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The effects of different assumptions made in the simulation of surface segregation free energies are
considered. Thirty face-centered-cubic dilute binary alloys are investigated using embedded-atom
method potentials. First, it is demonstrated that the inclusion of local atomic relaxations in lattice stat-
ics simulations strongly affects the segregation free energy at (111) free surfaces in over half of the alloys.
Second, a Monte Carlo technique, namely, the overlapping distributions method (ODMC), is used to
determine the effect of the vibrational entropy term on the surface segregation Helmholtz free energy for
simulations at elevated temperatures (1000 K). It is determined that the vibrational entropy term is im-
portant for a quarter of the alloys. We conclude that for accurate calculations of surface segregation free
energies, both local atomic relaxations and the vibrational entropy must be included in nearly all cases.
Since the ODMC method is very computer-time intensive, a technique based on a simplification of the
quasiharmonic approximation for calculating free energies is investigated. Results from this free-energy
minimization (FEM) method using the local harmonic approximation are compared to results from the
ODMC method. It is found that the FEM method calculates the segregation free energies at (111) free
surfaces accurately for most of the 30 alloys. Segregation free energy profiles are also calculated as a
function of distance from (111) free surfaces employing both methodologies. The agreement is found to
be poor for alloys that have a large solvent atom and a small solute atom. Other problems and sources of
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error with the FEM method are also discussed.

I. INTRODUCTION

The subject of segregation of solute atoms to free sur-
faces has received a great deal of experimental and
theoretical attention, because of both basic and practical
interest in this phenomenon.!™* The theoretical efforts
have been directed toward determining the thermal equi-
librium structures and compositions of alloys at free sur-
faces.’”® The simplest model assumes that the atoms sit
rigidly on their perfect lattices sites.”!® A more realistic
approach allows the atoms to relax from their ideal lat-
tice sites to the minimum-energy configuration. Another
effect related to atomic relaxations is the entropy due to
vibrations of the atoms. Atoms in the vicinity of a crys-
tal defect, such as free surface, generally have different vi-
brational frequencies than they do in the bulk; this gives
rise to a vibrational entropy contribution!! that may also
play a role in determining the thermal equilibrium struc-
tures and compositions of alloys in the vicinity of free
surfaces, especially at elevated temperatures. With each
additional physical effect considered, the computer simu-
lation methodologies that must be employed become
more complicated and computer-resource intensive. The
usual way to include local atomic relaxations is to employ
a lattice-statics simulation. The vibrational entropy can
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be included by employing simulation techniques such as
the Monte Carlo (MC) or molecular dynamics (MD)
methodologies. Thus, the first topic we investigate in this
paper is the relative importance of atomic relaxations and
vibrational entropy on solute-atom segregation to a (111)
free surface for 30 solvent-solute atom pairs constructed
from six different face-centered-cubic elements—Ag, Au,
Cu, Ni, Pd, and Pt—employing embedded-atom method
(EAM) potentials.'?

In addition to being resource intensive, another draw-
back to MD and MC simulations is the difficulty of ob-
taining quantities such as the entropy or free energy
directly. Recently, a new deterministic approach has
been introduced by Srolovitz et al.: the free-energy-
minimization (FEM) method.'>'* This method has been
promoted as an alternative to MC or MD simulations.
The FEM method calculates the free energy of an ensem-
ble directly by including approximations of the
configurational and vibrational entropy terms. Local
atomic relaxations are calculated by minimizing the free
energy with respect to the atomic coordinates. Solute-
atom segregation can also be studied by minimizing the
free energy with respect to the composition at each atom-
ic site. The power of this methodology is that the com-
puter time it requires has been reported to be of the same
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order of magnitude as lattice statics simulations. The
computational efficiency of this methodology is the result
of making several important approximations in calculat-
ing the free energy. A very similar methodology, the
second moment (SM) approximation, has also been pro-
posed recently by Sutton.!> The SM approximation is not
investigated in this paper as it is expected to produce re-
sults similar to the FEM method.

Because of its computational efficiency, the FEM
method is becoming widely used.!>!#1617 Because it is
an approximate technique, it is important to know the
effects that the approximations can have on the results
produced. Only a few comparisons have been made be-
tween FEM method results and experimental data or the
results from more accurate simulation techniques. Two
papers compared bulk crystal properties of Cu (Ref. 13)
and Au (Ref. 17) computed with the FEM method to re-
sults from more accurate MC simulations. Another pa-
per'* compared segregation profiles of CuNi alloys for
several free surfaces and twist grain boundaries computed
with both the MC and FEM methods. Recently,'® a
study of the accuracy of the FEM method in the calcula-
tion of bulk and defect properties of Cu as a function of
temperature has been reported. From these few compar-
isons it appears that this methodology is best suited to
calculating bulk properties. It also does a reasonably
good job of calculating segregation profiles to free sur-
faces and grain boundaries in the CuNi alloy system,
especially on the copper-rich side of the phase diagram.
It is not clear, however, that this is necessarily true for
other alloys. That is, CuNi may not be a representative
test case; the CuNi phase diagram exhibits complete solid
solubility at the temperatures studied. This is important
since it has been widely observed experimentally>!® that
the level of segregation is inversely proportional to the
maximum solid solubility of the alloy. Another impor-
tant parameter in determining the level of segregation is
the size misfit between the solute and solvent atoms.>2°
The difference in the lattice constants between nickel and
copper is only 2.6%.

