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The effects of inversion asymmetry on the anisotropic optical transition in the presence of electric
field (Pockels efFect) in GaAs/Gap Al As quantum wells and superlattices are investigated theo-
retically. Within an 8 x 8 k p effective mass Hamiltonian formalism, in which the linear k, k, e
(strain due to the piezoelectric efFect), sk, and Rashba terms are taken into account, we have derived
the renormalized effective Hamiltonian for the electron and hole, respectively. The effects of the
inversion asymmetry and the hole mixing on the spin-split subband structures and the dependence
of optical transition matrix elements on the polarization of incident light are fully presented. The
microscopic model clearly shows that the inversion asymmetry is responsible for the Pockels effect.
The roles played by the hole mixing in the enhanced quantum well Pockels effect mediated by the
electron-hole pairs are shown by our calculations. Thus we develop a theory with exciton states
with eight spin components (due to the broken twofold degeneracy of the electrons) in the quantum
well and calculate the excitonic spectra. The symmetry analysis and numerical results indicate that
the excitonic anisotropic behavior results from the interference between different spin components
of holes, which, owing to the heavy- and light-hole mixing, is enhanced signi6cantly compared with
the bulk material, especially for those exciton states whose dominant component does not coincide
with its optically active component. Comparison between theory and experiment is discussed.

I. INTRODUCTION

Since the mid 1980s there has been extensive interest
in the effects of an applied electric field normal to the
layers on the optical properties of semiconductor mul-

tiple quantum wells (MQW's) and superlattices (SL's),
which manifests itself mostly in two aspects. On the one
hand, the quantum confinement due to the potential bar-
rier prevents the exciton from electric-field-induced dis-
sociation, leading to the quantum-confined Stark effect
in MQW's; on the other hand, owing to the larger super-
period and the smaller mini-Brillouin zone, a moderate
field intensity is enough to produce Wannier-Stark lad-
ders and Bloch oscillations in superlattices, and thereby
the corresponding optical spectra.

Recently, Kwok et al. measured the biaxial re-
sponse of photoluminescence (PL) to electric fields in a
GaAs/Gai Al As quantum well structure. i They found
that (1) for fields along [001], emission due to some
nominally forbidden excitons exhibits substantial difFer-
ences between [110]and [110] polarizations, but not be-
tween [100] and [010] polarizations, and no noticeable
anisotropy is observed for the "allowed transitions;" (2)
the field dependence of the anisotropy is antisymmetric
and its magnitude decreases with increasing field. They
ascribe their observation to the Pockels linear electrore-
fraction effect in quantum wells.

It is well known that the indicatrix (an ellipsoid de-
scribing the dielectric constant tensor) for a cubic crys-
tal is normally a sphere and, since all central sections are

circles, there is no natural double refraction. If an ex-
ternal electric field is applied to this system, in general,
the indicatrix will be perturbed to some extent, which
is known as the electro-optic effect. Such a change can
generally be expanded in terms of the applied field. Sup-
pose that the cubic crystal has a center of inversion. If
the field is reversed in direction, the physical situation
is essentially unaltered so that no linear perturbation in
the refractive index due to the field exists. However, in
zinc-blende semiconductors, unlike a centrosynimetrical
crystal, there is no reason why reversing the field should
not change the refractive index, and so the linear change
of the refractive index with respect to the field would
remain. The electric-field-induced biaxial birefringence
within the plane perpendicular to the field is known as
the Pockels efFect. 2 Suppose an electric field is applied
along the z direction, in the z-y plane the refraction in-

dex can be altered by an amount up to bn, proportional
to the field I". If we select two mutually perpendicular
directions x' and y' (e.g. , [110]and [110] for GaAs), such
that n = n+ bn and n„t = n —bn, the Pockels coef-
ficient r4~ is defined by 2bn = r4~n E. For a stress-free
sample, the observed electro-optic effect is the sum of the
primary effect (i.e., the electro-optic effect for a strain-
free sample) and secondary efFect (i.e. , the photoelastic
effect caused by the field-induced strain via the converse
piezoelectric efFect). According to an estimation for bulk
material, the secondary effect is comparable in magni-
tude to the primary effect. ~

This electro-optic (Pockels) effect is usually very small
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up to the breakdown field (10 Vcm ) for most III-
V group compound semiconductors. For example, be-
low the energy gap, the experimental Pockels coeffi-
cient r4i on bulk GaAs is about 1.5 x 10 io cm/V, i.e.,

(Bn/OE) ~ 0
——10 cm/V. The xnost interesting point

in Kwok et aL's paper is that the observed polarization
ratio (the difference between the PL intensities along the
[110]and [110]directions over the sununation) is as large
as 20 —

30%%up, several orders of magnitude larger than the
corresponding bulk values. Besides, this giant Pockels
effect unusually decreases in anisotropy with increasing
field. Clearly, as believed by these authors, it can only
be accounted for by the quantum well effects.

By macroscopic synirnetry analysis, the bulk Pockels
effect has been considered to be a consequence of the
inversion asymmetry. However, there seems to be little
theoretical effort toward the understanding of the mi-

croscopic details of this effect even for bulk materials,
though there is some suggestion that the Pockels effect is
related to the higher order k p terms. As for MQW's
or SL's, to our knowledge, no theory has been reported
on the anisotropic electro-optic effects. In this paper
we intend to present a theoretical formulation for the
quantum well Pockels effect, and, in particular, to show
how the quantum well effect enhances the in-plane opti-
cal anisotropy by microscopic calculations.

The article is organized as follows. In Sec. II, a multi-
band electron and hole Hamiltonian suitable to describe
the superlattice Pockels effect is presented. Although
inany sophisticated techniques are powerful for band
structure calculation of bulk materials in which the full
efFects due to the inversion asynirnetry are included, 4 to
deal with the present issue, namely, a long-period su-
perlattice in the presence of an external electric field
as well as its associated converse piezoelectric effect,
we prefer starting &om a semiempirical k p multiband
Hamiltonian. 5 s It is not only more transparent and easy
to interpret, but also proves efFective and feasible for
quantum well and superlattice problems. io In addi-
tion to the usual quadratic (k2) terms and the super-
lattice potential, this Hamiltonian also contains various
inversion-asynunetry-related terms, such as the linear k
term, cubic ks term, linear e term (the strain caused
by the converse piezoelectric effect for &ee samples), ek
term, and the Rashba term which allows for the electric-
field-induced coupling between band states. Numerical
results for spin splitting of the superlattice conduction
and valence subbands in the presence of an external elec-
tric field are given in Sec. III, in which the contribu-
tion &om each inversion-asyinmetry-related term is illus-
trated. Although the in-plane fourfold symmetry of the
subband structure is broken by the inversion asymmetry,
some symmetry properties are preserved. The relation
of these remaining symmetry properties to the polariza-
tion dependence of the optical spectra is discussed. The
anisotropic optical spectra due to hole-electron subband
transition are shown in Sec. IV. The hole mixing effects
on the anisotropic interband transitions are conclusively
shown. Since the excitons play an important role in quan-
tum well and superlattice optical processes, a special em-
phasis is placed on the effects of inversion asyrrunetry on

the exciton structure and the excitonic optical transitions
in Sec. V. The field dependence of the polarization ra-
tio, the binding energies, and the oscillator strengths for
several allowed and forbidden exciton states is presented.
Finally, a comparison between experiment and theory is
discussed and conclusions are drawn.

