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The detailed behavior of phonon dispersion curves near momenta which span the electronic
Fermi sea in a superconductor is presented. An anomaly, similar to the metallic Kohn anomaly,
exists in a superconductor's dispersion curves when the frequency of the phonon spanning the
Fermi sea exceeds twice the superconducting energy gap. This anomaly occurs at approximately
the same momentum but is stronger than the normal-state Kohn anomaly. It also survives at
Snite temperature, unlike the metallic anomaly. Determination of Fermi-surface diameters from
the location of these anomalies, therefore, may be more successful in the superconducting phase
than in the normal state. However, the superconductor's anomaly fades rapidly with increased
phonon frequency and becomes unobservable when the phonon frequency greatly exceeds the gap.
This constraint makes these anomalies useful only in high-temperature superconductors such as
Lai.8qSro. i5Cu04.

I. INTRODUCTION

The Kohn anomalyi occurs in a metal's phonon dis-
persion curves when a phonon's momentum spans the
Fermi surface. Locating these anomalies through in-
elastic neutron scattering (on leads or niobium, s for ex-
ample) and inelastic helium scattering (on a platinum
surface4), accurately measures the Fermi surface, as well
as the electron-phonon interaction. This paper con-
sists of a derivation and discussion of a similar type
of anomaly, with greater magnitude, which exists in a
superconductor. This anomaly could prove useful in
Lai 85Sro i5Cu04, whose Fermi-surface shape generates
heated debate.

A significant decay product of a phonon in a metal is a
single electron-hole pair. The Kohn anomaly occurs be-
cause, for momenta smaller than the Fermi surface diam-
eter, there exist single-pair excitations of the electron gas
for the phonon to decay into, while for larger momenta
there are none. This sharp change in the availability of
decay products causes a nonanalyticity in the phonon's

lifetime and &equency. The sharpness originates in the
discontinuous electron occupation at the Fermi surface
at 0 K. Thus, even in an interacting electron gas, with
a quasiparticle weight less than unity, the anomaly per-
sists. The discontinuity vanishes at finite temperature,
resulting in a phonon anomaly smoothed over the mo-

mentum range k&T/hvar, where vz is the Fermi velocity.
This smoothing is typically unobservable. A standard
approximation in the derivation of the metallic anomaly
is the use of the static pair response function. Neglect-
ing the phonon frequency is suggested by the smoothness
of the metal's electronic response function at &equencies
much smaller than the Fermi energy e~. This smooth-
ness persists at finite temperature, also justifying a static
approximation.

Section II predicts some unusual metallic Kohn
anomalies in the high-temperature superconductor

La2 Sr Cu04. First, at room temperatures, evidence
is presented that any Kohn anomaly would be substan-
tially smoothed. This may explain the failure of a search
for Kohn anomalies in I a2 Sr Cu04. Second, the static
approximation for the pair response function is shown to
be inadequate and new momentum locations for Kohn
anomalies are predicted.

A further failure of the static approximation is ex-
plored in Sect. III, devoted to Kohn anomalies in super-
conductors. In most superconductors the energy gap 6
produces substantial structure in the pair response func-
tion at &equencies much less than phonon &equencies
(b, &( huD). Thus the static electronic response differs
qualitatively &om that at a phonon's &equency. The
fundamental conclusion is that Kohn anomalies may sur-
vive in superconductors, even at finite temperature. The
efFects predicted in this work are expected to be unob-
servable in low-temperature superconductors.