Thus, the second topic we examine in this paper is the
effect of using different alloys on the accuracy of the
FEM method in simulating surface segregation free ener-
gies. We determine the accuracy of the FEM method by
comparing Helmholtz binding free energies calculated
with the FEM method to those calculated with a MC
technique—the overlapping distributions Monte Carlo
(ODMC) method. Helmholtz binding free energies of a
solute atom to the outermost plane of a (111) free surface
are computed for the 30 solvent-solute alloy combina-
tions. Another comparison examines the Helmholtz
binding free energy profiles for segregation to (111) free
surfaces for three dilute alloys—Pt(Au), Ni(Cu), and
Ni(Pd).

In Sec. II we present a general overview of the compu-
tational procedures utilized to perform the simulations.
We also give a brief explanation of the different metho-
dologies employed to calculate the Helmholtz free
energies—the FEM and the overlapping-distributions
Monte Carlo method. In Sec. III we present the results
from the simulations and discuss the effect of local atom-
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ic relaxations and vibrational entropy on surface segrega-
tion free energies. We also discuss the results of the com-
parisons between the FEM and the ODMC methods. Fi-
nally, in Sec. IV we list the general conclusions of this
study.

II. COMPUTATIONAL PROCEDURE
AND METHODOLOGIES

The three methodologies used in this study—Ilattice
statics, ODMC, and FEM—all employed embedded-
atom method potentials. To determine the atomic struc-
ture of free surfaces, a relatively simple model of the en-
ergies is required so that a sufficiently large set of atoms
can be considered. The EAM potentials are a good
choice for such studies since previous work has shown
that they provide a reasonable description of the energet-
ics of metallic systems, yet they do not require
significantly more computational effort than the use of
simple pairwise interaction models.?! In the EAM mod-
el, much of the binding energy of the solid is attributed to
the energy associated with embedding each atom into the
local electron density provided by the remaining atoms of
the system. This energy is assumed to depend only on the
type of atom being embedded and the local electron den-
sity. Thus, the same embedding energy applies in pure
metals as in an alloy. This embedding contribution is
supplemented by a pairwise interaction term that ac-
counts for core-core interactions. The embedding ener-
gies and pairwise interactions required by the model are
determined empirically by fitting them to various experi-
mental data.

Instead of examining compositions to measure solute-
atom segregation, we use a more fundamental quantity,
the Helmholtz binding free energy of a substitutional
solute atom to different atomic sites in the vicinity of a
free surface. At the dilute limit of one component in
another or if there are no solute-atom interactions, the
Helmholtz binding free energy is a direct measure of
solute-atom segregation. The Helmholtz binding free en-
ergy is also commonly called the segregation free energy
since it is the energy that drives the segregation process.
The segregation free energy Fy(x) is defined by

Fp(x)=AF(bulk crystal)—AF(x) , (1)

where AF(bulk crystal) is the change in the Helmholtz
free energy of an ensemble when a substitutional solute
atom is dissolved in a bulk-crystal region far from any
crystalline defects, and AF(x) is the change in the
Helmholtz free energy when a substitutional solute atom
is dissolved at a substitutional site x in the vicinity of a
free surface. The quantity Fg(x) is, therefore, the change
in the Helmholtz free energy when a substitutional solute
atom moves from a bulk-crystal region to a region near a
free surface. The definition in Eq. (1) is such that a posi-
tive value of Fp(x) implies an attractive interaction,
while a negative value implies a repulsive interaction.

All of the simulations were performed using the same
simulation conditions. The FEM and ODMC simula-
tions were done at a temperature of 1000 K. The compo-
sition of each alloy was fixed at the dilute limit of one
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component in the other. In practice, this means that
there was only one solute atom at a time in each simula-
tion cell. Periodic boundary conditions were used on the
simulation cells to eliminate surface effects. The size of
the simulation cells was large enough (6000 to 7000
atoms) to minimize finite-size effects. Figure 1 exhibits
the dimensions of the simulation cells used in the simula-
tion of surface segregation free energies. The simulation
cell contains a crystal slab with (111) free surfaces and a
nearly infinite region of vacuum on both sides of the slab
in the x direction. The periodic boundaries make the slab
infinite in the y and z directions. The periodic boundaries
in the y and z directions were fixed at the lengths deter-
mined by the equilibrium value of the lattice constant for
a perfect crystal at the simulation temperature. This was
done to counteract the effect of surface tension. In na-
ture, the volume of the bulk-crystal regions compared to
the surface area is more than large enough to counteract
the surface tension. In a finite-sized simulation cell, how-
ever, the surface tension may not be fully counteracted by
the relatively small bulk-crystal region. Fixing the
periodic boundaries in the directions perpendicular to the
surface normal mimics an infinitely large bulk-crystal re-
gion. The periodic boundaries in the x direction were
placed at very large distances from the crystalline slab to
create regions of vacuum above the free surfaces. This
also allowed the atomic planes to move in the direction
normal to the surfaces, so that the simulations were per-
formed at a constant pressure of O atm.