II. HAMILTONIAN

A. Bulk effective Hamiltonian

The k p method is commonly used to obtain the per-
turbation expansion, quadratic in k, of bands around
high-symmetry points. s In order to obtain the k p
Hamiltonian, one connnon practice is to separate the
states concerned in the perturbation calculation into two

sets, one of which involves several quasidegenerate states
whose interaction is treated exactly, and the other con-
tains those which are well removed in energy &om the
first set, and interact with it weakly. In the present
instance, since we are most interested in the optical pro-
cesses near the fundamental gap, the eightfold subspace
of I'6, I'8, and I'7 is suitable in the first category, while
other bands, such as I'8, I'&, and some more remote
bands, belong to the second set. Generally speaking, the
8 x 8 k p solution is accurate for the near-fundamental-

gap states with wave number less than 0.03—, which
are sufhcient to describe the wave functions of the low-

lying electron and hole subbands for a typical MQW with
well width around 100 A. Although the accuracy region
provided by the 8 x 8 Hamiltonian is a little smaller than
the region we are interested in, yet it is more feasible
and we believe it will not lead to any qualitative er-
ror. There have been several extensive theoretical studies
on the k p Hamiltonian in bulk zinc-blende materials
in which the inversion asymmetry effects are taken into
account. ' ' There are also several papers devoted to
the efFects of the inversion asymmetry in SL's or MQW's
based on the multiband effective Hamiltonian. Most of
them focused on the electrons, such as the electron cy-
clotron resonance in a magnetic field, the nonparabol-
icity and the g factors of the electrons, the electron
spin splitting, and the spin-Hip scattering. Since
we shall concentrate on the interband optical transition
in superlattices subject to an applied electric Beld and
it seems to us that no single Hamiltonian meets all the
requirements of the present issue adequately and con-
sistently, we will Brst brieHy introduce our multiband
Hamiltonian for bulk materials, and then present the
appropriate Hamiltonian for superlattice electrons and
holes.

The basis functions used are denoted by ~l s, g),
ll' &) ll'". -') ll'". -', ) ll' --,') ll'". --'.) ll'" -', )
~I'z, —2), which are related to the zone-center Bloch
states ~S), ~X), ~Y&, ~Z& and the electron spinors as given
in Ref. 5. Our 8 x 8 matrix Hamiltonian, whose rows
and columns are ordered as specified above, is expressed
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where c.c. denotes the complex conjugate of the corre-
sponding matrix element, the energy of I's is taken to
be zero, and E~ and 6 are the energies of the funda-
mental gap and the zone-center spin-orbit splitting of
the I'z5 valence band, respectively. Let k~ ——k + ik„,
and k = k + k„+k, =

k~~ + k, . The parameters
A', I"', O', H', and I' in the above expression are iden-
tical to the usual multiband Hamiltonian without the
inversion asymmetry, which mainly originates from the
second-order process perturbed by the k p term except
for I' which also contains the 6rst-order intraband per-
turbation by the strain Hamiltonian. We have

A'=
l

& +
(' h )' . l(slk plU, )l' ok'

mo) Eg E~ 2
2

In addition to the matrix element of momentum oper-
ator p between the Fis and I"i bands, namely,

P = —i (sly lx), (10)

sip. IU, ) (v, l~„lz
l( mp ) . Eg/2 —E,

and the interband deformation potential

C2e: (Z l 6Hsgp~i~
l
S):2+3d

there are two inversion-asyrrnnetry-related terms.
(1) The interaction parameter B represents the indi-

rect coupling between the valence and conduction band
at the fundamental gap mediated by the remote band
states, especially the I"i5 states, which would be forbid-
den if the inversion symmetry were retained. B reads

F = —
2 ((&i+&2)k~~ + (1i —2.$2)k, ))

2
G' = —

2 ((Pi —
P2)k~~ + (P, + 2P2)k, ),

H = &"'„k,k,mo"

(3)

(4)

(2) Both the parameters R and B' result from the ma-
trix elements by the electric 6eld, which was originally
considered to be responsible for the spin splitting in the
subbands. These so-called Rashba terms are proportional
to (k x F) o (spin matrix), i5 i and describe the field-
induced direct coupling between the I"~ and I'~5 states.
We have

3h'I' = (p2(k' —k„')—i2psk, kv) + ide,
2mo

(6)

where pi, p2, and ps are obtained from the corresponding
Luttinger band parameters pi, p2, and pq minus the
contribution &om the I'i band. e is the shear strain in
the z-y plane caused by an external electric field F along
the z direction, which will be the only type of strain
discussed in our paper, and e = di4F, where di4 is the
piezoelectric constant for the material studied. d is the
valence band deformation potential constant defined by

de = (XlbH.„;„lY)/y3,

where bH, q, ;„is the strain Hamiltonian. s

In the Hamiltonian above, K~ and K, as composite
terms, are defined by

(sl.Fzlz,'. )(z,'. IpeFB'= —i ): E /2 —E,
(14)

In the effective Hamiltonian above we allow for the
inversion-asynUnetry-related linear k terms, which ap-
pear as the terms containing parameter C in the Hamil-
tonian as well as in the following expressions:

1' = ——&++i D'k

eFR = (SleFzlZ) = eFP/Eg.

The field-induced coupling between the I", and remote
states, say the F;s, combined with the k p interaction,
is expressed as

1
K~ = (iPk~ + iBk,k~ p eFB'k~),

6
(8)

DI
I.' = —Ck+ +i k

8 8
(16)

and

K, = (i Pk + Bk k„+C2e+ eFR)1

3

Kane listed three possible types of C: C, C, and C,
in which the 6rst one arises from the 6rst-order perturba-
tion by the spin-orbit interaction Hamiltonian, Hso, and
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the other two result from the combined action of k p
and Hso. As pointed out by Rossler, ~2 C could not be
finite because

(xl Iz) = i(xl[p„,H]lz) = o,

in which BV/By is proportional to the spin-orbit inter-
action Hamiltonian. Cardona conjectured that for most
III-V semiconductors, contribution from C' is negligible
because the intermediate states required in this second-
order perturbation process should be I'zs-like and not
available. 4 Thus, we have the same parameter C in both
the diagonal submatrix of the I's states and the non-
diagonal block between I's and I'z, otherwise these two
parameters would differ by 1.5C'. So

".(Xlp IU )(U I[~V x p]„IY)E~„E.
2 16

According to Ref. 4, C is produced by the second-order
process in which the intermediate states are mainly the
outmost core d levels.