Figures l(a) and 1(b) illuminate the two types of
anomalies which occur in a superconductor. Figure 1(a)
shows the minimum-energy electronic excitations (from
now on, the adjective "single-pair" will be dropped) for
a two or thre-e-dimensional isotropic-gap superconduc-
tor (solid line) and normal metal (dashed line). In Fig.
1(b) the region near q = 2k~ has been enlarged so that
the solid and dashed lines can be distinguished. For the
superconductor, in the region to the left of and above
the solid line there exist excitations, so the electronic re-
sponse function has a finite imaginary component. To the
right of and below the solid line, however, no excitations
exist, so the response function is real. A function must
be nonanalytic on the border between a region where it
is identically zero and a region where it is nonzero; the
imaginary part of the response function is nonanalytic on
this (solid) line. By Kramers-Kronig relations, the real
part is nonanalytic there as well. Thus the supercon-
ductor must produce an anomaly in phonon dispersion
curves at q 2k~ when Ru(2k~) ) 2b, . All phonons
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FIG. 1. Minimum single-pair excitation energy in a two-
or three-dimensional isotropic-gap superconductor (solid line)
and normal metal (dashed line). Here 2A/hk~vp = 0.01. (a)
Full range of momentum q. (b) Closeup of the region near

q = 2kF.

resolvable by neutron scattering in low-temperature su-
perconductors satisfy this condition as do most in high-
temperature ones.

The anomalies in phonon dispersion curves in super-
conductors for q ( 2k~ and hu = 2b were proposed
by Bobetic, ~ elaborated by Schuster, and observed in
NbsSn (Ref. 9) and niobium. ~ This work will only con-
sider the anomalies induced in phonon dispersion curves
crossing the solid line when q 2kF

Numerical calculations of the effect of d-wave and s-
wave superconductivity on phonon lifetimes and frequen-
cies have been performed for a nearest-neighbor tight-
binding model by Marsiglio. The primary concern of
Ref. 11 was to locate features identifying nesting, or
which distinguish s-wave from d-wave gaps. The results
presented here concern the location and analytic form of
the anomalies. The appearance of Kohn anomalies does
not depend on nesting, merely the diameter of the Fermi
surface As disc.ussed in Sec. V, the analytic form of the
Kohn anomalies is identical for s-wave and d-wave gaps
for almost all phonon momenta.
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FIG. 2. Four possible extremal excitations for a Sxed u.
The two dashed lines are energy contour surfaces at ~ below'
and above the Fermi surface, indicated by the solid circle. For
moments greater than (1) and (3) there are no real single-pair
excitations of the Fermi sea of this type. For momenta smaller
than (2) and (4) there are no single-pair excitations of this
type.
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II. NORMAL STATE

Kohn anomalies in materials where the ratio of the
phonon energy scale to the electronic energy scale,
2u/kyat, is small but not negligible are discussed now.

The metal's electron-hole response function,
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depends on the ratio 2m/k~e~. Here f(e) is the Fermi
function and t'g the chspersion relation for the metal's
electrons. The response in Eq. (2.1) for a spherical Fermi
surface in three dimensions is the Lindhard function:

FIG. 3. P~ (g, ~)/¹ for 2~—/kJ e~ ——0 (solid line), 01.
(dashed line), and 0.2 (dotted line). (a) Real part. (b)
Imaginary part. The solid line is not visible in (b) because
ImP~(q, O) = 0.
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where z = q/2kF, v = mar/Aqk~, N* is the density of
states at the Fermi surface, and 8 is the Heavyside step
function. In the limit 2!d/k~v~ -+ 0 (v ~ 0),
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The location of the Kohn anomaly at the momentum
2kF follows directly &om the nonanalyticity of the right-
hand side of Eq. (2.3) at that momentum. Clearly &om
Eq. (2.2), however, at finite frequency the nonanalyticity
takes place at
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Figure 2 indicates the four types of extremal excita-
tions which produce anomalies in the response function.
Excitation (1) takes an electron &om the Fermi surface
and places it in a state hem above the Fermi surface on
the other side of the Fermi sea. Excitation (3) takes an
electron &om a state hu below the Fermi surface and
places it on the Fermi surface on the other side. For mo-
menta greater than (1) or (3) these types of excitations
do not exist. This explains the origin of the two solu-
tions for q~. For Ru 0, excitations (1) and (3) are
the same. The static approximation succeeds because
the nonanalyticity has the same form for finite &equency
as for zero frequency and because the difFerences in q~
cannot be resolved. Excitations (2) and (4) concern the
zero-momentum anomaly in a metal's response function
which will not be discussed in this work.

