' I~

FIG. 8. Arrhenius plot of the jump rate r~ concerning dif-

fusion along step B in Au. The error bars correspond to the
standard deviation.
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TABLE III. Results of the MD simulations of gold. T is the temperature, to is the total simulation

time, t& is the time in which only the adatom is in the channel along the step, r~ is the jump rate,
and D is the diffusion coefBcient.

Step T (K)
A 452
A 498
A 548
A 592
B 452
B 498
B 548
B 592

t p(ps)
4480
4480
5880
5384
4480
4480
5880
5384

ti (ps)
4480
4409
5868
4961
4480
4480
5037
5194

Single jumps

2

5
27 + 1 exchange
38 + 2 exchanges
41
75
108
138

Double jumps
0
0
0
0
3
1
8

13

(p. s ')
5 x 10
1 x 10

05x10
Q.8 x 10
1.0 x 10
1.7 x ]0
2.3 x 10
2.9 x 10

D (cm
~5 x
~ 1 x
0.2 x
0.3 x
0.5 x
0.8 x
1.2 x
1.6 x

—1)

10
10
10
10
10
10
10-'
10

a by a particle with energy k~T. In the case of jump
diffusion, rth is larger than r „(Ref.36) and therefore
the condition for the thermalization in a given cell can
be expressed by requiring the difFusing particle to spend
in the cell a time longer thaa rth. At 500 K rth amounts
to 2 ps for gold and 1.5 ps for silver; in the followiag,
these values are used in the practical application of the
thermalization criterion.

From the thermalization criterion, the discrimination
between different jump lengths follows. In fact, if two
consecutive crossings of saddle points in the same direc-
tion are separated by less than rti„ the particle is not
thermalized in the cell in between and the event is com-
puted as a double jump. If the two crossings are sepa-
rated by a longer time, we have two distinct single jumps.
Another case is that of a particle starting &om a cell,
crossing the saddle point, inverting its motion, and re-
crossing back. If the time between the crossing and the
recrossing is less than rqb, that event is considered as an
unsuccessful attempt and not registered. If the time is
larger, the event is computed as two distinct single jumps
in opposite directions. As an example of the application
of this criterion, we consider the trajectories of Figs. 6
and 7. In Fig. 6, besides many single jumps, there are a
double jump and an unsuccessful attempt, both indicated
by arrows For the dou. ble jump the interval between the
consecutive barrier crossings is 0.6 ps; for the unsuccess-
ful trial it is 1 ps. In Fig. 7 a triple jump is indicated (a
very rare event indeed), with intervals of 1.1 ps between
the crossings of the first and of the second barrier and of
0.7 ps between those of the second and of the third. We
remark that our method for discriminating long jumps

is rather restrictive, as the thermalization criterion is es-

sentially a necessary condition.
The results concerning the diffusion along the straight

steps are summarized in Tables III and IV for Au and

Ag, respectively. The occurrence of other events, such as
formations of dimers and so on, will be discussed in the
following. Only the exchanges originated by the forma-
tion of dimers of the second kind [process (i) in Fig. Sj
are accounted for, as such an exchange is equivalent to a
single jump &om the point of view of mass transport. Of
course, the exchanges are not taken into account in the
determination of the jump rate, but only in that of the
difFusion coeScient. When such exchanges occur, Eq. (5)
may be modified as follows:

(7)

where r, is the exchange rate.
As results &om both tables, the most common event

is the single jump; double jumps occur along both steps
in Ag and along step B in Au; the few exchanges are
along step A in gold. The absence of long jumps along
step A in Au may be related to two reasons. First of
all, the diffusion barrier is high; the ratio of long jumps
decreases with the dissipation in the lattice cell 6,
which is proportional to the friction aad to the square
root of the barrier. Moreover, the difFusion path along
this step is rather far from a straight line (see Fig. 5),
which is usually the most favorable trajectory for long
jumps, even in the case of two-dimensional diffusion. ii
Along the other steps, the proportion of long jumps never
reaches 10%. The dependence with temperature of this

TABLE IV. Results of the MD simulations of silver. T is the temperature, to is the total
simulation time, tz is the time in which only the adatom is in the channel along the step, r~ is the
jump rate, and D is the di8'usion coeKcient.