Besides, in semiconductors with inversion asynunetry,
a simultaneous interaction between the I"~ and I'~5 states
by the k p and the strain Hamiltonian is possible. The
latter is characterized by the parameter

positive numbers. Here

(~lp*ll'i. , )
mo

Q =i (Xlp„ll'z5 z).
mo

(2o)

Both the conduction and valence electron Hamiltoni-
ans are obtained &om the 8 x 8 Hamiltonian by second-
order perturbation theory via the nondiagonal submatrix
blocks. In other words, we use the block between I'6 and
I's (or I'7) as the perturbation operator to obtain the
conduction band Hamiltonian and the block between I'8
and I's (or I'&) to obtain the valence band Hamiltonian.
We consider the quantity k" to be of the nth order and
e, eFR, eFB', and C to be of the second order. Thus,
if only the quantities up to the third order are retained
and higher order ones dropped, the renormalized 2 x 2
matrix for the conduction electron becomes

(E +h Ic +T
—U"

This convention is opposite to that implied by the mea-

sured polarization ratio in the experiment.

B. Conduction electron Hamiltonian

4& ~- (xlp IU)(U IbH. ~ IY)
Smo &.- Er" —E

2 16

(18)

where

Z" — k (k2 —k2)Z + y ) (22)

In deriving the above effective Hamiltonian and the as-

sociated parameters, as emphasized by Cardona, great
attention must be paid to a consistent definition of all

these matrix elements. Following Ref. 4, we use a con-

vention that the anion is chosen at the origin while the

cation is at (ao/4)(1, 1, 1); then, with the phases of all

the orbital wave functions chosen as real numbers, P as

defined in Eq. (13) and Q and P' as defined below are

It is easy to obtain the eigensolution to this 2 x 2 matrix.
With the inversion asymmetry taken into account, the
eigenvalue for the conduction electron associated with a
given wave vector is

h'k2
E+ = Eg +

2 . + [IT'I'+ IU'I'] '

k ~ 2+PkJJ 6 z 2 2,kz 8 2, 1 —cos48 k2 . 28C2e+ eFR (C2e+ eFR)

(24)

lk, 1)e"' = (25)

and

lk, 2)e"' = [~
—x(&)]-,'

(26)

We denote the angle between the two-dimensional (2D)
wave vector of an electron and the x axis by 8 and let
kJJ = (kJJ, 8). The corresponding eigenvectors now read

where y(k) = T'/U'. Based on the 2 x 2 matrix Ho it
is straightforward to construct the superlattice electron
Hamiltonian H, just by adding the superlattice and the
external electric potentials to the diagonal elements of
the matrix, and replacing k, with the operator iB/Bz. —

We assume that (1) the band-edge functions of both
Gaq Al As and GaAs are identical, which is reason-
able within the rnultiband envelope function formalism;
(2) the barrier is so high and thick that it will bring in
only a minor error by cutting the electric potential at
the barrier center and repeating it periodically. Thus the
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superlattice potential under the electric 6eld has the form

V.(z+ nL) = V.(z)

V;+.Fz, ~ & I.I
& -'„

where L is the superlattice period, W is the well width,
and Vo' is the potential barrier height for electrons. The
second assumption has been applied to calculate the sub-
band structure in Gai Al As/GaAs multiple quantum
wells in the presence of an electric field and the result
was found to agree well with the results obtained by us-

ing the transfer matrix method. The assumptions have
also been used to study the excitonic optical transition
in GaAs/Gai Al As multiple quantum wells as a func-
tion of the field strength and proved sound by comparison
with experiment.

Thus, since the potential V, (z) has the superlattice
periodicity, only coupling between these bulk solutions

I

whose k 's difFer by mE is possible, where m is an in-
teger and E is the primitive superlattice reciprocal lat-
tice vector along the z direction, i.e., K = 2x/L. Con-
sequently, the envelope function of the pth conduction
subband state associated with the superlattice wave vec-
tor k, can be expanded in terms of the bulk solutions
as

y„(k,) = p['kll p, + 'q, ]

x ) a„;exp(imKz)Ik„i),
Tn 2

where (p„z,) is the coordinate of the electron and kll
and q are the projections of the superlattice wave vector
in the z-y plane and on the z axis, respectively. In this
way, we avoided the difficulty of matching boundary con-
ditions across the interfaces arising from the higher order
differential operator of —i8/t9z.

The matrix element of the electron Hamiltonian H,
between two bulk solutions can be written as

(kll q + K i IH Ikll q+mK &)

~k„,k'„~,q'
I {@,+ .I~~~ + (~&+ v)*l ~ Il~'I + I&'I'I' + &0

)
~- - ~1,

+(kll~q +m'K~i Ikll, q+mK, i) &
—Vo', +ieFL, (1 —h, ) . (29),sin[(m m') xW— /L] . (

—1)
m —m' 7r

By solving the secular equation, we get the superlattice electron subband structure and the corresponding two-

component wave function in an electric field, with the inversion-asymmetry effects included.

C. Hole Hamiltonian

Following a similar procedure as described in the last subsection, we construct a renormalized 4 x 4 valence electron
Hamiltonian &om the 8 x 8 matrix by keeping all quantities up to the third order. It is not easy to get the analytical
eigensolutions to this renormalized 4 x 4 matrix, so we divide it into two parts: one is just the Kohn-Luttinger

Hamiltonian denoted by H~, and the remainder is denoted by H(o) 22 ~ ~ (~)

(F —TH+ ~U —~k+I +Ck, ~sCk

G+ — H+ ~U —~—k~3 2 2
C.C. F+7

(FH lO
G 0 I

G —H
F ) c.c.

( T~sU —~k-+ i++ Ck, -~sck
U+ ~Ck+ ide —Ck—U ——k+

T

= H(o) + H(~)

where the terms I", G, H, and I have the identical ex-
I

pressions with the corresponding F', O', H', and I as
I

shown in Sec. IIA, except that all the parameters of p~,
I

p2, p3 in these expressions are replaced by the true Lut-
tinger parameters pq, p2, ps. The term I in the expression
of H is the same as I with ide excluded. The terms(O) . II ~

U and T here are somewhat difFerent from U' and T' of

Sec. II A.

U= k k+ —ik
I

k k„+
I

+iCsek2BP, . ) eFRq
3F (*" B

where
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2C2P
5 )3 g

k, (k2 —k2)
g

In a similar way, the superlattice hole Hamiltonian is de-
rived by replacing all the k, terms by iB—/Bz and adding
the diagonal superlattice and electric potentials. For the
sake of convenience, we reverse the sign of all the matrix
elements. Expressing the superlattice potential for a hole
under the electric field as

of the states which has the symmetry as shown in Eq.
(40). Hereafter, if necessary, we may denote two near-
degenerate hole states &om the vth subband by indices
v and v, respectively. All the spin-component functions
of the hole, a, n, P, and P are expanded in terms of plane
waves differing by a superlattice reciprocal wave vector.
Inserting them into the Eqs. (37), (39), and (40), the
zero-order hole wave functions (with the inversion asym-

metry ignored) in the MQW in the presence of an electric
field are obtained.

The wave function g( ) has the following in-plane sym-

metry

Vi, (z+ nL) = Vj, (z)
eFz, —

VP —eZz, ~ & [z[ & -'„
we have the superlattice hole Hamiltonian

(34)

and

E(P) (8) E(P) 8i E(P) ( 8)
E2 )

=a&'~ (—'+e)
E2

(42)

Hi, ——H( ) + H( )—:(—H( ) + Vj,) —H( ).

