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Quantum-mechanical evolution of real-space transfer

R. Brunetti and C. 3acoboni
Dipartimento di Fisica, Universita di Modena, Via Campi 219/A, I $11-00 Modena, Italy

P.J. Price
IBM Thomas J. S'atson Research Center, Yorktomn Heights, Nexv York i0598

(Received 28 April 1994)

A rigorous quantum-mechanical treatment of the dynamical evolution of electronic real-space
transfer from a quantum well is presented, based on the density-matrix theory. A continuous electron
dynamical evolution (not an abrupt collision) corresponding to a phonon absorption is analyzed here.
Prom the evaluation of the lowest-order correction to the unperturbed density matrix, the spatial
and momentum distributions can be obtained. Results will also be shown for the Wigner and Husimi

functions, and it will be discussed how the present results can be used for a semiclassical modeling

of real-space transfer in a Monte Carlo simulation of this effect.

I. INTRODUCTION

When electrons of a two-dimensional (2D) gas confined
in a quantum well (QW) are heated up by an applied
electric field, they can gain enough energy to overcome
the confining potential barrier and leave the well. This
phenomenon, known as real-space transfer (RST), is very
important for its relevant efFects on the conduction prop-
erties of many quasi 2D devices. ' Usually RST takes
place at the actual bias conditions used both in Si-based
and in GaAs-based devices. From the theoretical point
of view, however, it is very hard to rigorously include this
quantum efFect in a semiclassical Monte Carlo (MC) sim-
ulation. The problem is not trivial since it involves basic
physical concepts and the fundamental approximations in
the semiclassical description of electron transport. In tra-
ditional semiclassical transport theory, in fact, the Fermi
golden rule is used to obtain a transition probability to
a final state with a well-defined energy. An important
question then arises as to where an electron with a given
final energy and momentum is located in space soon after
a collision that releases the carrier by giving it a normal-
direction energy higher than the barrier height.

In the conventional quantum framework the above
question has little significance. The final state is an ex-
tended state, and the electron can be located anywhere
within the sample according to the amplitudes of the
wave function within or outside the well, even though
it seems physically intuitive that shortly after the tran-
sition the electron should still be around the well.

A quantum theory of this process is developed here
with the density-matrix formalism, and quantum func-
tions such as the Wigner function (WF) and the Husimi
function (HF) are also evaluated within the same theo-
retical framework. Although rigorously defined in a full

quantum theory of transport, such functions contain the
kind of information that can be appropriately transferred
to a semiclassical approximation.

A continuous dynamical evolution (not an abrupt col-
lision) associated with a phonon interaction is described

here as an important example of the application of the
method. The initial condition of the system at time t
consists of an electron in a confined state; as time in-

creases, owing to the phonon interaction, the electron
can occupy states above the confining potential with an
energy spread that decreases with time, according to the
uncertainty relation. At very short times the superposi-
tion of states yields a space probability density concen-
trated around the well and a very broad distribution in
k space around the energy-conserving value. At longer
times only states with energies closer to the conservation
energy are appreciably occupied, and the electron can be
located further away &om the well.

This subject is developed in the following sections as
follows. Section II presents a summary of the theoretical
approach. In Sec. III, numerical results will be shown for
the position and momentum distributions as functions of
time, for physical situations of interest in practical ap-
plications, obtained Rom the density matrix. Two cases
particularly important for their broad range of applica-
tions are considered here: electrons moving in a "model"
Si well and in a GaAs-Al Gaq As-GaAs well. Further-
more, results for Wigner and Husimi distributions will be
also shown in Sec. IV. Section V summarizes the main
results of the paper.

II. PHYSICAL SYSTEM AND THEORETICAL
APPROACH

We start, in our theoretical development, with the
density-matrix formalism, Rom the evolution equation
of a state l4'(t)) of our physical system. If the Hamilto-
nian operator H can be written as the sum of an unper-
turbed term H and a perturbation 8', then we have, in
the Schrodinger picture
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where U (t, t ) is the unperturbed evolution operator,
and 'R' = H'/ih. In our case, H describes the electrons
in the well profile and the &ee phonons, and H' is due to
electron-phonon interaction (H' = H + H, , H
Ht, where "a" and "e" refer to absorption and emission,
respectively) .