Step T (K)
A 501
A 546
A 603
A 635
B 501
B 546
B 603
B 635

tp (ps)
4480
4480
4250
4480
4480
4480
4250
4480

ti (ps)
4480
4478
4239
4352
4480
4480
4154
4397

Single jumps
47
77

113
128
36
59
85

104

Double jumps

0
2
8
9
0
2
3 + 1 triple
8

~~ (ps ')
1.1 x 10
1.8 x 10
29x10
3.2 x 10
0.8 x 10
1.4 x 10—'
2.1 x 10
26x1Q

D(cm s )
0.5 x 10
0.8 x 10
14x10
1.6 x 10
0.3 x 10
06x10
11x10
13x10
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proportion is not clear &om our results, due to the rather
poor statistics. For step B in Au, the percentage of long
jumps does not seem to depend strongly on temperature,
being of the order of 8% at T = 452, 548, and 592 K; the
exception is T = 498 K, where only one double jump
has been recorded. In silver, there is a clearer indication
of some increase of the probability of long jumps with
temperature, but with maximum percentages of 7%.

The exchanges are infrequent events; thus the statistics
is poor (only 3). However, it is significant that all of
them occur along the A step of Au, which presents the
lowest barrier for process (i) (see Fig. 3 and Table II).
In the exchange at T = 548 K, a two-step mechanism is
clear: the atom of the step comes out as in process (i); a
dimer is formed for 3 ps and finally the original adatom is
incorporated in the step. In the two exchanges occurring
at T = 592 K, the two parts of the mechanism cannot be
clearly separated, as the whole events occur within 0.5 ps;
this fact may give an indication of a concerted motion.
However, the frequency of the exchanges is on the scale
of ns even at the highest temperature, as predicted in
Sec. III on the basis of the barriers related to the two-
step mechanism; therefore that mechanism seems to give
a reasonable description.

The dependence of r~ on the inverse temperature fol-
lows the usual Arrhenius behavior:

( E
T& —r& p exp

i

I kgTj

the prefactor r~o and the activation energy E can be
extracted Rom the results of the simulations. This has
been done for both steps in Ag and for step B in Au; as
for step A in gold, the statistics is really poor except for
two temperatures and the extraction of the parameters
&om an Arrhenius plot is not meaningful. The three Ar-
rhenius plots are reported in Figs. 8—10. The parameters
extracted &om the plots are rzo ——0.8 ps and E = 0.17
eV for step B in gold, r~o ——1.9 ps and E = 0.22 eV
for step A in silver, and @~0

——1.8 ps and E = 0.23 eV
for step B in silver. In any case, the activation barrier
E is significantly lower than the static potential barrier
(see Table II for a comparison), with the standard devi-

ations on the values of E being between 0.02 and 0.03

004 '-

0.03—

0.02—

o.o»
I

FIG. 10. Arrhenius plot of the jump rate r~ concerning
difFusion along step B in Ag. The error bars correspond to
the standard deviation.

eV; the prefactors are of the order of magnitude of typ-
ical vibration frequencies, in qualitative agreement with
TST.

With the exception of step A in Au, at the tempera-
tures of the simulations, the diffusion along the steps is
not much slower than the diffusion on the Bat surface.
In our case, the MD simulations give a surface diffusion
coefBcient Dg between 1 and 3 x 10 cm s for Au in
the range 400—600 K and between 5 and 8 x 10 cm s
for Ag in the range 500—650 K.

B. Disordering of the steps

Many of the events represented in Fig. 3 lead to the
disordering of the steps. As the temperature increases,
their characteristic time scales approach the typical time
scales of the jumping of the adatom, perturbing its dif-

fusive motion.
In Au, one of those events happens even at 498 K; at

this temperature the process (g) of Fig. 3 takes place once
and a stable dimer is formed which resists until the end
of the simulation (for about 70 ps). More events take
place at 548 and 592 K, in particular along step A. For
instance, let us consider the highest temperature. Along
step A event (d) happens seven times; in six cases the

0.5

0.45—

0.4—

O.(:):3—

0.02—
()Pb )

0.35—
I

0.3 )-
I

iv (A') o~.~

0.2

015

0.1

o

001 0.5 2.5 ;3.5

1 5

FIG. 9. Arrhenius plot of the jump rate r~ concerning dif-

fusion along step A in Ag. The error bars correspond to the
standard deviation.