The electron and hole states are worked out in difFer-

ent ways: the basis functions for the former are bulk
electron states with the inversion-asynirnetry effects in-

cluded; while for the latter we first solve the eigenequa-

tion of Hi,

( 7l

~-(kii 8 q ') =~
I kii

——8 q '
I'2 )

= o.„(k((,—8, q, z)

= &v ))y + tQ~Z
2

and so on.
When the electric field is removed,

(43)

H„y()(kg) = E( )(kh)y( )(ki, ), (36)
ev + —O.v)

and then we include the effects of the inversion asynune-
try. Let the hole wave function be expressed as

Q„(ki,) = ) b„„@(,) (ki, ).

The hole states are obtained by solving the following sec-
ular equation:

p. ~p. ,

and @( ) is degenerate with Q( ). If we neglect the dif-
ference between p2 and ps in the expression of I, then

rl = —28 and the wave function g( ) has in-plane isotropy.

Both the E„ando.„(k~~,8, z) functions become 8 inde-

pendent. This is usually referred to as the axial or cylin-
drical approximation.

d t (E."'-E)~-.- +) H."'IH."'I@."') =0
v'

(38)
III. SUBBAND STRUCTURES

It can be proved that a pair of nearly degenerate hole

wave functions of Hi, with wave vector ki, = (k~~, q) can(0)

be generally expressed in the I's representation as

aild

q(P) (k„)

@(P)(k„)

( n„(k(()q, z)Ai

.
p (k )~ exp(iki, r)P„(k~(,q, z)b, 2

ia„(kll,q, z)h4)

-(kii q')& )—P„(k((,q, z)62.—"( ' '

)
exp(iki, . r).

~ i~„(k~~,q, .)~4)

(40)

Here bz (j=1,4) are phase factors

(
ag 1

—c8——sq —wy i
7 7 (41)

in which g is the phase angle of the complex function I
in the zeroth-order Hamiltonian of the hole. To distin-
guish two near-degenerate states, we add a bar to one

To quantitatively evaluate the effects of the inversion
asymmetry on the subband structure, we have calculated
the dispersion curves of a (GaAs) .(A1As) ~ MQW.

90 A 40 A
The parameters used are listed in Table I, most of which
are taken or derived from Ref. 23. Parameters, such
as d"'" in Eq. (11) and d""i' which is related to C5
in Eq. (18), unavailable from Ref. 23, are taken from
pseudopotential calculations reported in Ref. 24. All the
Gaq Al As parameters are considered identical to those
of GaAs except the fundamental gap, which is taken to be
Eg(Gai Al As) = 1.155x + 0.372:2. The valence band
offset between GaAs and Gai Al As is taken to be 40%
of their band-gap difference. No adjustable parameters
are used in our calculations. In deriving some of the
parameters we need to sum over all intermediate states
of the second set. For simplicity, we only included the
ry5 states. For example, in deriving the parameter B,
we assume

B=2P'q (, +,). —
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TABLE I. The parameters used in the multiband k. p Ham1ltonian for GaAs.

Es (eV)
4 (eV)
Ep (eV)
4p (eV)
P (eV A)
P' (eV A)

Q (eV A)

y1

'72

'73
m*

ap (A)
dg4 (10 "cm/V)
C (meV A)
R (A)
B(eVA )
B'(A )
d (eV)
C2 (eV)
Cs (eV)

I; —r."
r", —r"„
I'7 —I'8

I 8
—I'7

t ="„(xle- Is)
' —"„(1'i., I1 *l~)
".%Is.ll'i. , )

lattice const.
piezoelectric const.

Rashba term

valence deformation potential
2~ad"-
calculated from Eqs. (19) and (33)

1.519
O.341

4.488

0.171
10.493
4.78

8.165
6.s5
2.1O

2.9o
o.o665

~

5.65
-2.7
-3.4
6.01
21.S4
3.53
-4.5
1.9
-s.77

Of course, this will bring in some errors but they are not
very significant.

It is well known that the Kramers degeneracy requires
a state (k, g) to have the same energy as another state

(—k, $) in solids. If the crystal potential has inversion
syrrUnetry, then the Schrodinger equation is identical for
a pair of wave functions P(k, —r) and P(—,r), w ic
in general are not eigenstates of the inversion operator,
and every energy level is doubly degenerate at a gen-
eral k point. This twofold degeneracy is referred to as
the spin degeneracy in this paper; it is not the same
as the Kramers degeneracy. When there is no inversion
symme rmmetry in the potential the Kramers degeneracy is)

ralretained, while the twofold spin degeneracy at a genera
k point may be lifted. This spin splitting is the direct

consequence of the inversion-asymme ry egects.
timated in Ref. 4 such a spin splitting for bulk III-V
compound semiconductors is less than 0.25 meV.

A. Results for conduction subband

Figure 1 shows the 8 dependence of the energy for
the first two conduction subbands (CB1) and (CB2) at
Ic = 0 5—for the (GaAs) (A1As) ~ MQW with

F =- 3.65 x 10 V/cm. Here the solid and dotted lines rep-
resent the anisotropic dispersion curves with and wit out
taking into account the Rashba term, respectively. Here
we still follow the usual nomenclature, referring the pair
of spin splitting states to their doubly degenerate sub-
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236. I I I I

CB2

2SS.

83.4—
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z
83.2
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234.z
IQ
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FIG. 1. Angular depen-
dence of the CB1 and CB2
energy at kii

——0.5 & for the
(GaAs) ~ (AlAs) - MQW
in an electric field of 3.65 x
10 Vicm. Solid lines: with
the Rashba term; dotted lines:
without the Rashba term.
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band at the zone center. If not necessary, we do not
distinguish them.

It is evident from Fig. 1 that the inversion asymme-
try breaks the fourfold rotational symxnetry. Generally
speaking, E(8) P E(2 + 8) and E(8) g E( 8)—. How-

ever, not all the syxnxxxetry properties are broken; in ad-
dition to twofold rotational symmetry, E(8) = E(7r + 8),
there exists refiection symmetry about 8 = 4, i.e.,

E(8) = E(2 —8). Such symxnetry properties can also
be proved by analyzing the angular dependence of Eq.
(24), and they remain correct when the Rashba term is
included. Thus we can study the angular dependence
of the subband from the region of 8 F(—4, 4). By this
symmetry it can be inferred that the spin splittings along
[100] and [010] are always the same, while the difference
between any other two mutually perpendicular directions
is nonzero.

In addition to the symxnetry, there are several other
characteristics of the in-plane anisotropic conduction
subband. First, as demonstrated in Fig. 1, the spin
splitting can be decomposed into an angular indepen-
dent (isotropic) and an angular dependent (anisotropic)
part. For both subbands, the isotropic part dominates
the anisotropic part, and the isotropic part of CB2 is
much larger than that of CB1. The amplitudes of
the anisotropic part of both subbands are roughly the
same, and they increase with the in-plane wave num-
ber. Second, the Rashba term significantly increases
the anisotropy between [110] and [110] directions. For
k~~

= 0.5 & and without the Rashba term, as shown by
Fig. 1, both the CB1 and CB2 states have the largest
spin splitting along the [100] or [010] direction; while the
smallest splitting occurs at around either 8 =

4 (along
[110]) or 8 = —

4 (along [110]), depending on the wave
number. When the Rashba term turns on, the difference
between spin splittings along [110] and [110] directions
becomes evident. For large k~~, the largest spin splitting
is still around the [100] or [010] direction. For small k~~,

however, since the product of the Rashba term and C2e
in Eq. (24) becomes dominant for the angular dependent
part, the largest splitting may occur at 8 = —

4 while the
smallest splitting is still around 8 = 4. Third, when the
wave number k~~ increased, the spin splitting increases
too.