A. Lattice-statics method

The first effect on segregation free energies that we in-
vestigate is the effect of including local atomic relaxa-
tions. In the simplest approach to calculating segrega-
tion free energies—no local atomic relaxations—the to-
tal energy of the system is calculated with the atoms sit-
ting at their ideal lattice positions right up to the surface.
To include local atomic relaxations, a standard lattice
statics routine is used. The atomic positions are adjusted
using the conjugate gradient method until the total ener-
gy of the system is minimized. Since the entropy is being
ignored for now, the segregation free energies can be

(111) surface planes

>
35-39 A

ivacuum

>7000 A * 50 - 55 A >7000 A

FIG. 1. Dimensions of the simulation cells. The simulation
cell contains a crystal slab with (111) free surfaces and a nearly
infinite region of vacuum on both sides of the slab in the x direc-
tion. The periodic boundaries make the slab infinite in the y
and z directions.
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found by using total internal energies in Eq. (1) instead of
Helmholtz free energies. For AF(bulk crystal) the total
internal energy is calculated for a bulk crystal (no defects)
both with and without a solute atom present. For AF (x),
the total internal energy is calculated for a surface simu-
lation cell both with and without a solute atom in the
outermost surface plane.

B. Overlapping-distributions Monte Carlo method

The second effect on segregation free energies that we
investigate is the effect of including the vibrational entro-
py. The Helmholtz free energy includes the vibrational
entropy as well as the internal energy. The Helmholtz
free energy cannot be expressed as an ensemble average.
Hence, it is not possible to calculate it directly from a
MC simulation. There are techniques available, however,
that allow the use of MC simulations to calculate the
Helmholtz free energy difference between two ensembles.
These techniques include thermodynamic integration,
Widom’s particle insertion method,?? energy density func-
tions,?> and the overlapping distributions method.?*

The overlapping-distributions Monte Carlo method is
derived as follows: From statistical mechanics, the
Helmbholtz free energy is given by

F=—kTIn(Z), (2)
where Z is the classical partition function that is given by
Z=fe“H/depdq. (3)

H is the Hamiltonian, p and q are the momentum and po-
sition vectors for the N atoms in the ensemble, and kT
has its usual significance. The Hamiltonian is defined as

A
H=Y —+E, (4)
f§1 2m;
where E is the internal energy and m; are the masses of
the atoms. If all the atoms in an ensemble are the same
type, then the partition function can be expressed as

( 5 N
7= lfe—p-/zkadp] fe~E/deq=(2,n_ka)3/2Q ,

(5)

where Q is the integral of exp(—E/kT) over all
configuration space.

The change in the Helmholtz free energy on going
from some arbitrary ensemble 1 to another arbitrary en-
semble 2 is

Z,

AF=F,=F\=—kTln | >

) (6)

where Z, and Z, are the partition functions of the
respective ensembles. There is no restriction on what the
difference is between ensemble 1 and ensemble 2. In this
study ensemble 2 is found by replacing a specific atom in
ensemble 1 with a solute atom, while leaving everything
else the same. For these two ensembles, the ratio Z, /Z,
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is then
32
Z_|m| 2 o
VA my 0,

Now using the definition of Q we find
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This is in the form of a thermodynamic average over en-
semble 1:
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FIG. 2. Distributions of low-energy configurations for hy-
pothetical one-dimensional ensembles: (a) Example of good
overlap, (b) example of poor overlap, and (c) example of how
overlap can be improved if an intermediate step is used.
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Hence, a MC simulation can be used to sample this func-
tion over ensemble 1 and calculate the free energy
difference AF. In one MC simulation the free energy
difference can be calculated for every atom in the simula-
tion cell. These are the AF(x) defined by Eq. (1) if the
simulation is done on a surface simulation cell. If a simu-
lation cell with no defects is used, AF(bulk crystal) is cal-
culated.

This technique works best if there is a large degree of
overlap between the distributions of physical importance,
that is, low-energy configurations for ensembles 1 and 2.
Consider a pair of hypothetical ensembles that each have
only one degree of freedom and a very simple distribution
function (density of states). Suppose ensemble 1 has a
distribution centered at x1 and ensemble 2 has a distribu-
tion centered at x2. Figure 2(a) is an example of what a
good degree of overlap between the two ensembles may
look like. The thermodynamic average is performed for
the low-energy configurations of ensemble 1 indicated by
the cross hatching. Since the overlap is good, a large
number of the low-energy configurations for ensemble 2
will also be sampled. Figure 2(b) shows an example of
two ensembles with poor overlap. In this case very few of
the low-energy configurations of ensemble 2 will be sam-
pled and the statistics will not be good. For real ensem-
bles with N atoms, there are 3N degrees of freedom and
the distribution functions are not known. Thus, it is im-
possible to know a priori the degree of overlap of two
different ensembles. In practice, it is necessary to per-
form the thermodynamic average for different length MC
runs to determine the number of steps per atom required
for a given degree of accuracy. The results of these cal-
culations are exhibited in Fig. 3. It was determined for a
standard deviation of 0.005 eV that the number of steps
per atom must be 10*2, 10*7, and 10>2 for the Ni(Cu),
Pt(Au), and Ni(Pd) systems, respectively.

v b b

N N

Standard Deviation (eV)

|og10 (ODMC steps per atom)