The first-order correction to the unperturbed state is
then given by

t

Ihe(t)) = U (t, t')'8'U, (t', t )IC(t )) dt'.
to

We want to study a physical process where a phonon has
been absorbed, so that we need to write the correction to
the density matrix which describes the phonon bath in a
diagonal state with a phonon of energy Ruq missing with
respect to the initial state. Assuming only one phonon
mode (q, uq) with occupation number nq, we will use in
the following the usual expression for the optical-phonon
interaction Hamiltonian4 relative to the mode q

H' = i'(q)(bqe' ' —b e ' ') = H + H, (3)

(F is a real function that depends on the electron-phonon
interaction mechanism) .

For the purpose of this paper, concerned with the lo-
cation of an electron after a real-space transition induced

by a phonon absorption, we are interested in the lowest
contribution to the density matrix on a time scale of the
order of the electron-phonon collision time (= 100 fs).
This correction is given by

&p(t) = l&~(t))(&q'(t) I

t
U (t, t, )R'U (t, to)IC(t ))dt,

t
x (%(t )IUt(t„t )'Rt Ut(t, t, ) dt2 .

to
(4)

Second-order terms due to second-order corrections of the
state vector correspond to virtual processes (scattering
out in semiclassical terms), 4 and they are of no interest
in the present treatment.

In our calculations we assume that at the beginning
of the interaction the electron is in its ground state, but
the theory can be easily extended to the case of an initial
excited state.

Then let IoKnq) be the initial state of the whole sys-
tem, where K indicates the electron 2D momentum par-
allel to the well plane and ale the corresponding energy,
and o the ground state of the particle in the QW with
energy hu . Finally, after some substitutions in Eq. (4)
we obtain, for an absorption process,

t t
6 p(t) = — dt's dt2U~(t, tq)'R~U~(tq, t~)loKnq)(oKnqIU~(t»tq)'8 ~U~(t2, t)

to to

t t
F2(q) dt dt e i(w~+u~+—w~t )(t& t&) U' (t t—)~neigr

to to

xloKnq —1)(oKnq —ll~nqe '~'U (t2, t) .

By including the identity operator written as the sum of the projection operators over the eigenstates InK, nq) of
the system, we have

t t
Qp(t~ —F ~ ~ + + dt dt e (~~+~~+~~r )(t& t&) 4(~~+~K'+~rar —1)(t—ti)q)n 1 28

nm g', & o to

x InK', nq —1)M„(q)(K'Ie'~' IK)M~( —q)(Kle '~ IK")(mK", nq —ll .

In the above equation, Q is the initial phonon wave vec-
tor along the plane of the well, the labels n and m are
for the excited itinerant eigenstates including the well po-
tential, and the labels K and K' are for the continuum
of dynamical states parallel to the well planes. Further-
more, M„(q) = (nle'q*'Io) are the matrix elements of the
phonon-field factor exp(iq, z) between the initial electron
state and the excited itinerant electron states n (the po-
tential well has been assumed to be in the z direction).
In the sums over n and m present in Eq. (6) we neglected
the contribution of the (few) excited bound states of the
well, which is negligible compared to the other contribu-
tions coming &om itinerant states.

Furthermore, we have

As it regards the phonon part, taking the trace over
phonon states

) ln')n' (n',
I

Inq

we obtain the Planck function (nq), and evaluating the
two time integrals, we finally obtain the contribution to
the density matrix due to a phonon absorption at time t

bp(t) = F (q)(nq) ) M (q)M ( q)'7(id„, t)—
nTn

x7*(&u, t)lnK+ Q)(mK+ Ql, (9)

(Kl * IK") = bid rt- iq . where
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—i(~g —~„)(t—t )—itd„(t t—)

(~s —~-) (10)

In the above equation M& = p(to +od~+(d —~~+&)
is the residual normal-direction energy of the electron
under energy-conservation conditions.

Since the dynamics in the well plane are separated from
that normal to the well, from the above expression the
probability density f (z) of electron position [or momen-
tum P(k, )j normal to the well, associated with Ap in

Eq. (9), can be obtained by taking z (or k, ) diagonal
elements

f(z)= (zl&plz)

= +'(q)(n. ) ) M-(q)M-(-q)7(~- t)&'(~- t)&-(z)4' (z)

P(k, )= (k, i6pik, )

F (q)(nq) ) M„(q)M ( q)7 ((—d„, t)7'(od, t)(k, ~n)(m~k, )
nm

F (q)( q) )zzM (q)M (
—q)T(tz, t)T'(tz, 4) f dz ttz (z)@ (z) f dz' rl/ (z')z)zz (z')

nm

F ( )( q)z)zzM„(q)T(~, t) f z d4t(tzz )t(tzt) (12)

The results in Eqs. (11) and (12) are thus the modulus
squared of the wave function of the electron system in the
z and k, representation, respectively.