If we assume an effective k, for the pth subband wave
function to be about p~, then all the characteristics
above can be explained qualitatively by inserting this
efFective k, into Eq. (24). Clearly, due to the rela-
tively large effective k selected by the quantum well,
the term containing k2k2 in Eq. (24) makes the largest
contribution to the isotropic spin splitting, and the term
—

k~~k, (1 —cos48) is the main factor for the anisotropy
provided that k~~ is not too small.

We have also evaluated the energy minimum shift by
the linear k term. For the (GaAs) ~ (A1As) ~ MQW90 A 40 A
with F = 3.65 x 104 V/cm, we found that the wave num-
ber associated with the energy minimum is about 0.003 &
for CB1 and 0.01 & for CB2. The energy reduction due
to the linear k term is about 0.001 meV for CB1 and
0.014 meV for CB2.

B. Results for hole subbands

The spin splitting and anisotropic in-plane energy dis-

persion for the hole subbands have the same syrnrnetry
properties as those for the electrons. Furthermore, some
qualitative characteristics of the anisotropy for the elec-
trons are kept with some revisions.

Let us define

(44)

(45)

arid

~v, v' = v a v' (46)

~vxv' = v h v' (47)

In addition to the twofold rotational invariance, these
matrix elements of the inversion-asymmetry Harniltonian
have the following synnnetry:

tC = tC
(7i

E2 )
(48)

(49)

with the subscripts kept implicit. We shall not give
the explicit expressions for these u and m functions. It
should be pointed out that u denotes the coupling by
the inversion-asymmetry Hamiltonian between the hole
states of the same symmetry, the most important one be-
ing its first-order perturbation energy, while m denotes
the coupling between the states of opposite symmetry
with the main contribution coming from the coupling
between a pair of spin splitting states or states close in
energy. One interesting point is that, for states at 8 = 0
or z/2, the first-order correction in energy is very small
(only the terms Csek~~ and Ck~~ have nonvanishing contri-
butions), but, owing to contributions from the intersub-
band coupling and the intrasubband xU, the final splitting
is quite comparable to that at 8 = +n./4. Another point
easy to deduce fiom Eq. (49) is that xo(8 = +m/4) = 0.

Since there is in-plane refiection symxnetry with re-
spect to [110] and [110] in hole subbands, the expansion
coefficients b„„andb„„~in Eq. (37-)—will possess the
same symmetry properties with the matrix elements u,
while 6„—„and6—„„willbehave like m. This determines
why the polarization ratio of these two mutually perpen-
dicular directions of [100] and [010] is zero.

There are several factors qualitatively affecting the
hole spin splitting and in-plane anisotropy compared to
the electrons. First, unlike the conduction subbands
which are degenerate in the presence of the electric 6eld

The spin splitting is not sensitive to the electric field.
For example, for the case above, when the field strength
is doubled, the splitting of CB1 is enhanced while that of
CB2 is reduced. The relative variation is only about 1'Fo.
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FIG. 2. Angular dependence of the four lowest hole sub-
bauds at k~~

= 1.0—for the (GaAs) ~ (AlAs) ~ MQW in
90 A 40 A

au electric field of 3.65 x 10 V/cm. Dotted lines: without
inversion asymmetry; dashed lines: with inversion asymmetry
but without the Rashba term; solid lines: with everything.

without inversion asymnietry, the twofold degeneracy of
the hole subbands is lifted in the electric field even if the
inversion-asymmetry term is omitted (i.e., H&

——0),
because the electric potential breaks the spin degener-
acy via the spin-orbit coupling in the valence band. The
dotted lines in Fig. 2 represent the angular variation of
the first four hole subbands in a field without taking the
inversion asymmetry into account. The splitting of these
dotted lines is significant, and, as indicated by our calcu-
lations, it increases considerably with the field strength.
So the total spin splitting for holes results &om both the
inversion asymmetry and the applied field. It is worth
noticing that the spin splitting caused by the electric field
has fourfold rotational symmetry, if inversion symmetry
exists.

Second, even without the inversion asymmetry and the
electric 6eld, the in-plane dispersion for the hole sub-
bands is anisotropic. In other words, there is in-plane
warping for the hole energy spectrum (see dotted lines
in Fig. 2). So the total anisotropic part of the in-plane
dispersion is the sum of the warping as well as the lack of
inversion syiinnetry. This is why the anisotropic part of
the hole spin splitting dominates over the isotropic part
(see Fig. 2) which seems in sharp contrast to the result
for the electrons, but if we eliminate the contribution due
to warping, the difFerence is not so great.

Third, there is a heavy-hole (HH) and light-hole (LH)
mixing effect in MQW's and SL's, which is lacking for
conduction subbands. The meaning of HH and LH mix-
ing is twofold. On the one hand, the nondiagonal matrix
elements of the hole Hamiltonian lead to strong admix-
ture of the +3/2 and +1/2 components of the I's repre-
sentation in the subband states at sufEciently large k~~,

which is viewed as hole mixing in the subbands. On the
other hand, due to different in-plane curvatures, differ-
ent hole subbands tend to cross each other at finite k~~.

Near the crossing region, two subbands can mix heavily.
The hole mixing and the inversion-asynnnetry Hamilto-

nian Hz( are interdependent, the latter will cause cou-
pling between different subbands, and certainly, the hole
mixing will affect the spin splitting of the hole states in
quantum wells.

Figure 3 shows the calculated hole dispersion curves
along (a) [100], (b) [110], and (c) [110]. It is interest-
ing to compare Fig. 3(b) with Fig. 3(c), which clearly
shows the opposite role played by the inversion asym-
metry along [110] and [110]. When the inversion asym-
metry increases the splitting along one direction, it de-
creases the splitting along the other direction, and vice
versa. Since the dispersion curves represented by the dot-
ted lines along these two directions are the same, such
an opposite change along the two directions means that
the inversion asymmetry produces the anisotropy between

[110] and [110]. On the other hand, the dispersion curves
along [100] and [010] are exactly the same, which means
these two directions are equivalent as far as the inversion
asymmetry is concerned. Figure 3 indicates that, when
two subbands undergo "subband crossing, " the relative
change in spin splitting along [110] and [110] manifests
itself more considerably.

Let us take a close look at Figs. 1—3. There are still
some important quantitative differences in the behavior
of the anisotropy and splitting between the hole and the
electron in the following aspects.

(1) Even subtracting the splitting contributed by the
electric field &om the total splitting, and subtracting
the anisotropic warping effects &om the total anisotropic
part, the splitting as well as the anisotropy of splitting in
hole subbands is still much larger than the correspond-
ing one in the electron subbands. Comparing U' in Eq.
(23) with U in Eq. (31), the most important source for
spin splitting and anisotropy in MQW's, we found that
there is a factor z & in Eq. (23), which equals 0.183 in

GaAs. That is why the spin splitting and anisotropy in
holes is more significant than for the electrons.