FIG. 4. PM (q, &u—)/¹ for 2&gjkyv~ = 0 (solid line), 0.1
(dashed line), and 0.2 (dotted line). (a) Real part. (h) Imag-

inary part.

»gure 3 shows PM (q, !d) for various values of
2!d/kgvy. These are plotted to indicate the changes in
the anomalies' momenta due to finite &equencies. In a
high-temperature superconductor, where the bandwidth
may be less than an electron volt and the phonon ener-
gies are tens of meV, the splitting evident in Eq. (2.4)
may be observable.

Another feature of the high-temperature supercon-
ductors is that; their electronic structure is quasi-two-
dimensional. In two dimensions the slope of the response
function is discontinuous and divergent at qy.

PM2D(q, u) = —
l

2x —sgn(x+ v)8(lz+ vl —1)~(x+ v)2 —1 —sgn(x —v)8(]z —vl —1)Q(x —v)2 —1
2z (

-~~(l —I*+vl) V'I —(*+v)'+ ~0(I —I* —vl) V'I —(*—v) ' I- (2.5)

The two-dimensional response contains stronger nonan-
alyticities than the three-dimensional response. If the
c-axis dispersion of a high-temperature superconductor
is small compared to phonon frequencies, which is typi-
cally the case, the Kohn anomalies will appear to have
the nonanalyticities associated with a two-dimensional
system Figure 4.shows PM (q, ~) for various values of
2(u/kF vg

Figures 5 and 6 indicate the location of Kohn anoma-

I

lies in (q, u) space in the (100) and (110) directions
for Laq 85Sro q5Cu04, using the two-dimensional Fermi-
surface parametrizations of Hybertsen et al. The low-

energy phonons are also plotted as the solid lines. Ev-
ery time a dispersion curve crosses one of these lines,
a Kohn anomaly should appear. In the (100) direction
the di6erence in momentum between the actual anomaly
and the static anomaly may be visible in high-energy
phonons. An experiment looking for Kohn anomalies in
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FIG. 5. Kohn anomalies for phonons with momenta par-
allel to the (100) direction in Lai.sssro. isCu04. Points on
the dashed line correspond to Kohn anomalies when phonon
curves cross them. Solid squares are the low-energy phonons
&om Ref. 14, solid lines are a guide to the eye. The dotted
line indicates the momentum of the static anomaly.

Lay gSro yCu04 was performed at temperatures too high
to see this splitting (k~T ) htu) and probably too high
(21c~T/SIc~vt 0.1) to see anomalies at all.

If the Fermi surface had the form of small isolated
pockets, as seen in some t-J models, there would be
anomalies at momenta connecting the insides and out-
sides of these pockets as well as spanning the pockets
themselves. The large-momenta anomalies connecting
pockets would only occur in certain directions (depend-
ing on the details of the model). Thus the anomalies
seen would difFer substantially for a pocket Fermi surface
versus a "large" Fermi surface.

III. KOHN ANOMALIES IN
SUPERCONDUCTORS

A. hu & 28k

The disappearance of the Kohn anomaly in a supercon-
ductor was suggested by Huraultis as a manifestation of

Fermi-surface smoothing in a superconductor. The quasi-
particle description, due to Bogoliubov, provides the

t convenient method of calculating the effect of the
superconducting electron system on the phonons. e
quasiparticle creation and annihilation operators pt, p re-
late to the electron creation and annihilation operators
ct, c as follows:

= 'llkck ~
—vkck)

t
k,g ——ukc k,g + vkck (3.1)