FIG. 3. Standard deviation (eV) vs number of steps per atom
for the ODMC method. The circles, squares, diamonds, and tri-
angles correspond to the alloy systems Ni(Cu), Pt(Au), Ni(Pd),
and Ni(Pd) with an intermediate step, respectively. The level of
accuracy that is used in this paper—0.005 eV —is shown by the
dotted line.
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Since the required number of steps per atom is very
high for the Ni(Pd) system, the overlap was improved by
using an intermediate step. Figure 2(c) illustrates how
the overlap can be improved if an intermediate step is
employed. The Helmholtz free energy difference is first
calculated between ensembles 1 and 3 and then between
ensembles 3 and 2. For Ni(Pd) the Helmholtz free energy
calculations were performed using a pseudo-NiPd atom.
This pseudo-NiPd atom was created by linearly averaging
the EAM potential functions of Ni and Pd. The
Helmholtz free energy difference was first calculated for
the substitution of the pseudoatom for a Ni atom. In the
second step the Helmholtz free energy difference was
found for replacing the pseudoatom with a Pd atom. The
total Helmholtz free energy difference is the sum of the
differences for the two steps. Through the use of this in-
termediate step, the required number of steps per atom
was reduced to 10*° for the Ni(Pd) system, as is also
shown in Fig. 3.

C. Free-energy minimization method

The FEM method uses an approximate expression for
the calculation of the Helmholtz free energy of a system.
This approximate expression is what makes the technique
much faster than MC or MD, but it also demands that it
be thoroughly tested. With this methodology, the equi-
librium configuration is found by minimizing this
Helmholtz free energy with respect to the atomic posi-
tions, or the positions and compositions, using standard
minimization techniques—for example, the conjugate
gradient method. The derivation of the FEM method has
been covered in detail elsewhere,'>'* so only a brief re-
view is presented. The expression for the Helmholtz free
energy is found as follows: First, the contribution to the
Helmbholtz free energy from the vibrational entropy (Fy )
in the high-temperature classical limit is given by?

(10)

where the w,g are the vibrational frequencies of the atoms
and A is Planck’s constant. In the FEM technique, the vi-
brational frequencies are calculated by using an approxi-
mation to the quasiharmonic (QH) approximation, the lo-
cal harmonic (LH) model. Like the QH approximation,
the LH model utilizes the harmonic approximation keep-
ing only the second-order terms but it also neglects the
coupling of vibrations between atoms. By assuming that
each atom is an independent oscillator, the required com-
putation is reduced from the diagonalization of the full
3N X 3N dynamical matrix to the evaluation of N local
dynamical matrices that are only 3X3, where N is the
number of atoms in the ensemble.

The configurational entropy S, due to the different
possible arrangements of atoms in a binary system, is cal-
culated using a simple point approximation and the
effective-atom concept and it is given by

v
Sc=—k 3 {CDIn[C 4()]+Cp(Nn[Cy(i)]} .  (11)

i=1
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With the effective-atom concept we no longer deal with
distinct types of atoms but with an “effective atom” on
each atomic site. These effective atoms have concentra-
tions C 4, and Cp, where C , is the time average probabili-
ty that a site is occupied by an atom of type A, and
Cp (=1—C ) is the probability that a site is occupied by
an atom of type B. When the effective-atom concept is
used, changes must also be made in the way the internal
energy is calculated. The simple point approximation as-
sumes that there is no spatial correlation in the occupa-
tion of atomic sites. This is only strictly correct for ideal
solid solutions. In general S represents an approxima-
tion to the correct value of the configurational entropy;
the experimental configurational entropy can be greater
than or less than S¢.%

To study solute-atom segregation, the transmutational
ensemble is used. In this ensemble the total number of
atoms and the relative chemical potential difference be-
tween the solvent and solute atoms are fixed, but the
number of atoms of each species is allowed to vary. The
proper thermodynamic potential for this ensemble is the
grand potential:

N
Q=E+F,—TSc+Au S C,(i), (12)

i=1

where Ap is the chemical potential difference between the
solute and solvent atoms.

In pure metals or alloys at the dilute limit of one com-
ponent, there is no configurational entropy and the chem-
ical potential difference term is a constant. Thus, to
within a constant, the grand potential reduces to the
Helmholtz free energy

F=E+Fy, . (13)

The equilibrium configuration is found by minimizing
this potential with respect to the atomic positions. This
is done by calculating the negative first derivative of Eq.
(13) with respect to the positions and using the conjugate
gradient method. The minimization is continued until
the maximum atomic displacement in one step of any
atom in the system is less than some tolerance, usually
103 or 10* nm.

To find the segregation free energy Fy(x) from Eq. (1),
AF(bulk crystal) and AF(x) must be calculated. For
AF(bulk crystal) the Helmholtz free energy is calculated
for a bulk crystal (no defects) both with and without a
solute atom present. For AF(x) the Helmholtz free ener-
gy is calculated for a surface simulation cell both with
and without a solute atom in the outermost surface plane.
For the surface segregation profiles, AF(x) was also cal-
culated for several subsurface planes by substituting the
solute atom at appropriate sites.