{2) Due to the hole mixing, warping, and the field-
induced splitting, the angular dependence of the hole
spin splitting becomes more complicated; it not only
depends on k~~ but also on the subband index, on the
field strength, and on the MQW structure parame-
ters. For a moderate field strength the maximum spin
splitting in HH1 (the first heavy-hole subband) of the
(GaAs) -(AIAs) - MQW is at around 0 = — for

90 A 40 A 4

k~~ & 0.5 & and gradually changes to the neighborhood
of 0 = 0 or vr/2 when the wave number increases.

(3) Although the Rashba term is also increased hy a
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for each curve; while these two curves are mirror refiec-
tions of each other about 8 = z /4. This is consistent with
the above conclusion that the polarization ratio between
[100] and [010] is zero.

Compared with the "allowed transition" of CB1-HH1
(11H) at the wave number k~[

= 0.1 z [Fig. 4(a)], the
"forbidden transition" between CB2-HH1 (21H) at the
same wave number exhibits larger difference in ampli-
tude between the [110)and [110]polarizations [Fig. 4(b)].
Significant differences in amplitude are also observed at
several other transitions associated with certain k~[, es-

pecially those at "subband crossings, " e.g. , k[~
——0.5 z

for 11L and 21L transitions, and k~[
= 0.7 & for 12H and

22H transitions, etc.
According to Eq. (50) we have calculated the po-

larization-dependent absorption spectra of the MQW
(GaAs) ~ (A1As) ~ in the presence of an electric field.

90 A 40 A
The results for [110]and [110]polarizations are shown in
Fig. 5 for (a) F = 3.65 x 104 V/cm and (b) Ii = 1.1 x 105

V/cm. Two conduction subbands and twelve valence
subbands are included in this calculation. A Lorentzian
function with a half-width at half-maximum of 0.5 meV
is used to simulate the b function in. Eq. (50). 600 k~[

points, 10 q points, and 10 8 points ranging from —z /4 to
m/4 for each transition are used. In addition to the total
absorption we have also calculated the individual contri-
butions &om diferent subband-subband transitions.

Figure 6 shows the calculated polarization ratio P
„

for the interband transitions discussed above. The polar-
ization ratios due to individual subband transitions are
also shown in the same figure. Several points are worth
mentioning.

(1) Although the total polarization ratio is small, it is
enhanced greatly compared to the bulk result. In partic-
ular, at certain frequencies (e.g. , near the 11L absorption
peak, which results &om the negative mass of the light
hole near the band center) the total P „Iis beyond 5%
for the field strength of 1.1 x 105 V/cm, about 3% for
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F = 3.65 x 104 V/cm, and 1% near the 21L absorption
edge. As for polarization ratio due to each subband, the
enhancement is more impressive. The extent of the po-
larization ratio of 11L varies from 17 (10)% to —5 (—3)%
and that of 21L is as large as 5 (3)% to —13 (3)%%uo in the
field of 1.1 (0.365) x 10s V/cm. For other subbands, the
maximum value of the 12H transition is as large as 8 (5)
% and of the 21H transition as —2 (—3) % in the field of
1.1 (0.365) x 10 V/cm, respectively.

(2) Figure 6 shows that the polarization ratios, es-
pecially those due to individual subband-subband tran-
sitions, have a substantial variation with the light fre-
quency. Such frequency dependence of the polarization
ratio in fact refiects the variation of P, „with the wave
vector of the electron-hole pair. With difFerent Io~~, the
matrix elements of the inversion-asymmetry Hamiltonian
vary a lot. For example, when the wave number is less
than 0.6~&, the coupling coefficients between the HH2
and HH3 subbands are at most about 0.02 for the sam-
ple in the field of 3.65 x 10 V/cm; but when wave num-
ber is around 0.7 z, the intersubband coupling coeffi-
cient is as large as 0.5. This means that the inversion
asymmetry Hamiltonian leads to something like a " res-
onance coupling" between these two subbands. Because
of the spin splitting, two spin-split states belonging to a
subband will couple with another two spin-split states
difFerently, which will certainly inHuence the polariza-
tion ratio. In addition to the intersubband coupling, the
inversion-asyminetry Hamiltonian also causes intrasub-
band coupling, for those states which contain admoctures
of heavy- and light-hole states, a subtle change will result
in a significant change in the polarization ratio, e.g., the
11L transition at kI~

——0.5 & .
(3) On average the polarization ratio for interband

transitions is increased when the Beld increases. How-
ever, there are exceptions. For example, the 21H transi-
tion has a larger P

„

in a weaker field than in a stronger
Beld, as indicated above.

(4) Neglecting the q dependence of the subband struc-
ture, i.e., assuming all the subband states have zero su-
perlattice wave number along the z direction, gives es-
sentially the same results as those obtained by including

the q dependence.
(5) Although for some "forbidden transitions" the po-

larization ratio between [110]and [110] looks significant,
its absolute strength is relatively small, so it hardly
makes any contribution to the total polarization ratio.

V. EFFECTS OF INVERSION ASYMMETRY
ON EXCITON STRUCTURE AND

ITS OPTICAL TRANSITION

A. Formalism

Owing to the spatial confinement, the quasi-two-
dimensional exciton state plays a special role in MQW
optical processes. Usually the hole state from the va-

lence band of I'8 symmetry is a spinor of four compo-
nents. Hence the exciton state is also a spinor of four
components (ignoring the electron spin) in the absence
of inversion asymmetry. It has been shown that out of
the four components for an exciton state only one compo-
nent can contribute to the optical transition; this can be
referred to as the optically active component of the exci-
ton state. '2 We can also prove that, in the electric
field and with the warping effect of the hole included, it
is still true that only one component of an exciton state
makes a contribution to the optical transition. It is easy
to verify that, if only one component of an exciton state
contributes to the optical transition, both P „andP
vanish despite the presence of electric field and warping.
This means that the excitonic Pockels eR'ects critically
depend on the interference between the several optically
active components.

When the inversion asymmetry is included, the nonde-
generate I's subband electron has two components [Eqs.
(51) and (52)], corresponding to spin-up and spin-down
components. Thus, in general, an exciton state is a spinor
of eight components, and can be expressed as summation
of several two-subband exciton states associated with the
same phase factor. The two-subband exciton state de-
rived &om the pth conduction subband and vth valence
subband is in turn a linear combination of two spin-split
electron states and two spin-split hole states, because the
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exciton binding energy is usually much larger than the
spin splitting energy.

Since the phase factor in the exciton spinor determines
which component is the optically active component, in
the following we add another index to designate the com-
ponent whose phase factor equals 1. For example,

(—-) indicates that the g ($) component phase factor
]

in Eq. (51) or (52) is 1; and mz (m~ = kz, +z) indi-
cates that the phase factor in the m~ component of the
valence electron state in Eq. (39) or (40) is 1. Thus, one
of the p'v' HH ls-state excitons which may emit a pho-
ton with M, = —1 can be expanded in terms of several
exciton terms, including the 2p state of the neighboring
subbands,

ex, 8'v'H, 1s, —1) = ) ) G"„„(k~[)8i "P„'(k~~, q)K[@„'(k~~, q)] + g""g (k~~, q)K[+ '(k~~, q)]
P& kll, g

+gs +~(kii q)K[&-:(kii q)]+g4""g(kii q)K[@-:(~&i q)]). (53)

Here the operator K represents the time reversal op-
erator, and g,".