FIG. 11. Mean-square displacement m as a function of time
for diffusion along step A in Au. The dots with error bars are
the simulation results at 452 and 592 K (lower and upper
series, respectively). The full and the dotted lines show the
FPE results at the same temperatures.
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atom is reincorporated in the step as in process (e) after
an existence in the channel of a few ps; only in one case
does the atom diffuse in the channel [process (f)] and this
proportion agrees well with the estimate given in Sec. III.
Concerning the formation of dimers, process (g) happens
one time, forming a dimer for 45 ps; process (i) happens
three times of which two are related to the exchanges
and the third is ended by process (j) in 8 ps. In one
sixnulation the adatom leaves the channel and diffuses
onto the lower terrace. Along step B, only two events
happen. A dimer as in process (i) is formed, resisting for
6 ps. Moreover, an atom of the step comes out as in (d)
and then diffuses along the step. In fact, the discussion
in Sec. III has shown that the situation is reversed in the
case of step B, and once the atom is in the channel it has
a larger probability of diffusing than of coming back and
refilling the vacancy.

In Ag, fewer events happen. The most common in both
steps is process (g) (six times in total), which is usually
terminated by process (h) within 10 ps except for one
case along step A in which the whole dimer performs a
jump leaving the vacancy behind.

C. Comparison with the FPE results

E, (2mz1
U(x) = ——cos

i2 ( a (10)

A priori, the barrier E~ is taken as a parameter to be
fitted on the data of the simulation; it will be interesting
to see whether the good values for E~ will agree either

In order to estimate the dynamical coupling (essen-
tially the microscopic friction) between the adatom and
the substrate, TST is not sufficient and more sophis-
ticated rate theories should be used. In the following
we will describe the motion of the adatom along the
step as the motion of a classical particle in a 1D pe-
riodic potential; the particle can exchange energy with
the thermal bath by means of a stochastic force ml'(t)
and of the friction g. Models of this kind have been
widely exnployed in the field of surface diffusion with
rather good results and they are not simply phe-
nomenological, as they can be derived &om xnore funda-
mental models. 4 ss ss Assuming F(t) to be h correlated,
the stochastic difFerential equation for the motion of the
adatom assumes the well-known Langevin form

dv
m —= —mrlv + mI'(t) + F(z),

dt

where z is the coordinate along the step, v is the veloc-
ity of the adatom, and F(z) = —U'(z), with U(x) 1D
potential. The potential U(z) is known as the adiabatic
potential ' ' and actually it is a &ee energy and de-
pends on temperature; for instance, for diffusion on the
Bat surface of a Lennard-Jones crystal, the amplitude of
the adiabatic potential decreases linearly with T. This
form of the Langevin equation is completely equivalent to
the FPE, which will be actually solved in the following.
U(x) is taken as a simple cosine:

with the activation barriers E (as extracted from the
Arrhenius plots) or with the static potential barriers, as
calculated by the quenching procedure. This model can
describe difFerent difFusion mechanisms: jump diffusion
is recovered in the high-barrier limit, with the possibility
of long jumps depending on the &iction; ' a quasifree
diffusion is obtained at low barriers.

We remark that this model implies some simplifying
assumptions; for instance, a 1D model is appropriate in
the case of B steps, where the difFusion path is really
a straight line. In fact, if the minima and the saddle
points of the three-dimensional adiabatic potential acting
on the difFusing particle are on a straight line, the diffu-

sive motion can be described as a one-dimensional motion
along the diffusion path in a renormalized potential.
We have shown that in A steps the minima and the sad-
dle points are not even approximately on a straight line
and therefore the application of a 1D model is more ques-
tionable, especially in Au. Furthermore, the assumption
of a b-correlated stochastic force is justified if the typical
vibrational motion of the adatoxn is slower than that of
the other atoms of the surface; this may be the case, as
the xnass of the adatom is the same as the other surface
atoxns and the binding of the adatoxn is weaker.