Several computational difficulties were encountered in
actually applying this methodology. The first difficulty
stems from the fact that the FEM method is a minimiza-
tion technique. Like all minimization techniques, the
FEM method is sensitive to the initial conditions and
care must be taken to ensure that the true equilibrium
solution is found. The other problems that were encoun-
tered were numerical in nature. In the FEM method it is
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necessary to calculate the third derivatives of the poten-
tial functions in order to find the forces on each atom.
This raises problems with the way the EAM potentials
used are usually treated; namely, the EAM potentials are
stored in lookup tables. In the current work, a five-point
Lagrange interpolation was used to obtain the higher-
order derivatives. Another problem with the higher-
order derivatives is inherent to the way these EAM po-
tentials were determined. The embedding functions have
points where the higher derivatives are discontinuous.
Also, the real-space functions have discontinuous second
and higher-order derivatives at the cutoff distance. The
problem with the embedding functions was solved by
fitting the functions to high-order polynomials plus a log-
arithmic term. The details of this fit are given in the Ap-
pendix. The problem with the discontinuities at the
cutoff leads to problems in minimizing the energy in cases
where interatomic separations are near the cutoff dis-
tance. This does not occur in the bulk but may occur at
defects such as surfaces and grain boundaries. These
computational difficulties, while making the FEM
method somewhat more difficult to use, are not insur-
mountable.

III. RESULTS AND DISCUSSION

A. Effect of including local atomic relaxations
and the vibrational entropy

The first effect on the simulation of surface segregation
free energies that we examine is the effect of including lo-
cal atomic relaxations. The simplest approach to simu-
lating surface segregation free energies is to ignore local
atomic relaxations and the vibrational entropy and just
calculate the internal energy with the atoms located at
their ideal lattice sites right up to the surface. A better
approach is to include local atomic relaxations, so that
the minimum energy configuration can be found. In
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Table I the top value for each alloy is the segregation free
energy calculated with no atomic relaxations. The bot-
tom value is the segregation free energy calculated after
allowing the atoms to relax to their equilibrium positions,
employing a lattice statics simulation. As is shown by the
values in bold, in over half of the 30 alloys, inclusion of
local atomic relaxations strongly affects the calculated
surface segregation free energies. For a few of the alloys,
the effect of including local atomic relaxations changes
the surface segregation free energy by 200% or more. In
nearly all cases the change is in the direction of a weaker
interaction between the solute and the free surface.

The second effect on the simulation of surface segrega-
tion free energies that we examine is the effect of includ-
ing the vibrational entropy. To investigate this effect, we
compare the results from the lattice statics simulations
which include only local atomic relaxations to results
from ODMC simulations which include both atomic re-
laxations and the vibrational entropy. In Table II the top
value for each alloy is the segregation free energy calcu-
lated with lattice statics simulations. The bottom value is
the segregation free energy calculated employing ODMC
simulations. As is shown by the values in bold, the vibra-
tional entropy strongly affects the calculated surface
segregation free energies in a quarter of the 30 alloys.
The alloys that are the most affected are the alloys with a
small solvent (Cu or Ni) and a large solute (Ag, Au, Pd,
or Pt). For these alloys, the effect of including the vibra-
tional entropy changes the surface segregation free ener-
gy by 10% to 200%. Again, in most cases the change is
in the direction of a weaker interaction between the
solute and the free surface. The surface segregation free
energy is changed by at least 0.01 eV for all but 13% of
the alloys studied. Thus, for accurate calculations of sur-
face segregation free energies, local atomic relaxations
and the vibrational entropy must both be included in
nearly all cases.

TABLE 1. Effect of local atomic relaxations on (111) surface segregation energies. The top value for
each alloy is the segregation energy calculated without atomic relaxations (atoms at ideal lattice posi-
tions). The bottom value is the segregation energy calculated with atomic relaxations from a lattice
statics simulation. The bold values correspond to a difference of 0.05 eV or more. The values are in

units of electron volts (eV).

Solute Solvent atom
atom Cu Ag Au Ni Pd Pt
Cu —0.20 —0.24 0.12 —0.06 —0.03
—0.09 —0.15 0.12 —0.02 0.00
Ag 0.32 0.07 0.45 0.29 0.39
0.35 0.05 0.55 0.25 0.36
Au 0.46 —0.12 0.90 0.22 0.44
0.35 —0.08 0.76 0.18 0.41
Ni —0.08 —0.24 —0.28 —0.09 —0.08
—0.07 —0.10 —0.16 0.00 —0.01
Pd 0.19 —0.30 —0.25 0.63 0.13
0.12 —0.20 —0.20 0.50 0.15
Pt —0.04 —0.53 —0.41 0.42 —0.18
—0.12 —0.34 —0.31 0.23 —0.15




12 010

J. D. RITTNER, S. M. FOILES, AND D. N. SEIDMAN

TABLE I1. Effect of vibrational entropy on (111) surface segregation free energies. The top value for
each alloy is the segregation energy calculated employing a lattice statics simulation that does not in-
clude the vibrational entropy contribution. The bottom value is the segregation free energy calculated
at 1000 K employing an ODMC simulation that includes the vibrational entropy. The bold values cor-

respond to a difference of 0.05 eV or more. The values are in units of electron volts (eV).