" are the expansion coefficients which
will be determined later by solving a generalized secu-
lar equation. G„"„(k~~)is the exciton correlation func-
tion in momentum space. The Fourier-transformed two-
dimensional hydrogenlike orbitals are written as

z' = 27r
P+k

2+6(
((' + k'„)-'

'

2 30 k

(('+ k')

where ( is a variational parameter. In the calculation, we

take several difFerent ( parameters to cover a wide range
of k~~, thus the total dimension of the exciton matrix is
the sum of the terms in Eq. (53) multiplied by the num-

ber of ( for each term. In principle, there is no difficulty
in solving the exciton problem, so we will not detail all
the formulas. The difFerences between the present work
and previous workzs are solely numerical. Not only is

the number of the basis functions quadrupled here, the
integration over 8 and the choice of the phase factors
in constructing the exciton wave function in k space are
more time consuming. A large amount of computation
is needed for the calculation of the Coulomb matrix el-

ements between two exciton terms, which is carried out

by expanding in terms of the plane waves. i

One important question about the quantum well ex-
citonic optical transition is how many components are
responsible for the excitonic optical transition? let us
first analyze an optical transition matrix element using
an exciton term taken from Eq. (53).

(exls pl0) = ) G'(k~~) (4„'(k~~,q) l~ pl&' (k~~, q))
A:l]8

dz) G*(kl~)[J'I* t(k/[ g q)(S ~ I
+ &,*~(k~~, e q)e "&S 4 l]~ p

kll8

x[~-(k~~ ~ q z)li's, —,')+P-(k~, , g, q, z)e' lI's, -)
+i@ (k// g q z)e *"li s --', ) —i~-(k~, , e, q, z)e' ' lI's, -)]— (54)

In view of the fact that all the electron and hole en-

velope functions have twofold rotational syriunetry, and
when 0 is transformed into 8+ vr, both e+'s and e+'~ +"l
change sign, so the integral above containing these factors
will be zero; this includes the (S t [I's, z), (S $ ll's, z),
(S g ll s, —z), and (S $ ll's, —z) components. All the
other four out of the eight components in principle can
contribute to the excitonic optical transition, which is
different &om the case for the system with an inversion
center. For the latter, the electronic states keep the spin
degeneracy; thus in effect only four components need con-
sidering. Because e'" changes sign while the envelope
function remains the same under a fourfold rotation, the
e'" term also has no contribution. Although in fact only

I

one out of the four contributors dominates, owing to the
nonvanishing transitions by these excitonic components,
the excitonic Pockels effect takes place.

B. Exciton Pockels effects

The exciton Pockels efFect in essence is the integra-
tion of the interband Pockels efFect of a large number
of electron-hole pairs weighted by the exciton correla-
tion function in reciprocal space. Usually, the electron-
hole pairs near the zone center, being the main com-
ponents to produce an s-state exciton, contribute more
to the s-state exciton Pockels coefEcient. The exciton
state with stronger binding energy, being more localized
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in real space, covers a wider range in the wave vector
space. Thus, based on the polarization ratio curves orig-
inating &om each interband transition as shown in the
last section, and on the exciton selection rules as well as
the exciton binding, the Pockels effect due to that two-
subband exciton can roughly be estimated.

This argument above is true for a general situation, but
not totally suitable for the MQW exciton state. Though
the subband electron-hole pair polarization optical spec-
trum has already included some aspects of the hole niix-

ing efFects, the hole mixing efFect on the exciton itself
introduces several additional complicating factors. First,
it makes the oscillator strength and the binding energy be
not always correlated because the optically active com-
ponents are not always the dominant components, espe-
cially for the p-state excitons. 2 For example, the CB2-
LH1 2p-state exciton has a dominant component with
index of +1/2, but, as a p-state exciton, its optically ac-
tive component is +3/2, which becomes possible entirely
due to its mixing with the HH2 subband. In the p-state
exciton correlation function, the weight factor of small kII

is small; thus it will not be easy to evaluate the exciton
Pockels efFect from the electron-hole pair curves. More-
over, owing to hole niixing, the polarization ratio of a
pair subband varies significantly with the wave number,
which makes it even more difficult to predict the aver-

age behavior of an exciton state. Second, because of the
narrow energy separation in the MQW subband struc-
ture, the Coulomb interaction will couple several difFerent
two-subband exciton states. Although some gain oscilla-
tor strength at the expense of the others, it occurs at
different energy, hence giving rise to rich structure. Fur-
thermore, the polarization ratio describes the difference
of the oscillator strengths along two perpendicular direc-
tions; it is hard to know the change in P ~„~ due to the
Coulomb coupling of the two-subband excitons without
calculations.

Figure 7 shows the calculated oscillator strengths ver-
sus the electric field for three exciton states: 21H ls,

21L 2p, and 22H ls with the Coulomb coupling between
two-subband excitons included (left panel) or excluded

(right panel). We found that the Coulomb-induced exci-
ton coupling results in considerable changes in the oscilla-
tor strengths, especially the increased oscillator strength
for the 21L 2p exciton and the decreased one for the 22H
1s exciton. However, in the polarization ratio spectrum,
there is little change due to the exciton coupling for the
21L 2p exciton, but a remarkable change for the 22H 18
exciton as shown in Fig. 8 below.

Figure 8 shows the polarization ratios versus the field

for the above three excitons. Note that because of the
different conventions used in this paper and Ref. 1, the
polarization ratio P „defined here as the difFerence be-
tween [110] and [110] polarizations corresponds to the
quantity III (i.e., the difference of the oscillator strengths

between [110] and [110]polarizations) defined in Ref. 1.
The 21H 1s exciton [Fig. 8(a)] is dipole forbidden with-
out the electric field, because the envelope function for
the optically active component of HH1 is an even func-
tion of z and that of CB2 is odd. The electric field re-
laxes the parity requirements on the envelope functions;
thus the exciton has a finite oscillator strength. At a
weak field, the optical transition matrix element of the
optically active component is small, comparable to other
components which become allowed entirely due to the in-

version asymmetry and are favored by the parity. Thus,
the interference between them makes the polarization ra-
tio maximum be as large as 60'%%up at very low field, though
both have very small oscillator strengths. With the field
increased, the 21H ls state gains oscillator strength but
loses anisotropic character.

Owing to the strong heavy-hole and light-hole niixing
at small kII, the LH1 exciton state has attracted spe-
cial attention. The 21L 2p exciton is dipole allowed even
without the electric field because the envelope function of
its optically active component (3/2), heavily hybridized
with HH2, is an odd function of z, matched with that
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MQW. The solid lines and dotted lines stand for the polarization ratios without aud with the coupling between different two-
subband excitons, respectively.

of CB2. Since both the dominant component (1/2), an
even function in the absence of the field, and the opti-
cally active one (3/2) are significant, this exciton has a
really observable effect in the polarization spectrum (see
Fig. 7). An interesting point in its polarization spec-
trum is that the polarization ratio undergoes a polarity
transition when the field is increased. When the field
continues to grow after the polarization ratio reaches its
peak value, the polarization ratio decreases to zero, and
then increases in absolute value but with a reversed sign.