Here

1
(/1+

2 (
(3.2)

where Ei, = gs& + 6 is the energy added to the system
by creating a quasiparticle of momentum k. The Hamil-
tonian, expressed in quasiparticle operators, is then

H, = ) Ei,pqt, ~,,
k, s

(3.3)

and the ground state contains no quasiparticles.
A significant difference between the superconducting

system and the normal system is the vi, function, which
is an analogue of the Fermi occupation function f(ei, )
in a metal. At zero temperature f(si, ) has a discontinu-
ity at the Fermi momentum, while vi, smoothly falls to
zero over a momentum range (hj(). vi, and f(ei, ) are
shown in Fig. 7. The normal-metal Kohn anomaly arises
&om the discontinuity in the electron occupation, and as
~&~a ~ becomes smoother due to increased temperature,

5the apparent anomaly becomes weaker.
In work primarily devoted to calculating the screening

around a static impurity, Hurault s suggested that the
smoothness of vi, due to superconductivity affected the
Kohn anomaly the same way as the smoothness of f (si, )
at finite temperature affected the normal-metal anomaly.
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FIG. 6. Same as Fig. 5 except for phonons with momenta
parallel to the (110) direction.

FIG. 7. Occupation number f(sa) for a normal metal at 0
K (dashed line) and the function 4II, for a superconductor at
0 K (solid line).



1194 MICHAEL E. FLA I I'E 50

He concluded that a superconductor has no true Kohn
anomaly. The Kohn anomaly would be "smoothed" over
a momentum range of (5/().

This heuristic explanation needs to be reexamined in
the light of the existence of anomalies for higher phonon
frequencies, pointed out in Sec. I. The Fermi-surface
sharpness cannot change as a function of frequency in the
superconductor. Instead, the explanation for the smooth-

I

ing of the Kohn anomaly at small frequencies must be due
to the lack of any electronic excitations in the supercon-
ductor, at small or large momenta [as seen in Figs. 1(a)
and 1(b)j.

Calculating the nonanalytic behavior of an anomaly at
finite frequency is necessary to make this argument con-
crete. The superconducting electronic response function
1s

. f Ei E~ i. —
&—i.&~—i. + «(&g&~ i,)l —1

( )
l. 9 '% g k

2EkEg —k ) Ei, + E~ i, —her —io. ' (3.4)

where the sum is over all k values. The parenthetical fac-
tor, called the coherence factor and denoted C(k, q —k),
reaches its maximum of 1 for k and q —k at the Fermi
surface and b,i,b, ' & real and positive. It behaves simi-

larly to the occupation expression f (ek) —f (tk+@) in the
normal metal's response function, Eq. (2.1), but while
the occupation expression vanishes sharply as a function
of k or q, C decays to zero with a scale given by the in-
verse coherence length. Therefore C is the component of
Ps(q, ur) which simulates the behavior of finite tempera-
ture. For the rest of this section, the gap will be assumed
isotropic. Section V will discuss anisotropic gaps.

The second factor of Eq. (3.4), the energy denomina-
tor, has poles for all excitations of the Bogoliubov quasi-
particle sea. The imaginary part of Ps(q, u) consists of
contributions from each of these poles (the coherence fac-
tor is real).

At zero frequency there are no excitations in the
isotropic superconductor. Since there are no poles of
the energy denominator, Pg(q, ur) is real for all q. The
smoothness of the integrand in Eq. (3.4) with respect to
q for all values of k forces the response function to be
smooth with respect to q.

This smoothness can be estimated in a simple way from
the change of Ps (q, ~) at q = 2k~. In three dimensions
the sum &om Eq. (3.4) can be replaced by the following
integral:

BPssD (q~ ~)
BQ

Pq (2kF, 0)

This increases results from the overall decrease in all the
energy denominators in Eq. (3.4), due to a finite driving
frequency. That change increases the contribution of each
virtual excitation to the response of the superconductor.
The overall response of the superconductor also increases,
so the relative magnitude of the slope does not change
for small but finite frequency:

apsD
2k~ '

P~ (2kp, ~) 21n
~

„

21n
/

2

(kF )

When 6 vanishes, the logarithmically divergent slope of
the normal-metal response reemerges. That response, the
Lindhard function, is Eq. (2.2).

