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Calculation of Raman scattering by acoustic phonons in superlattices
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We report on the calculation of low-frequency Raman scattering by longitudinal acoustic phonons
in superlattices. The phonons are treated as elastic vraves propagating in a continuum and their mode

patterns are calculated by a transfer-matrix method. The electromagnetic propagation is calculated
neglecting re6ections and re&actions at the interfaces, through the use of the same index of refraction
for both constituent materials. The use of a complex refraction index allows for absorption efFects to
be included. The suitability of the numerical calculation for modeling superlattices is demonstrated.

I. INTRODUCTION

Raman scattering by folded phonons in semiconduc-
tor superlattices (SL's) has been successfully analyzed
with the help of dispersion relations. Even though
peak positions fit very well in the dispersion curves a
detailed description of the spectra is still missing. Apart
&om the folded phonon studies, additional features aris-

ing from resonance processes, 2 and secondary oscillations
observed in the spectra, require quantitative interpre-
tation. Several theoretical approaches propose analyti-
cal expressions for the relative intensities of the acous-
tic modes. s Among those treatments, one of the most
complete includes, besides the elastic wave propagation,
photoelastic and electromagnetic modulation. However,
the experimental profiles, and, in particular, the relative
intensities of the lines have not been reproduced. Actu-
ally, the spectra cannot be described in detail because of
the oversimplifying assumption of infinite superlattice to
account for the periodicity of the wave functions in the
SL. The need for modeling a finite structure was pointed
out previously for several different microstructures. ' '

The model employed by the authors ' was based on a
linear chain dynamic. Their calculation consists of diag-
onalization of the dynamical matrix of high dimension-
ality, equal to the total number of atomic layers in the
structure. This includes the SL, the capping layer and
a finite number of atomic layers of the substrate, result-
ing in a long computational procedure. Besides that,
comparison with experiment required convolution with
a Lorentzian line shape with a broadening factor, I', as
an adjustable parameter, which is just phenomenologi-
cal. An alternative approach was accomplished through
the calculation of elastic response of a series of multilay-
ered finite-size structures in terms of the elastic proper-
ties of their constituents. The wave equation in each
layer was solved with appropriate boundary conditions
at each interface by using the matrix-transfer method. A
most interesting aspect explored in Refs. 11 is the possi-
bility of selectively transmitting or reBecting phonons in

some frequency range leading to the perspective of appli-
cation to phonon devices. The analytical expression for
the transmission rate thus derived was not exceedingly
complicated because the treatment was restricted to just
the elastic propagation through simple microstructures.
If a xnore complex microstructure is to be handled, or
if the constituent xnaterials have lower syxnxnetry, then
numerical xnethods are required.

Here, we propose a numerical calculation to improve
the solution of light scattering by longitudinal acoustic
phonons in finite superlattices. The phonons are treated
as elastic waves of a continuum and their propagation is
defined by the transfer-matrix method. Our method
takes into account the absorption of the light through the
imaginary part of the re&action index. This is very ixn-

portant in order to describe the line shapes not only for
highly absorbing materials but also for lesser absorbing
ones, and even far &om the Bragg light reQection condi-
tion, in contrast to previous conclusions. The acousto-
optic parameters of the materials are taken as &ee paraxn-
eters to fit the relative intensities of the Raman lines. The
model accounts for all features of the spectra, including
weak oscillations related to the finite number of periods.
The output gives values for physical constants that can
be discussed in the light of well known values for bulk
materials.

II. GENERAL CONSIDERATIONS

We consider at first an homogeneous xnedium under
an incident wave of the type E = Eoe'"'"", where k;„ is
the wave vector of the light. In a backscattering geome-
try, only the longitudinal acoustic phonons propagating
along the z axis contribute to the scattering, and all the
information of the Brillouin spectrum is contained in the
following expression:

I ((u~) oc e 'v' ' ' p „„(z)dz, ,Ou, (p, z)
V Bz
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where q = k „t —k;„—2k;„= —2nko, n is the re-
fraction index, and ko is related to the light wavelength
in vacuum Ao by ko ——

& . P is the photoelastic ten-
0

sor, and u(p, z) are the normalized displacements from
the equilibrium positions of the medium at the position
z, under the normal mode of vibration of index p and
energy w„. The integration is performed on the scat-
tering volume V. Equation (1) is a low-frequency, high
temperature approximation, when p(w)N(m, T)/m oc T
since the density of states p(u) oc u and the Bose factor
%((u, T) oc kT/hu

A SL, consisting of alternating layers of two difFerent
cubic crystal with [001] direction along the SL axis z, is a
more complicated system. Here, the electric field E is no
longer a sinusoidal wave because several re&actions and
reflections take place at the interfaces between layers.