Solute Solvent atom
atom Cu Ag Au Ni Pd Pt
Cu —0.09 —0.15 0.12 —0.02 0.00
—0.11 —0.14 0.10 —0.01 0.00
Ag 0.35 0.05 0.55 0.25 0.36
0.33 0.08 0.05 0.26 0.37
Au 0.35 —0.08 0.76 0.18 0.41
0.24 —0.11 0.58 0.17 0.39
Ni —0.07 —0.10 —0.16 0.00 —0.01
—0.06 —0.11 —0.13 0.01 —0.01
Pd 0.12 —0.20 —0.20 0.50 0.15
0.04 —0.21 —0.18 0.36 0.15
Pt —0.12 —0.34 —0.31 0.23 —0.15
—0.19 —0.33 —0.28 0.09 —0.15

B. Comparison of the FEM and ODMC methods

The results from the first part of this study indicate
that in most cases it is necessary to use a simulation tech-
nique that includes both local atomic relaxations and the
vibrational entropy for accurate calculations of surface
segregation free energies. Unfortunately, most of the
techniques that do this, such as the ODMC method, are
very computer-resource intensive. Therefore, in the
second part of this study we examine a new technique,
the FEM method, which includes these effects, but makes
some approximations enabling it to be more computer-
resource efficient. Because of the approximate nature of
the FEM method, we test its accuracy in calculating sur-
face segregation free energies by making comparisons to
results from the ODMC method.

The first comparison between the FEM and ODMC
methods is of the segregation free energy at a (111) free
surface for the set of 30 alloys. In Table III the top value
for each alloy is the segregation free energy calculated
with the FEM method. The bottom value is the segrega-
tion free energy calculated with the ODMC method. As
shown by the bold entries, the two methodologies are in
good agreement for 24 of the 30 alloys. The only alloys
that do not show good agreement are those with a large
solvent (Ag, Au, Pd, or Pt) and a small solute (Cu or Ni).
For these alloys the segregation free energy difference is
as large as 0.12 eV. For two of the alloys—Pd(Ni) and
Pt(Ni)—the two simulation methodologies differ on
which element will be enhanced at the surface.

Whenever possible, it is useful to compare simulation

TABLE III. Comparison of the FEM and ODMC methods for calculating the (111) surface segrega-
tion free energies at 1000 K. The top value for each alloy is the segregation free energy calculated from
a FEM simulation. The bottom value is the segregation free energy calculated from an ODMC simula-
tion. The bold values correspond to a difference of 0.02 eV or more. The values are in units of electron

volts (eV).
Solute Solvent atom
atom Cu Ag Au Ni Pd Pt
Cu —0.07 —0.02 0.10 —0.01 0.02
—0.11 —0.14 0.10 —0.01 0.00
Ag 0.33 0.08 0.50 0.26 0.38
0.33 0.08 0.50 0.26 0.37
Au 0.25 —0.11 0.59 0.17 0.40
0.24 —0.11 0.58 0.16 0.39
Ni —0.06 —0.06 —0.04 0.02
—0.06 —0.11 —0.13 0.01 —0.01
Pd 0.04 —0.21 —0.18 0.36 0.16
0.04 —0.21 —0.18 0.36 0.15
Pt —0.19 —0.33 —0.28 0.09 —0.15
—0.19 —0.33 —0.28 0.09 —0.15
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TABLE IV. Component of selected fcc binary alloys that is enhanced due to segregation at free sur-
faces. A comparison is made between available experimental data and FEM and ODMC simulation re-
sults. The experimental data were taken from the compilations in Refs. 2, 7, and 10.

Alloy Enhanced surface component
Solvent(Solute) Experiment FEM result ODMC result

Ag(Au) Ag Ag Ag
Ag(Cu) Ag Ag Ag
Ag(Pd) Ag Ag Ag
Au(Ag) Ag Ag Ag
Au(Cu) Au Au Au
Au(Ni) Au, Ni, or none Au Au
Au(Pd) Au Au Au
Au(Pt) Au Au Au
Cu(Ag) Ag Ag Ag
Cu(Au) Au Au Au
Cu(Ni) Cu Cu Cu
Ni(Au) Au Au Au
Ni(Cuw) Cu Cu Cu
Ni(Pd) Pd Pd Pd
Pd(Ag) Ag Ag Ag
Pd(Au) Au Au Au
Pd(Ni) Pd Pd Pd
Pt(Au) Au Au Au
Pt(Cu) Cu Cu None
Pt(Ni) Pt, Ni, or none Ni Pt

results to experimental data. In Table IV the component
that is enhanced due to segregation at free surfaces for
several fcc binary alloys is shown. The experimental data
have been taken from three compilations®>”!* of pub-
lished surface segregation data. These data were found
with a variety of experimental techniques, conditions,
and surface orientations. The simulation results are the
same results presented in Table III for (111) surface
segregation free energies. Negative segregation free ener-
gies indicate that the solvent will be enriched at the sur-
face, and positive segregation free energies indicate that
the surface will be enriched with solute. In all but three
cases the experimental data and the two sets of simula-
tion results are in perfect agreement. For the Au(Ni) al-
loy the experimental data are inconsistent, with either Au
or Ni or no surface enrichment detected. Experiments?®’
on Pt(Ni) show that the segregation profile is oscillatory
and the enriched component is dependent on the surface
plane. The experiments on (111) surfaces showed Pt en-
richment on the outermost surface plane which is in
agreement with the ODMC result. The experimental
data are inconclusive for Pt(Cu). This might be expected
since the simulation results predict that the amount of
surface segregation for Pt(Cu) should be very low, mak-
ing it difficult to measure experimentally. This compar-
ison shows that both simulation methodologies are in ex-
cellent qualitative agreement with the available experi-
mental data on surface segregation.