For finite but small frequencies in the superconductor,
the slope magnitude increases to

(3.8)

(3.5)
In a quasi-two-dimensional superconductor a similar

effect occurs. Instead of diverging as in. Eq. (2.5), how-
ever, the slope magnitude reaches a maximum value of

OPED (q, 0)
2

2k~
Ps'D(2k„o)- 2»

~(k~vp )
( 2

2ln
~

Here E = Qe2 + A2 and ¹ is the density of states per
unit energy at the Fermi energy in an otherwise identical
material with b, = 0. The integral in Eq. (3.5) can be
estimated near q = 2k~ to yield a measure of the remnant
of the anomaly:

BPP (q, u))
2 p

2k

(3.9)

t' (k~v~)'
( F) ) 4 I (2~)2 (~)2 (3.10)

In one dimension the response-function magnitude
reaches a maximum of

(3.6) whereas in the normal metal it diverges logarithmically:
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PM (q, (o) =¹ —ln

I4z 1+x 2 —vs
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(3.1i)
These results are quite similar mathematically to Hu-

rault's. The disagreement comes in attributing the lack
of an anomaly to the smooth functional behavior of the
coherence factor. In the next section nonanalyticities will
be discussed in Pg(q, ~) which give rise to Kohn anoma-
lies. The coherence factor will not be changed. It will
be the existence of poles in the s»m in Eq. (3.4) which
changes the results. An appropriate analogy would be to
a semiconductor, where for frequencies less than the en-
ergy gap there could be no anomaly, while for frequencies
greater than the energy gap anomalies could exist. The
next section deals with 2A ( fuu, a much more common
occurrence than Ru & 2L.

Q. 2' & has

When the phonon energy exceeds the excitation gap,
the superconductor recovers an anomaly For. q

2k~ the minimum-energy quasiparticle mode creates two
quasiparticles with momentum q/2 ) k~. Because both
of these quasiparticles are created with a momentum
greater than the Fermi momentum, this mode does not
have an analogy in the normal state. The superconduc-
tor, therefore, has lower energy excitations at high q than
the normal metal, as can be seen in Fig. 1(b).

For a Gxed Ru ) 2Q there are taro regimes of q, sepa-
rated by the solid line in Figs. 1(a) and 1(b). For small q,
ImPs(q, ur) g 0 because the minimum excitation energy
is less than the driving frequency. For large q no excitable
modes of the electron gas exist, so ImPs(q, u) = 0.
Therefore, the imaginary part of Ps(q, ~), and by impli-
cation from the Kramers-Kronig relations the real part as
well, cannot be analytic functions of q. The momentum

q, (~) beyond which no modes of frequency td or less exist
is the anomaly's momentum. A nonaphencal Fermi sur-
face does not afFect the analytic form of the anomalies.
If the Fermi surface is known, the anomalies' momenta
in various directions can be calculated. I will now derive
the form of the nonanalyticity of Ps(q, u) at q = q, (u).

The nonanalyticity in Ps(q, u) at q = q, (u) can be
extracted by expanding the energy denominator in Eq.
(3.4) around the anomaly's momentum:

~1i /2(p' —q.'/4) + e,./2(p' + q' + 2pq cos8 —q /4)
2m q /2/

(3.12)

k~ qq., /2 4 2'2)

dp

~—a 2p q, /2+ q 2pq
(3.13)

. r q. &q q&
sD(q ) = —¹ —c

e~ /2 8vr (2
' 2 )

This expansion is valid when the quantities in paren-
theses are small compared to Aalu/2, which will usually
mean small compared to D. This expansion, therefore, is
only valid for states k and q —k in a region of diameter
(5/g) around the momentum q, /2. Consider the sum in
Eq. (3.4) to be restricted to this region. An evaluation of
that sum, which will follow and will be called Ps(q, ~),
accurately gives ImPs(q, u) and the nonanalytic part of
RePs(q, u) near the nonanalyticity at q = q, .