Considering a backscattering geometry along the z di-
rection from a SL with perfectly sharp interfaces, the
following relation for the electromagnetic Geld inside the
superlattice holds:
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FIG. 1. Normalized electric field amplitudes for a
Si/Ges 44Sis, ss superlattice with N = 20 periods (upper
curves), obtained with the transfer-matrix method (oscilla-
tory trace) and using the effective refraction index (exponen-
tial decay). The lowest trace shows the last calculation for
the much absorbing Ge5Si5 superlattice with N = 145.

(2)

where H(z, t) = ——'
The boundary condition is that of a traveling wave

in the substrate. The wave vectors of the plane waves
are taken as complex numbers. This is a consequence of
defining the re&action index as a complex quantity:

n, = rl~+ilc, , (j = 1,2),

in order to allow for absorption effects to be included
directly in our calculation. A simplification is often used
in which an effective refraction index, defined by

(n) = (n~dq + n2d2) /dj ', (4)

is assumed for both constituent materials. Here, dq and
d2 denote the thickness of the layers, and d the SL pe-
riod. Let us note that an identical re&active index for
the two media is equivalent to the absence of reflections
of electromagnetic waves at the interfaces. This assump-
tion was shown to be valid in absence of any absorption
effect by the authors of Refs. 6 and 8 except for the Bragg
conditions for the reflection of light, that corresponds to
q/q, = 2, 4, 6, . . ., where q, = 7r/d is the minizone
boundary wave vector.

In order to compare the results of the calculation using
the transfer-matrix method with this approximation, we

plot in Fig. 1 the electric Field amplitudes vs the pene-
tration depth, D. The upper curves in this figure show
the comparison for a superlattice of Si/Gep 44Sip ss with
twenty repetitions of dq ——26.5 nm and d2 ——5.0 nm. It
can be seen in this figure that the transfer-matrix method

results yield a profile of small oscillations which does
not differ appreciably from the exponential decay curve.
Hence the approximation of effective refraction index in-
troduces negligible differences compared with the results
of applying (2). Besides, it is much simpler than (2) in
the calculation of the scattering intensity.

However, it is crucial in the latter case to take into
proper account the absorption in Eq. (1) through the
imaginary part of the refraction index. The effect of the
absorption is illustrated in Fig. 1, lower curve. Here, a
Si5Ge5 superlattice with 145 periods was chosen as an
example. The choice was based on the fact that the ex-
tinction coefBcient is about five times bigger in this sam-
ple than in the Si/Gep 44Sip ss superlattice. Besides, this
is the superlattice used further on in this description to
compare final results with experiment. It is worthwhile
mentioning that the presence of absorption allows for the
linewidth of the Raman peaks to be properly accounted
for.

III. ELASTIC WAVES PROPAGATION

The calculation by a transfer-matrix method of the vi-

brational modes is very similar to the one described above
for the electromagnetic Fields. In fact, replacing E and
H, which propagate without discontinuity along the lay-
ers, with the phonon amplitudes u(z) and the stresses
C~du/dz, we can write the transfer matrix for elastic
waves:
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t' u(z+az) )
E, &~ (g", ) I.+n. )

cos(kjEz)—,-C, k, . (k, ~.)
u(z)x

( |-".(g)l. )
'

sin(k, .b,z)/(C, k,.) l
cos(k, Ez)

(0
(c)

where k = is the wave vector of the longitudinal
'Q~ L

mode of &equency ~ in the medium with sound velocity
v~1., j = 1,2.