If the two parameters of the model (Eg and q) are con-
stant in the temperature range of the simulations, they
can be extracted &om the simulation results at one texn-

perature and used for predicting the results at the other
temperatures. First of all, for each metal, the highest
simulation temperature for the B step is considered; we

have chosen the highest temperature in order to have
the data with the best statistics and B steps as the 1D
model is surely appropriate for them. At this temper-
ature, the FPE is numerically solved; the jump rate r~
and the jump-length probability distribution are calcu-
lated by the Fourier analysis of the &equency width of
the quasielastic peak of the dynamic structure factor,
as functions of Eg and g. The two parameters are then
adjusted to reproduce the right jump rate r~ and the
right proportion of long jumps, as results &om the MD
simulation; then, having fixed the two parameters, r~ and
the jump-length probabilities are calculated at the other
temperatures. As for step A, the &iction g is not read-
justed; therefore it is taken to be the same as in step B.
Only the barrier E~ is fitted to reproduce rz at the high-
est temperature. The results are summarized in Tables
V and VI.

In any case, the barriers Eg are lower than the static
potential barriers, by about 20 —25%; the relaxations of
the barriers with respect to 0 K show no significant difFer-

ences between the steps and between the xnetals. When
the Eg can be compared with the Arrhenius barriers E,
i.e., in the case of both steps in silver and of step B in
gold, they are in almost perfect agreement. If the Ep
were assumed to be equal to the static barriers, the fit-
ting of the friction g to reproduce r~ as in the simulations
would not be possible at all. We xnay conclude that the
&ee-energy barrier for diffusion at high temperatures is
really different &om the static potential barrier; reliable
estimates are given by the Arrhenius plots.

The &iction g is always in the intermediate range,
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TABLE V. Results of the FPE about gold; Eg is the barrier of the 1D periodic potential, g is
the friction, T is the temperature, and r~ is the jump rate as calculated by means of the FPE; P&,
P2, and P3 are the probabilities of single, double, and triple jumps.

Step

A
A
A
A
B
B
B
B

Eb (eV)
0.26
0.26
0.26
0.26
0.18
0.18
0.18
0.18

~ (ps ')
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7

T (K)
452
498
548
592
452
498
548
592

"(ps ')
1.7 x 10
3.1 x 10
5.2 x 10
7.8 x 10
1.0 x 10
]6 x 10
2.3 x 10
2.9 x 10

Pg

0.957
0.947
0.936
0.926
0.941
0.931
0.921
0.913

P2

0.041
0.050
0.060
0.068
0.056
0.064
0.073
0.079

P3

0.002
0.003
0.004
0.006
0.003
0.005
0.006
0.008

which characterizes the turnover region in the rate
curves. ' In fact, the normalized &iction p, de6ned
as p = grqh j(2x), is about 0.5 —0.6, with small differ-
ences between the two metals (p is slightly higher in Ag).
This indicates that the velocity correlation time r„,re-
lated to the &iction simply by 7„g,is smaller than
wth, but it is not completely negligible. In this condition
long jumps are possible but with small probabilities,
as inertial trajectories are likely to be damped within the
first cell. The turnover region is the only one in which
TST is a reasonable approximation; this explains the fact
that the prefactors in the Arrhenius plots are of the order
of magnitude of typical vibration frequencies. In the low-
or high-&iction regimes the prefactors should have been
much smaller.

The agreement between the values of r~ given by the
simulations and those predicted by the one-dimensional
FPE is remarkable. Notice that only the values at the
highest temperature are Btted and the &iction is not
readjusted for step A. Some discrepancies are evident
only for step A in Au, especially for the two lowest tem-
peratures. However, at these temperatures the statistics
furnished by the simulations is really poor.

The FPE predicts that the probabilty of long jumps
will be always of the order of few percents. Almost all
long jumps should be double jumps, as the probability
of longer jumps is less than l%%uo in any case. This well
agrees with the simulations, where only one triple jump
has been observed. Moreover, the FPE predicts some
lowering of the long-jump probabilities with decreasing
temperature, even in the case of constant &iction and

adiabatic potential amplitude (as assumed in our case);
however, this decrease should not be very strong in the
temperature range considered. In step B of Au, the pre-
dicted double-jump probabilities are in good agreement
with the simulation at 548 and 452 K; at 498 K the statis-
tics should be improved to draw a conclusion. In silver,
it seems that the decrease of the double-jump probability
at low temperature is somewhat stronger than predicted
by the FPE with temperature-independent friction; how-

ever, the FPE is in good agreement with the simulations
except for the lowest temperature, where no long jumps
are seen along both steps. Finally, we consider step A in
Au, where long jumps have never been observed; as the
FPE predicts a percentage of double jumps comparable
to that for step B, we may infer that the topology of the
diffusion path, being far from a straight line, causes the
stopping of inertial Bights.