Since 2E~ /2 ——fuu and the coherence factor is smooth
over a momentum (5/(), the sum can be written as the
following integrals in one, two, and three dimensions:

Pz (q, ~) =¹ — l
eq y24 Sa

P; (q, ~) =-m
q /2

q&0

(3.16)

—is 8(—q) C (2'2) '

(3.17)

( qq. i l (q q-)

E32kz') 'L,
2' 2)

'

q, q q
e& /2 8k»' (2 2 J

dpd cos8

2p —q, /2+ q + 2pq cos8'

(3.i5)

where a is a cutolF of order (
Evaluating the integrals above in the limit q ~ q, and

defining q = q —q, yields the following forms for the
response functions:

, ihu kp qql
e&./2 .8v' q.q. ~2 2)—

, hu ok~ tq ql
8v qq (2 2]

dpd8
X

2p2 —q2/2 + q2 + 2pqcos8
(3.14)

1

= —¹ P
(32k2

rq q&
2'2

(3.18)
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Here 8 is the Heavyside step function and P is an un-

interesting constant. Only P& (2kr, u) has been re-
ported elsewhere ~~ The change in form of the integrals
in Eqs. (3.13)—(3.15) when q passes through q, causes
the nonanalyticities in Eqs. (3.16)—(3.18).

The forms of these nonanalyticities differ from those in
the normal metal. One origin for difFerences is the difer-
ent dispersion of excitations with momentum near q in
the metal versus the superconductor. In a norm ai metal
for finite frequency, the anomaly's momentum connects
electronic states with difFerent velocities. One electronic
state rests on the Fermi surface and one does not. In
th uperconductor the two quasiparticle states have t eesu
same velocity, causing an amplification of the densi y o
states for Ei, + Eu i, = hll and a stronger nonanalyt-
icity. Another source of difference is the prefactor in
Eqs. (3.16)—(3.18),

(3.19)
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FIG. 9. Pair-production threshold in the superconductor
(dotted line) in the (100) direction is shown on the same graph
as the threshold in the normal metal (dashed line, previously
shown in Fig. 5). The gap magnitude is taken to be 7.5 meV.
The four-pointed star indicates the momentum and energy of
the superconductor's anomaly. The Sve-pointed star indicates
the momentum and energy of the normal-metal anomaly.

which is due to the square-root divergence near the Fermi surface in the superconducting density of states. T s
also enhances the anomaly.
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For large phonon frequencies, the anomaly's momen-
tnm exceeds twice the Fermi momentum by we@ over
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PIG. 8. Response function for a model of La~.85Sr0.~5Cu04
with the correct curvature at the points where a vector in the
(100) direction spans the Fermi surface. The Fernu velocity
was taken from Ref. 13. The &equency is Sxed at 18 meV.
The dashed line is for the normal metal and the solid line is for
the superconductor. The nonanalyticities in these curves cor-
respond to momenta where a phonon at this &equency would
cross s pair-production threshold surface shown in Fig. 9. (s)
Real part. (b) Imaginary part.
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FIG. 10. Phonon dispersion curve near 18 meV in the nor-
mal snd superconducting state of Lsi.ssSrp. isCu04. (s) Fre-
quency. Dashed line: normal state; solid line: superconduct-
ing state. (b) Relative lifetime.
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(5/(). In this case, the small value of the coherence fac-
tor C(~~, ~~) renders the anomaly undetectable. A rem-
nant of the normal-metal Kohn anomaly may still exist.
Since all relevant excitations for this remnant are near
the dashed line of Figs. 1(a) and l(b), this situation is
analogous to finite temperature in a normal metal. In the
superconductor, phonons with momenta on both sides of
the dashed line have real excitations, but the number of
excitations decreases markedly, over a momentum range
(5/$), upon crossing that dashed line. This would appear
like the anomaly in the normal metal with a temperature
«T'eeectiv. - &/ka