Here we take stress &ee boundary conditions at the air-
superlattice (or air-capping layer) interface, which pro-
duce stationary wave solutions. The amplitudes of the
modes are normalized to the amplitude in the substrate.
This is equivalent to assuming the substrate infinite, be-
cause we consider that the density of states of the SL
is a small perturbation of the total density of states of
SL plus substrate. The normalized mode patterns u(p, z)
and the associated strains e„= "'&"" are calculated
as functions of the frequency with as small a step as nec-
essary. The acousto-optic parameter P(z), whose main
eKect is to determine the relative intensities of the modes
in the spectra, has yet to be discussed. All other quanti-
ties appearing in (1) can be calculated if the parameters
of the materials, like re&action indexes, layer thickness,
elastic constants, and sound velocities are known. These
quantities are known with some uncertainty and we are
faced with the inverse problem: to determine the values
of these quantities &om the Raman spectra. Actually,
the parameters of the materials can be determined inde-
pendently since they are related to diH'erent aspects of
the line shapes of the spectra. To pursue this idea, it is
necessary to analyze in some detail the role of the three
terms appearing in the integral of (1). The integration in
(1) is taken as a sum in a finite size SL with the effective
range determined by the decay in electric field due to the
absorption of light. The contribution of the different vi-
brational modes will be determined by their axnplitudes
in the scattering volume. This can be taken into account
by considering a density of state projected on a definite
range of z near to the surface, the projected density of
states (PDOS). The PDOS can be measured by the mean
square amplitude of the modes in the region of interest.
We studied the problem in detail for soxne systems, and
found that the PDOS is strongly sensitive to the struc-
ture of the SL. To illustrate this point we selected three
examples: a thin layer Ge5Sis SL with N = 145, and
two thick-layer Si/Geo 44Sio ss superlattices of identical
structures, except for the number of periods, which are
N = 20 and 200, respectively. Figure 2(a) [Fig. 2(e)]
shows the dispersion relation for the thin layer SL (thick
layer SL). The dispersion curves for the thick layer SL's
consist of several folded branches. In contrast, the thin
layer SL dispersion curve in the same &equency range is
a single branch since the first folding is expected to occur
at about 70 cm . The traces 2(b), 2(c), and 2(d) are the
PDOS, projected on the SL, corresponding to the Ge5Si5
superlattice and to the Si/Geo 44Sio ss superlattice with

0
0
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FIG. 2. Dispersion relation curves for (s) s GeqSis super-
lattice with N ~ oo periods; (e) s Si/Geo. 44Sio.ss superlattice
with N -+ oo; projected density of states for (b) same as (a)
but N = 145; (c) same ss (e) but N = 20 periods; and (d)
same as (e) but for N = 200 periods.

N = 20 and 200 periods, respectively. The plot 2(b) is
a highly structured function of ~, showing several small
oscillations which are related to the number of periods
of the SL. Actually, due to the finite-size efFects, there
are 145 oscillations per branch in the dispersion relation.
In the intermediate curve, Fig. 2(c), the number of small
oscillations per branch is 20. Finally, at the lower curve,
Fig. 2(d), corresponding to N = 200, the 200 oscilla-
tions per branch merge into a quasicontinuum PDOS,
very similar to the one that can be calculated for an
ideal infinite SL when the well known Rytov's relation
is used. It is worthwhile mentioning that the latter curve
lacks structures in the ranges of &equency corresponding
to the gaps in the dispersion curve of Fig. 2(e). This
behavior contrasts with the finite-size (N = 20) SL of
Fig. 2(c), where several peaks are seen inside the gap
region. These features, also present in the plots of trans-
mission coefBcient, were interpreted in terxns of resonance
phonon modes arising &om the interaction between the
continuum of phonon states &om the substrate and the
xnodes of the SL. In a following paper we report on the
first observation of such modes, for several Si/Ge Sii
superlattices with varying structures. As we shall see
soon in the exaxnple of the next section, the use of the
PDOS, which actually does not enter the calculation of
the scattering, is important because it gives the energy
position of the structures in the spectra. In this way,
the structural and dynaxnical paraxneters of the material
can be determined independently &om the optical and
acousto-optical ones.
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IV. COMPARISON WITH EXPERIMENT

As a test for our method of calculation we use a thin
layer superlattice grown on a (001) Si substrate by al-
ternating 5 monolayers of Ge and 5 of Si, (GesSis).
The sample was prepared to produce a symmetrically
strained superlattice. The total thickness was 215 nm
and N=145. Since qd (( 1, the phase of the exciting
electric field is almost constant over a Ge5Si5 layer and
a single effective value of the acousto-optic coefBcient for
each layer can be considered. Furthermore, one can try
to assume P(z)=const in (1) along the 145 GesSis lay-
ers, by neglecting long range eKects and assuming that P
depends only on the local properties of the material. Fig-
ure 3 displays the experimental and calculated spectra.
The experimental spectra clearly show the Brillouin peak
with a superimposed modulation. These structures are
due to the finite size of the SL and reflect the correspond-
ing modulation of the PDOS shown in the inset of Fig.
3. The separation is constant for a given structure of the
superlattice and depends on the vibrational dynamics,
so that it is the same for the two excitations. Since the
energy separation between two successive peaks in the
PDOS is Aa = (v7r)/(Nd), the mean velocity of sound
is obtained from the measurement of the separation of
the peaks in the spectra, Au=0. 46 cm . The result-
ing mean velocity value, v = 5.6 10s cm/s, was used as
input in our computational procedure. The numerical
values for dq and d2 were 6.7 nm and 7.2 nm, respec-
tively. They were determined by combining information
on total thickness (215 nm) and the number of layers.
The elastic constants C~ present in the transfer matrices
can be deduced &om the velocity of sound and from the
density. Since v was determined experimentally we used