The Wigner function can also be obtained from the
knowledge of the density matrix. For a pure state the
WF is defined as the Weyl-Wigner transformation of the
density-matrix operator Ap(t) = ~A@(t))(b,@(t)~

f~(qq) =, „f, dq z'
(4 —zqlq')(Vlq+ iq—) (»)

and in the wave-function representation

(q q) = f dq z'" @*(q+ lq)~'(4 —lq) (44)

An intuitive physical meaning of the WF is contained
in its definition: it expresses the p component of the
amount of correlation of the wave function around the

q point. Since the WF contains phase information &om
the wave function, it can also assume negative values
and cannot be interpreted as a "quantum distribution
function. " Furthermore, it can be diferent ft. om zero at
q points where the wave function itself is zero. Never-
theless, the WF becomes a valid probability function if
integrated over q or over p, and it can be used to evaluate
averages of observable operators.

There are other methods that allow extraction of "dis-
tribution functions" with special properties &om the den-
sity operator, by applying transformations difFerent fI.om
the Weyl-Wigner transform. One important example of
a positive-definite function is the Husimi function. s The
HF can also be obtained from the WF as

I (& 'f )
fH(q, p) = — ~q' dp'e

mh
I 2~(P P )

xe 4' fv( (q', p') .

Here n is a smearing parameter. It can be proven that
the HF is positive definite, it is often used in the de-
scription of harmonic oscillators and, hence, modes of
the electromagnetic field.

For further development of the calculation we need to
explicitly make a choice for the form of the potential well

along the z direction and for the electronic localized and
extended states relative to this well.

III. RESULTS FOR THE DENSITY MATRIX

Numerical results will be presented for a model square
well of width L and depth V. The electron at t = 0 is
supposed to be in the ground state of the well and, for
t ) 0, it interacts with a phonon mode of energy ~~
and wave vector g. Suitable values have been chosen for
physical quantities to represent the physical cases of Si-
based QW and GaAs-Al Ga) As-GaAs QW. The list
of these parameters is given in Table I.

In order to evaluate f(z) = Ap„Rom Eq. (11) in the
previous section we must specify the form of the com-
plete set of wave functions g (z) describing the electron
1D states in the well. For this calculation the extended
itinerant states with energy c ) V have been chosen as

TABLE I. List of parameters used in the calculations of
RST in Si structure (upper line) and GaAs structure (lower
line). Here L is the well length, V the well depth (V=o at
the bottom of the well); m' is the electron efFective mass, Ttzh

is the phonon equivalent temperature, q is the z component
of the phonon wave vector, and ~y the energy of the final
state of the electron.

Structure L (A) Vo (eV) m' TF), (K) q, (qn } hey (eV)
Si 50 1 0.295 500 2.9 x 10 1.1

GaAs 30 0.55 0.067 410 1.0 x 10 0.6
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even and odd functions. Substitutin for the label n
functions.

g r he label n a more appropriate continuous label k„we used the following

Bsin (k'z + P(+)),—a/2 & z & L—/2
@&+ (z) =

&
A(+) cos (k,z), L—/2 & z & L/2

B—sin (k'z —P(+)), a/2 ) z ) L/2,

Bsin(k'z+ P( &), —a/2 & z & L/2—

(z) = & A( &sin(k, z), L/2—& z & L/2

, Bsin (k'z —P( &), a/2 ) z ) L/2 .
(17)

Here k' and k, are the wave vectors of the stationary
state outside and inside the well, respectively, and the
constants A, B, and P are fixed by imposing the usual
condition of continuity of the function and its derivative
a z = kL/2. The normalization condition has been
imposed within a box of length a )) L (1000A in the
calculation) .

The wave function of the ground state must be sym-
metric and without nodes. It can be written as

(Aie" ', —a/2 & z & L/2—
g~(z) = A~cosk z, L/2 & z—& L/2

Aie "", a/2 ) z )L/2,

where z and k are the wave vectors outside and inside
the well, respectively.

Figures 1 and 2 show the probability f(z) of finding
the electron around the well after the onset of the in-
teraction with an optical phonon as a function of the z
coordinate, for the Si structure and GaAs structure, re-
spectively. The observation time is t = 100 fs after the
initial condition.