IV. EXPERIMENTAL IMPLICATIONS

The actual size of the phonon anomalies can be esti-
mated by including the response function in the phonon
self-energy in the standard ways~ and then expanding
about ur(2k') = ur:

ps(q, ~ ) ImPs(q, ur )
ImPM(2kF, (aJ )

(4.2)

In comparing anomaly magnitudes I will assume that A

in the superconductor equals the normal-metal value.
For Laj 85Sro q5Cu04, the average value of A over the

whole Brillouin zone has been calculated to be 1.37.
The value of N' has been calculated to be 0.3/eV. Fig-
ure 8 shows the real and imaginary parts of the response
function for the one-band model of La1 ssSro1sCu04
used in Sec. II. The anomalies evident in Fig. 8 are
due to crossing the pair threshold surfaces (shown for

LatssSrp]sCu04 in Fig. 9). Figure 10 compares a
phonon dispersion curve in the normal and supercon-
ducting state of Lat ssSro 1sCu04. Clearly the anomaly
should be larger in superconducting La1ssSro tsCu04
than in metallic La1 ss Sro 1sCu04. To show how the two-
dimensional anomalies are much larger than the three-
dimensional anomalies, Fig. 11 shows the metallic and su-

perconducting response function for a three-dimensional
spherical Fermi sea.

b(u(q) A(u N' Ps(q, (u ) —PM(2kF, ur )
2 N'

V. GAP ANISOTROPV

where A is the dirnensionless electron-phonon coupling
constant. The linewidth is simpler to express:

0.8

The primary effect of gap anisotropy is to make the
quasiparticle pair threshold at q 2k' different in dif-
ferent directions. The response functions Eqs. (3.16)—
(3.18) can still be used if A~ /z is substituted for 6.
An anisotropic gap also influences the Kohn anomalies
through the coherence factor,

3
fq. q. l

2 j 0 @So/2 )

0
0.9 1

q/2kF

(b)

which is independent of the phase of the gap for an
inversion-symmetric Fermi surface and gap. This is
markedly different Rom the anomalies where q ( 2k~,
where gap magnitude and phase anisotropyzs 21 has a
profound effect.

When the momentum spanning the Fermi surface con-
nects two nodes in the gap the anomaly is weaker. This
situation has been analyzed numerically by Marsiglio. ~

3

q/2k,

FIG. 11. Response function for a superconductor (solid
line) and normal metal (dashed line) with a three-dimensional
Fermi surface. 2u/k~e~ = 0.1 and bc'/2b, = 1.25. (a) Real
part. (b) Imaginary part

VI. CONCLUSION

The vanishing of the Kohn anomaly for hen ( 2A re-
sults &om the absence of electronic excitations at low en-

ergy in the superconductor rather than &om a smoothing
of the Fermi surface. The rapid decrease of the coherence
factor of the minimum-energy excitation for bc' && 2A
also eliminates the Kohn anomaly. A new regime ex-
ists when 2A & her; here superconductivity enhances
the Kohn anomaly. An appropriate material to examine
when looking for this effect would have phonon branches
both above and below the excitation gap at q 2k~,
as well as a quasi-two-dimensional electronic structure.
High-T superconductors like Laq 85Sro q5Cu04 are such
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materials. Possible new eKects in metallic Kohn anoma-
lies have also been discussed.

Since an extremely sensitive probe of surface phonons
exists in thermal-energy-inelastic-helium scattering, I
remark that similar arguments to those presented in this
paper may apply to surface phonons.
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