I

Si5Ge5

for the densities the nominal figures for pure Si and pure
Ge, i.e. , 2.33 g/cms and 5.36 g/cms, respectively.

The profiles of the spectra can be fitted with two
adjustable parameters, the real and imaginary parts of
the refraction index. These quantities play two difI'erent
roles: the real part determines the center of the Brillouin
peak, whereas the imaginary part determines the over-
all linewidth. The fitting yielded (n) = 6.35 + 0.477i
for %=514.5 nm and (n) = 6.45 + 0.67i for A=496.5
nm. While the imaginary parts fits very well the ex-
trapolated values &om published data for bulk Geo 5Sio 5
compounds, the real parts are higher than in the cor-
responding bulk alloy. At first, one might have expected
the Ge5Si5 SL parameters to be close to those of the bulk
Geo 5Sio 5 compound. This is not the case of the strain-
symmetrized SL of this work. The crystals in the few
constituent monolayers are strained in such a way as to
modify significantly the electronic band structure. The
electronic band structure and the dielectric response, in
turns, have been found to be very sensitive to n and m
in short-period Ge„Si strained-layer SL. Considering
that we are probing at 2.4—2.5 eV, where the onset of the
strong absorption occurs, we expect a maximum for the
real part of the dielectric constant at approximately this
energy and a value of the index of refraction between the
maxima observed for bulk Si and Ge. This is precisely
what happens with our data. For instance, we obtained

whereas /max 7.0 and &max
The application of the computational method to SL

with small values of d is very simple since it does not
need the knowledge of the P(z) profile. In order to have
information on the acousto-optic properties of the mate-
rials one has to study SL with thicker layers. Actually, for
qd = 1 the P(z) profile becomes of fundamental impor-
tance. The problem is going to be discussed in a following
paper. ~

V. CONCLUSION

Wave number (cm ')

FIG. 3. Calculated (solid line) and experimental Brillouin
spectra (circles) for a GesSis superlattice with N = 145 pe-
riods. The inset displays the PDOS in the SL in the same
frequency range.

%e have described a numerical calculation of Ra-
man scattering by acoustic phonons by using a transfer-
matrix method to account for the elastic properties. This
method has relevant practical advantages compared with
the method proposed by He et al. First of all, our calcu-
lation can be performed for any given sequence of layers,
including the capping layer and the substrate, and not
only for infinite SL's, as in the case of Ref. 6. This is of
great importance since real SL's consist, in general, of 10
to 100 periods of alternating pure and alloy layers, grown
on pure substrates. In such a system the actual vibra-
tional dynamics can greatly dier from the one deduced
for an infinite SL. In particular, the phonons of the sub-
strate act like a thermal bath and phonons with energies
within the minigaps of the SL can penetrate into many
layers. This is the reason why an appreciable density
of vibrational states in the SL can be found also at the
minigap energies at variance with the prediction of the
model of an infinite SL. On the other hand, the use of
an infinite substrate, coupled to the finite SL, allows for
the calculation of a continuous density of states. Conse-
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quently, the spectrum can be calculated with a &equency
spacing as small as necessary to reproduce its finest struc-
tures including the very sharp gap modes. This presents
important advantages with respect to the linear chain
model, where a finite substrate is taken into account,
failing in some cases to give the details of the fine struc-
ture and introducing instead spurious effects. Compari-
son with experiment displays quantitative agreement, in-
cluding detailed features like small oscillations modulat-
ing the Brillouin line. In view of the perfect agreement
between calculated and measured spectra we propose this
computational method of modeling a SL as a tool in the
characterization of real systems. The calculation can be
extended to any multilayered system by inputting ap-
propriate structural parameters. The fit of our results to
experiment leads to a method for the determination of
physical characteristics of the microstructure.
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