We have also calculated several other exciton states
associated with the CB1 electron states at some electric
field strength. The 11H ls state exciton has the largest
oscillator strength and very small polarization ratio at a
moderate field. For example, the oscillator strength for
[110]([110])polarization is 24.64 (24.63) x10 5 A 2, and
the ratio is as low as 2.2 x 10 4 at the field 3.65 x 10 V/cm
for the sample mentioned above. On the other hand,
both the llL 2Ji and 12H ls excitons, forbidden without
the field, are gettin oscillator strength in the range of
(0.4 —1.2) x 10 5 2 at the same field as above and
they have large polarization ratios with P „=0.114,
and 0.086, respectively. Like the 21L 2p state, both have
strong hole mixing and their dominant and optically ac-
tive components do not coincide. However, these two
excitons are forbidden without the Beld. Actually, the
difFerences between the oscillator strengths along two po-
larization directions in all three cases are of the same or-
der of magnitude, i.e., (0.2 —0.4) x 10 A 2, but the
polarization ratios for the forbidden ones are much larger.

In our calculations for polarization ratios, two approx-
imations are tried and their validity examined. One is
to neglect the spin splitting of the superlattice conduc-
tion subbands, namely, to combine two spin-split electron
states as a one-component function; thus the exciton has
only four components. The obtained exciton binding en-
ergies, oscillator strengths, and polarization ratios are

very close to the corresponding results obtained when
the conduction subband nondegeneracy has been fully
included. The second approximation is neglecting the q
dependence of the wave functions. We have also calcu-
lated P

„

including the q dependence for one exciton
state and found little difFerence in the polarization ratio,
although the binding energy is reduced significantly and
oscillator strength decreased somewhat. Both approxi-
mations are found to be valid.

VI. DISCUSSIONS AND CONCLUSION

In comparison with the experiments reported in Ref.
1, our numerical results also show a very small polariza-
tion ratio for the allowed llH ground state exciton and
a very similar variation trend of the polarization ratio of
the 21H ground state with the electric field strength. We
found that the maximum value of P „canbe as high
as 60%. However, there is a serious disagreement. Our
theoretical value for the critical field strength at which
the polarization ratio of the 21H ls-state exciton reaches
a maximum value is much smaller than the experimental
one. The theory predicts it at about 1 x 10s V/cm, while
the experimental estimate is at about 2 x 104 V/cm. Al-

though inhomogeneous broadening due to the interface
roughness of the sample and the uncertainty of the ap-
plied Beld may widen out our narrowly peaked spectrum
in Fig. 8(a), it is still quite difFerent &om the experiment.

As pointed out in Ref. 1, there are two basic contribu-
tions to

I~~ (i.e., the difFerence of the oscillator strengths

between [110] and [110] polarizations). One is the cou-

pling between the I'78 and the I'~ band, which actu-
ally corresponds to our Rashba term B'. In the latter
part of the paper the authors did not believe it of impor-
tance. Another basic contribution comes from the fact
that the lattice contribution to the electro-optic efFect
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couples HH1 and LH1, which corresponds to our are term
in Eq. (30).

In fact, our calculations have included two such terms.
To examine the role played by the above terms separately,
we compare the exciton polarization ratio with and with-
out the Rmshba terms. Among the two Rashba terms, B'
is much smaller than R. eFB' is estimated to be —13
meV A. for a field of 3.65 x 104 V/cm. For the wave num-
bers which make main contribution to the exciton, eFB'k
is estimated to be less than 1 meV. Though B' breaks the
remaining symmetry of the pair of states of 8 and rr/2 —e,
it could not contribute a lot to the giant Pockels effect.
It can be seen that there is little difFerence between the
binding energies, the oscillator strengths, and the polar-
ization ratio of the 21H ls exciton with and without the
electric-field-induced band coupling. For instance, the
binding energy of the 21H 1s state in both cases (exclud-
ing the q dependence of the wave functions, the same
electric field and sample as in the last two paragraphs) is
8.50 meV; the calculated oscillator strengths (including
the Rashba term) are 1.449 x 10 A. ([110] polar-
ization) and 1.402 x 10 s A. 2 ([110]polarization), and
the corresponding data (excluding the Rashba term) are
1.452 x 10 A ([110]polarization) and 1.404 x 10
A. 2 ([110]polarization); the polarization ratio is nearly
the same. We have also checked the importance of the de
in enhancing the Pockels efFect, and found that it created
about 10%%uj& relative error to ignore all the terms contain-
ing the strain e. We do not think this term is responsible
for so large an enhancement either.

What were not included in our calculations are the X
band, the wave vector dependence of the optical matrix
element P (equivalently, the number of basis functions in
the k p Hamiltonian, eight in the paper, is not enough),
and the possible asymmetry occurring in the experimen-
tal samples. However, most interesting, as connnrmicated
by Kwok, till now the giant electrodichroism has only
been observed in the PL spectrum, not in the PL exci-
tation or absorption spectrum. s There might be some
extrinsic contributions. As we all know, a PL process
includes excitation, relaxation, and recombination, and
is more complex than a simple process. Many kinds of
scattering centers will contribute to the distribution of
the recombination pair. If such a large Pockels effect is
indeed an intrinsic process it will more easily be observed

in the PL excitation as well as absorption spectra rather
than in the weak PL from an excited state.

In conclusion, based on a bulk 8 x 8 multiband Hamil-

tonian in which the inversion-asymmetry efFects are fully
taken into account, we present an efFective Hamiltonian
for electron and hole up to the third order, in which var-

ious inversion-asymmetry factors are included. Thus we

have developed a calculation method and presented re-
sults on the effects of the inversion asymmetry on the
MQW hole and electron subband structures. The sym-
metry properties in such structures are presented. The
amount as well as the in-plane anisotropy of the spin
splitting of an originally twofold degenerate state are
evaluated, with the emphasis put on the infiuence of the
hole mixing. Then the polarization dependence of the
hole-electron optical transition in a GaAs/Gai Al As
MQW are presented, demonstrating how the hole mix-

ing leads to a significant enhancement of the Pockels ef-
fect compared with the bulk materials. Then according
to the spin-split states, we construct the theory for the
exciton state an eight-component spinor. The inversion-
asymmetry eH'ects on the exciton states, especially on
the optically active components, are discussed. Our nu-

merical results for the electric Geld dependence of the
polarization ratio for several exciton states in quantum
wells clearly indicate that exciton states such as 21L 2p,
11L 2p, and 12H ls, which have strong hybridization of
the heavy and light holes and have difFerent dominant
and optically active components, have the most remark-
able polarization spectra when they are dipole forbidden
without the electric field. The spectrum of the 21H ls
exciton state with the electric field is also calculated and
qualitatively agrees with the experiment, but the criti-
cal field at which the polarization ratio is peaked is an
order of magnitude smaller than the experimental value.
Possible reasons for such disagreement are discussed.
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