The second comparison between the FEM and ODMC
methods is of segregation free energy profiles of (111) frez=
surfaces for three alloys: Ni(Cu), Ni(Pd), and Pt(Au).
These three alloys exhibit good agreement in the previous
comparison for the outermost surface plane. The segre-

gation free energies of several (111) planes parallel to the
surface are plotted as a function of the number of planes
from the surface in Fig. 4. The Fgz(x) values calculated
with the FEM method are always slightly greater than
the values obtained from the ODMC method. The larg-
est difference, which is for Ni(Pd), is about 0.02 eV. For
all three alloys, the Fz(x) value for the surface plane of
atoms is large and positive, indicating that solute atoms
have a strong tendency to segregate to the surface plane.
The value of Fg(x) for the second (111) plane is slightly
negative for the Pt(Au) and Ni(Cu) alloys, while it is
nearly equal to the bulk average for the Ni(Pd) system.
This indicates that solute atoms are slightly repelled from
the first subsurface plane in the Pt(Au) and Ni(Cu) sys-
tems. For the third plane and beyond, Fz(x) approaches
the bulk average value. This short-range oscillatory
behavior in Fz(x) may be the origin of some oscillatory
segregation profiles that have been observed experimen-
tally by Auger electron spectroscopy?’ or by the atom-
probe field-ion microscopy technique.?® This should not
be confused with the long-range oscillatory profiles that
are seen in ordering systems. Long-range oscillations are
due to solute-atom interactions and cannot be present at
the dilute limit that is being used in the current study.
There is an expansion of less than one-half percent at the
surface in the Ni(Cu) and Ni(Pd) alloys and a contraction
of 4.6% in Pt(Au) in the direction normal to the surface.
All three alloys also have an expansion of less than one-
half percent at the center of the crystalline slab. This
may be due to the finite thickness of the slab. The devia-
tion of the bulk average values from zero is probably due
to this expansion.
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IV. CONCLUSIONS

We first investigated the importance of including local
atomic relaxations and the vibrational entropy in the
simulation of Helmholtz free energies of segregation for
30 face-centered-cubic dilute binary alloys at (111) free
surfaces. With the simplest possible approach, an energy
calculation with the atoms at their ideal lattice sites,

(111) free surface
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FIG. 4. Segregation free energy profiles for a (111) free sur-
face: Fp(x) vs plane. The values of Fp(x) are averaged over
(111) planes parallel to the surface and are plotted as a function
of the number of planes from the surface. The circles and solid
lines are for the ODMC simulations, while the squares and dot-
ted lines are for the FEM simulations.
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neglecting the local atomic relaxations, resulted in an
overestimate of the surface segregation free energy for
over half the alloys. If local atomic relaxations are in-
cluded but the vibrational entropy is still neglected, as in
a lattice statics simulation, the surface segregation free
energy is still overestimated for nearly a quarter of the al-
loys. The effect of including the vibrational entropy was
strongest for the alloys that have small solvent atoms and
large solute atoms. We conclude that for an acceptable
degree of accuracy in the calculation of surface segrega-
tion free energies, the simulation methodology must in-
clude local atomic relaxations in nearly all cases studied.
The simulation methodology should also include the vi-
brational entropy in cases where the alloy has a small sol-
vent atom and a large solute atom or in nearly all cases
when a high degree of accuracy is desired.

Due to the conclusions of the first part of this study
and the computer resources that are required by most
simulation methodologies that include the vibrational en-
tropy, in the second part of this study we investigated the
accuracy and usefulness of a new technique, the FEM
method. This methodology includes only an approxima-
tion for the vibrational entropy and therefore runs much
faster than other techniques. Although it is an approxi-
mate technique, there have been only a few tests of its ac-
curacy. By comparison with the more accurate ODMC
method, we first investigated the accuracy of the FEM
method in the calculation of surface segregation free en-
ergies for 30 face-centered-cubic dilute binary alloys.
The two methodologies are in good agreement for all al-
loys except those that have large solvent atoms and small
solute atoms. Both methodologies are in excellent quali-
tative agreement with available experimental data on sur-
face segregation. A second comparison was made be-
tween the two methodologies by calculating surface
segregation free energy profiles as a function of distance
from the surface for three of the alloys. The segregation
free energies calculated with the FEM method are always
somewhat higher than the results from the ODMC
method, but it is nearly a uniform shift in each case so
that the profiles from each methodology have the same
shape. From these comparisons we conclude that the
FEM method is sufficiently accurate in calculating sur-
face segregation free energies, except in cases where the
alloy has a large solvent atom and a small solute atom.

Although the FEM method proved to be fairly accu-
rate in these comparisons, there are several other factors
that must be considered before applying it to other appli-
cations. These other factors can be divided into compu-
tational considerations and problems inherent in the
methodology. The first computational consideration is
that because the FEM method is a minimization tech-
nique, it is sensitive to the initial configuration and care
must be taken that the final state is actually the true equi-
librium configuration. There are also several numerical
problems associated with calculating the higher-order (up
to third) derivatives required by this methodology. While
these computational considerations are not serious prob-
lems, they do make using this methodology somewhat
more difficult.