The probability of 6nding the particle outside the well
I

I

is larger for z ) 0 because of the orientation of the
phonon mode.

Figure 3 shows the same quantity for increasing times
up to 200 fs for the GaAs case. It is seen that th b-
abilita i ty of 6nding the particle outside the well increases
with time. Furthermore, the two leading edges of the
function f(z) for z ) 0 and z & 0 correspond to the
distances traveled at the assumed time t, forwards and
backwards along the z axis by a classical &ee particle
with a normal energy component corresponding to the
energy-conserving value.

With increasing time, the distribution f(z) tends to
fill the space from the well to the position of its leading
edge. This corresponds to the use of the second-order
perturbation by the electron-phonon interaction H' in
E . ~6~ tq. ( ), the lowest applicable order, which means that
the itinerant states are filled from a state (the ground
state in the well) which efFectively remains occupied.

For the evaluation of P(k, ) in Eq. (12) the states
Qi, , (z) not confined inside the well have been chosen
as the linear combinations of the previous functions [see
Eq. (16) and Eq. (17)] which behave as traveling waves
inside the well

—a/2 & z & L/2—
1

s (z)= A Qs+ (z) + iA+ Qi, (z)

B A( ) sin (k'z + Q(+)) + tA +»n (k'z + P )],
& A+ A e'"*', I/2&z&—L/2+,B[—A( ) sin(k'z+ P(+)) +t'A(+) sin(k'z+ Q( )], n/2» )L/2,

position (in)

FIG. 1.. Probability of 6nding the electron outside the well
as a function of the z coordinate at t = 100 fs (left vertical
axis, continuous line) for the Si structure. The shape of the
potential well (right vertical axis, dotted line) is also shown.

P x IQ

position (rn)

FIG. 2. Probability of 6nding the electron outside the well
as a function of the z coordinate at t = 100 fs (left verti-
cal axis, continuous line) for the GaAs structure. The shape
of the potential well (right vertical axis, dotted line) is also
shown.
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, (z)= [A~ iver/„+ (z) —iAi+i@„{z)]
gA~+» + Al-»

—a/2 & z & L—/2B Ai i siii(k'z+ pi+i) —iAi+i sin(k'z+ yi i)],
A+&A& &e '"*', L—/2 & z & I/2+,B[—Ai i sin(k'z + rtri+i) —iA~+i sin(k'z+ Pi i)], a/2 ) z ) L/2 .

(20)

Figures 4 and 5 show, at the same times as in Fig. 3, the
probability P(k, ), as a function of k„of finding the elec-
tron in the final states of Eq. (19) and Eq. (20) for the
Si case and the GaAs case, respectively. It is seen that
the distribution narrows at larger times because of the
approaching of the energy-conservation condition. Corre-
spondingly, the space distribution is broadened, as shown
in Fig. 3, according to the uncertainty principle.

It is interesting to notice that P(k, ) exibits a maximum
around a certain value of k, (which can be positive or
negative according to the direction of the phonon wave
vector), and a much smaller maximum at the opposite
k. For the case of Si, this secondary maximum is hardly
observed, while it is well shown for the case of GaAs.
This fact can be explained if we consider the following.
Momentum is not conserved for our system, owing to
the presence of the well potential. However, the matrix
elements M evaluated for the basis functions in Eq. (19)
and Eq. (20)

Furthermore, the time factors present in P(k, ) (ex-
pressing the "quasi" energy conservation at short times)
are oscillatory functions of k, strongly peaked at the
(symmetrical) k values associated with energy conserva-
tion for these physical conditions, as shown in Fig. 6
for the case of Si. This fact favors transitions to two
well-de6ned degenerate plane-wave states inside the well
traveling in opposite directions.

The net effect of the two factors is a bump at k, values
where both terms are signi6cantly diAerent from zero,
and, correspondingly, one of the two energy-conserving
states (the one with k, parallel to the phonon wave vector
q, ) is much more favored compared to the opposite one.
For this reason, in Figs. 4 and 5, P(k, ) is diferent from
zero mainly around a positive k, .

IV. RESULTS FOR THE WIGNER AND HUSIMI
FUNCTIONS

M oc dz cos qz +i sin qz

X[A'i ly„+ (z) + Ai+ii/'/„(z)], (21)

are found to have their maximum values, as would be ex-
pected, around the k which satis6es the "classical" con-
servation law. Remembering that the momentum distri-
bution for the ground state of the well is centered around
k = 0, we have that the maximum of M should be around
k q, . This is shown in Fig. 6. Because of this term,
transitions close to momentum conservation would be fa-
vor ed.