Therefore we can conclude that the 1D FPE, together
with the assumptions concerning the shape of the po-
tential and the friction, gives a very good description of
the long-ti~e diffusive dynamics of the adatoms along
the steps, with the only exception of step A in Au. In
particular, the assumption of an amplitude of the adia-
batic potential, which is constant within the temperature
range of the simulation, is consistent with all the results
in Ag and with those for step B in gold. This fact is
not surprising; for instance, for step A in gold the total
variation of the amplitude of the adiabatic potential in
the range 0—600 K is of 0.04 eV; if a linear decrease of the
amplitude with T is assumed, the decrease in the range
450—600 K should be only 0 01 eV. As for step A in Au,

TABLE VI. Results of the FPE about silver; Eq is the barrier of the 1D periodic potential, g is
the friction, T is the temperature, and r~ is the jump rate as calculated by means of the FPE; P&,

P2, and P3 are the probabilities of single, double, and triple jumps.

Step
A
A
A
A
B
B
B
B

Eg (eV)
0.21
0.21
0.21
0.21
0.22
0.22
0.22
0.22

'9 (Ps ')
2.6
2.6
2.6
2.6
2.6
2.6
2.6
2.6

T (K)
501
546
603
635
501
546
603
635

'(p ')
12x10
1.7 x ]0
2.6 x 10
3.2 x 10
0.9 x 10
1 ~5x10
21x10
2.6 x 10

Pg

0.952
0.944
0.935
0.930
0.953
0.945
0.936
0.931

P2
0.046
0.053
0.061
0.065
0.045
0.052
0.060
0.064

P3
0.002
0.003
0.004
0.005
0.002
0.003
0.004
0.005
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V. CONCLUSIONS

In this paper we have performed a molecular-dynamics
simulations of diffusion along the two close-packed steps
(step A and step B; see Fig. 1) on the (111) surfaces of
gold and silver, by using many-body potentials derived
within the second-moment approximation to the tight-
binding model. ' The tight-binding MD simulations
predict that gold and silver should behave in a very dif-
ferent way: in gold, diffusion is much faster along step
B; in silver, the opposite happens, but the difference be-
tween the two steps is less pronounced. In any case, no
crossover in the Arrhenius plots of r~ or D is observed;
at any temperature, the diffusion is faster along the step
which has a lower energy barrier at 0 K. The results of the
simulations are consistent with a dynamical lowering of
the activation barrier with respect to the static potential
barrier of about 20% in the temperature range between
450 and 600 K. This lowering decreases the difference
between the diffusion barriers along the two steps, but
it does not lead to the inversion in the magnitude even
in the case of silver, where the 0 K barriers differ only
by 0.04 eV. A slow diffusion along a step should lead
to the accumulation of atoms and to a fast growth per-
pendicular to the step itself, which tends to disappear.
From the results of our simulations it should follow that
the growth shape of 2D islands on the gold (ill) surface
is sharply triangular at any temperature with triangles
bounded by B steps; in silver, at low temperature, the
triangles should be bounded by A steps, but with in-

creasing temperature there might be a change towards
an hexagonal shape, as the difference between the diEu-
sion coefBcients becomes rather small. According to our

simulations, no inversion of the growth-speed anisotropy
[which has been found in Pt(ill) (Ref. 24)] can be pre-
dicted on the basis of the mobility along straight steps,
both for gold and for silver.

As the diffusion along steps is expected to be essen-
tially one dimensional, the results of the simulations have
been compared to those of a model based on the Fokker-
Planck equation in a 1D periodic potential. The agree-
ment of the FPE with the simulation is remarkably good,
in the case of B steps in both metals: the theory is able to
predict the values of the rate and the correct proportion
of long jumps (which is of the order of some percents);
moreover, the behavior of the mean-square displacement
as a function of time is almost perfectly reproduced both
at low and at high temperatures. Along those steps, the
diffusion path is really a straight line and a 1D model is
essentially correct. In the case of A steps, the agreement
is satisfactory for silver, especially for what concerns the
rate at any temperature, the proportion of long jumps
and the mean-square displacement at high temperature.
For step A in gold, the agreement is only qualitative.
But in the latter case, the agreement is not expected to
be good, as the diffusion path is rather different from
a straight line (see Fig. 4) and the application of a 1D
model may be questionable.
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