There are more serious problems associated with the
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approximations that are made in the FEM method. In
this study we only investigated the accuracy of the LH
approximation for the vibrational frequencies in the vi-
brational entropy term as a function of different alloys.
The calculations do not include any error associated with
the point approximation for the configurational entropy
or the effective-atom concept because all the simulations
were performed at the dilute limit of one component in
another. The point approximation does not accurately
describe the true configurational entropy since it is only
strictly correct for ideal solid solutions. The error associ-
ated with this approximation is expected to increase for
compositions away from the dilute limit; this approxima-
tion can either underestimate or overestimate the experi-
mental configurational entropy.? The effective-atom ap-
proach used to calculate the configurational entropy also
affects the calculation of the internal energy. This intro-
duces another source of error. It may be the case that
these errors are even greater than the error associated
with the LH approximation for the vibrational entropy.
This is a question that requires further study.

As a final note, it is pointed out that recently”® im-
provements to the LH approximation have been made.
This modified local harmonic (MLH) model is said to im-
prove the agreement with the quasiharmonic (QH) ap-
proximation. While it was shown to improve the agree-
ment in the calculation of various bulk properties, there
was no significant improvement in the calculation of va-
cancy formation free energies. This is because the correc-
tions in the MLH model primarily affect only the vibra-
tional frequencies of the bulk atoms. Thus, it appears
that the MLH model would not improve the accuracy
significantly for simulations involving geometries that de-
viate from the ideal bulk crystal, that is, simulations of
vacancies, free surfaces, grain boundaries, etc. Also, the
MLH model only improves the agreement with the QH
model which is itself an approximation. In a recent
study'® free energies were calculated for a bulk crystal, a
vacancy, a (100) free surface, and a £=5/(310) [001]
symmetrical tilt boundary in Cu as a function of tempera-
ture using MC simulation techniques and the QH and
LH approximations. It is found that the harmonic ap-
proximations substantially underestimate the tempera-
ture variation of the defect free energies as compared to
the MC results. In a second study™ free energies of a
bulk crystal and (233) twin grain boundaries were calcu-
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lated using the Stillinger-Weber Si potential and the QH,
LH, and SM approximations at 1000 K. By comparison
with MD thermodynamic integration results, it is found
that the QH approximation produces accurate free ener-
gies whereas the free energies from the LH and SM ap-
proximations are unreliable.

From the results of the current study, the choice of al-
loy systems appears to be very important in determining
the accuracy of this methodology. Alloys with large sol-
vent atoms and small solute atoms may introduce large
errors. Any alloy that deviates from the dilute limit
would also be expected to increase the error of the calcu-
lations. From the other studies mentioned above, addi-
tional conclusions can be made. It appears that this
methodology is best suited to calculating bulk properties.
It also does a reasonably good job of calculating defect
properties but only at relatively low temperatures.
Despite the limitations mentioned, the FEM method is
still very useful. Because of its computational efficiency,
the FEM method is ideally suited for doing systematic
studies of segregation thermodynamics that would
presently be unfeasible with more computationally
demanding techniques. It is important to know, howev-
er, how the results may be affected by the approximations
that are being made.
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APPENDIX

The numerical embedding functions that are part of
the EAM potentials used in this work have discontinui-

TABLE V. The values of the coefficients used to fit the embedding functions of the EAM potentials used in this work. The a
coefficient has units of eV nm? and the b; coefficients have units of eV. The coefficients are defined in Eq. (A1).

Coefficient Ag Au Cu Ni Pd Pt
a 0.1536185 0.1268758 0.096 906 5 0.159198 0.05937707 0.11139322
by —6.83121 —9.18555 —5.86679 —6.689 31 —9.07139 —11.8898
b, —10.809 3 —9.59503 —7.494 11 —10.3836 —7.36565 —10.984 42
b, 2.849 57 —0.0959585 —1.367 89 —2.80049 1.14259 0.903 098
b, 0.744 281 0.016 060 8 0.207 996 0.634714 —0.463 842 0.254 642
by —0.274037 —0.169 241 —0.046260 1 —0.205456 0.0914832 —0.116 774
bs 0.089 8367 0.100 007 0.005 182 08 0.0485144 0.007 82224 0.102 429
be —0.018 6302 —0.025 6545 0.0 0.005 107 68 0.0 —0.029 683
b, 0.001 695 47 0.002 549 38 0.0 0.0 0.0 0.003 1786
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ties in the derivatives. This is a result of the manner in
which these functions were determined. The embedding
function is obtained numerically by requiring that the en-
ergy versus volume for a uniform dilation fit a specified
form. When the dilation or compression of the lattice
caused a shell of neighbors to cross the cutoff distance for
either the pair potential or the electron density, the
embedding function has discontinuities in its higher-
order derivatives. This is due to the fact that the pair po-
tential and electron densities have discontinuous second
and higher derivatives at the cutoff distance.

These discontinuities present a problem in the current
work since they lead to discontinuities in the effective
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force used to minimize the free energy. In addition, ob-
taining higher-order derivatives from the numerical
tables was difficult. To address these issues, the embed-
ding functions were fitted to the following form:

1
P 7
Po +i§0 b

£

F(p)=apln
P P Po

) (A1)

where p,=40 nm 3. The fitting coefficients that were
used for each element are given in Table V. The results
obtained with these potentials are very similar to those
obtained with the original potentials except that the nu-
merical problems are reduced.
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