Figures 7 and 8 show the WF at a time t = 100 fs, for
the Si and GaAs structure, respectively, obtained &om
the density matrix contribution in Eq. (9), as a function
of the position and momentum orthogonal to the well. In
contrast to Figs. 4 and 5, where k labels the eigenfunc-
tions of the well potential, here owing to the de6nition of
the WF in Eq. (13) k = p/h represents the eigenvalue of
the momentum operator.

It is interesting to notice that the momentum proba-
bility distribution, as obtained &om the WF, shows two
peaks, associated with the bumps of the 3D function
shown in Figs. 7 and 8, at the positive and negative
symmetrical values of the momentum corresponding to
energy conservation. The peak at the negative k is ab-

200 fS 'r

200 fs
1

100 fs

I

r0. ;

) x]p ~ px]p

20 fs

6 xyp o. ]

4 x10 8 BxgQ

20 fs

1x]0 ,
& x]Q

position (rn) wave veet. nr (1/rrr)

FIG. 3. Probability of 6nding the electron outside the well

as a function of the z coordinate at difFerent times for the Si
structure.

FIG. 4. Probability of 6nding the electron outside the well

as a function of the z coordinate at difFerent times for the
GaAs structure.
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FIG. 5. Probability of finding the electron in a 6nal k state

with the k, value inside the well (see text) at different times
for the GaAs structure.
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FIG. 8. Wigner distribution as a function of position and
momentum orthogonal to the well at t = 100 fs after the
beginning of a quantum phonon-absorption process for the
GaAs structure (same case as in Fig. 2).

time evolution factor

Silicon
i=100 fs

0.
-4x 1O'9 4, x10'

+'ove vector (1/'~) positior
rn)

wave vector inside the well (1/rn)
FIG. 6. Squared modulus of the matrix elements M eval-

uated for the basis functions given in Eq. (19) and Eq. (20)
(continuous line) and of the time evolution factor 7 (&u„, t)
(dotted line) in Eq. (12) as functions of the wave vector k,
inside the well (see text). Here we considered t = 100 fs and

= 2.9 x 109

sent in the P(Ic,) plot, because in this last case k, rep-
resents the particle momentum only inside the well (see
discussion in the previous section). The negative peak,
as obtained from the WF, is due to a quantum reBection
at the barrier edge. Furthermore, strong oscillations in
the WF are observed in the spatial region of the well due
to the coherence of the electron states leaving the well in
the two opposite directions.

Figure 9 shows as an example, the HF for the same
cases as in Fig. 8. The parameter a has been chosen as
(9 nm)'.

&«e vector (]/m) positio~ (~)

-27
1x10 ——
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2x 10
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0
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3
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2X10' ~

0
(J

1 x18

-26
5x10—

—1 xl0

2x10
ttitr 1x10

(&) vector (1/ro)
gg&B

c
0
U

3

I
9 3

2x10

FIG. 7. Wigner distribution as a function of position and
momentum orthogonal to the well at t = 100 fs after the
beginning of a quantum phonon-absorption process for the Si
structure (same case as in Fig. 1).

FIG. 9. Husimi distribution as a function of position and
momentum orthogonal to the well at t = 100 fs after the
beginning of a quantum phonon-absorption process for the
GaAs structure obtained from the Wigner function shown in
Fig. 8.
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As discussed above, the HF is positive definite, and it
can be used in a traditional semiclassical MC simulation
as a realistic model for a "joint" position and momen-
tum probability distribution, if RST must be taken into
account in a semiclassical scheme. In this connection it
can be observed that the criterion we have adopted for
the choice of the smoothing parameter o. is that the HF
must reproduce the gross shape of the WF without the
oscillations coming from the coherence properties of the
quantum wave function.

turn distributions of an electron which escapes a localized
state in a quantuxn well as an eH'ect of real-space trans-
fer assisted by the absorption of an optical phonon. The
Wigner and Husimi distributions have also been evalu-
ated. The Husimi distribution can be a good semiclas-
sical joint probability distribution for position and mo-
mentum in order to include real-space transfer in a tra-
ditional Monte Carlo simulation. Numerical results have
been obtained for Si-based and GaAs-based structures.
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