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Improved modeling of excitons in type-II semiconductor heterostructures
by use of a three-dimensional variational function

Abdsadek Bellabchara, Pierre Lefebvre, Philippe Christol, and Henry Mathieu
Groupe d'Etude des Semiconducteurs, Unr Uersite Montpellier II—CARS, Case 074, 34095 Montpellier Cedex 5, France

(Received 22 February 1994; revised manuscript received 3 June 1994}

Binding energies and oscillator strengths of excitons in staggered-lineup heterostructures such as
type-II quantum wells are calculated by a variational method, using a single parameter. This method in-

volves the effective attractive potential imposed by the confined carrier to its unconfined companion.
Contrary to previous comparable works, a three-dimensional trial function of the variable r
(r = ~r, r„—~) is used, instead of a two-dimensional function of the in-plane projection p. Due to the
large spatial extension along z of the wave function of the unconfined carrier, the latter approximation
commonly used up to date, is too drastic, even though it works reasonably well for type-I systems. This
is demonstrated by comparison of both hypotheses for GaAs-A1As systems: when using the 30 func-

tion, binding energies are increased by up to 52%, while electron-hole overlap integrals can be enhanced

by one order of magnitude.

I. INTRODUCTION

The increasing variety of strained or unstrained semi-
conductor quantum wells and superlattices that can be
grown, allows us to produce several physical
configurations, which may all be of interest for device ap-
plications. For instance, depending on the lineup of band
extrema, different localizations of electrons and holes can
occur. The most widely studied case is the so-called
type-I lineup, where electrons and holes are confined
within the same layers and buildup excitons with larger
binding energies and oscillator strengths than in the cor-
responding bulk material. Now there is a growing in-
terest in the so-called type-II case, where both carriers
are maintained apart in two adjacent materials. ' ' This
separation induces a loosening of the Coulombic binding
and a dramatic breakdown of oscillator strength, which
could be recovered by applying a longitudinal electric
field, with a large modulation contrast. Type-II situa-
tions originate from various mechanisms, like the pres-
ence of internal strains or simply the natural alignment of
different conduction- or valence-band extrema. For in-

stance, in GaAs-A1As structures' ' ' ' the hole states
are always localized within the GaAs layers; this is also

true for electron states builtup from states near the I
point of host materials, so that type-I excitons are pro-
duced. On the other hand, electrons originating from X
states of the Brillouin zone are rather localized within

AlAs layers, which leads to a type-II electron-hole pair.
Depending on the various layer thicknesses, ' the funda-

mental valence- to conduction-band energy gap of the
structure may be either type I or type II. Another exarn-

ple is given by strained CdTe-(Cd, Zn)Te heterostructures,
for which previous works have evidenced a mixed situa-

tion, due to interfacial biaxial strains: heavy-hole exci-
tons are type I, while light-hole excitons are type II.'
More recently, several studies' ' ' of CdTe-(Cd, Mn)Te
quantum wells have shown the continuous change from

type I to type II provoked by the giant effect of an exter-
nal magnetic field on the valence states of (Cd,Mn)Te.

From the theoretical viewpoint, several methods, all
based on the variational theorem, have been proposed for
calculating the characteristics of the 1s exciton state in
such staggered-lineup systems. ' ' Early attempts' as-
sumed infinitely high potential barriers, which allows
easy calculation of binding energies but prohibits any es-
timation of oscillator strengths or of the exchange in-
teraction. Most other models include finite band offsets
but basically depend on a prior determination of electron
and hole envelope functions, ' ' ' ' which requires that
both carriers are confined in respective quantum wells.
This is the case for short period superlattices but not for
single type-II quantum wells, where one of the carriers is
only bound to its confined companion by Coulomb at-
traction. The artificial "envelope function" of this quasi-
bound carrier then has to be part of the trial function, in-

troducing one or several additional variational parame-
ters. ' ' As a whole, most methods use more than one
parameter, and/or expansions on bases of well-behaved
functions, and are thus time consuming.

Recently, alternative methods' ' were proposed,
based on the adiabatic approximation' of the effective
Coulomb potential created by the confined carrier. Nu-
merical calculations of the confinement of the other car-
rier in this potential then provide the binding energy and
a reasonable shape of the total wave function, using a sin-

gle parameter. In this work, we introduce a comparable
approach, using less restrictive hypotheses than previous-

ly done. We perform an exact calculation within the
efFective-potential context, but use a three-dimensional
(3D)-like trial function instead of a 2D-like one. ' We
show that this constitutes a serious improvement, regard-
ing the variational principle, since binding energies can
be increased by -50%%uo, while oscillator strengths can be
multiplied by a factor of —10, in the case of GaAs-A1As
structures.
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II.CALCULATION OF EXCITON BINDING ENERGY

We shall consider the case of a single quantum well.
For convenience, in the following, the hole is taken
confined in a well, while the electron faces a potential
barrier, as in the example of X-like states in GaAs-A1As
structures. Of course, all calculations are reversible in
terms of electrons and holes, and still stand for multiple
quantum wells, superlattices, or even type-I systems. '

Within the standard envelope-function formalism, the ex-
citon function 4,„(r„r&} describing the in-plane relative
motion is solution of the following effective-mass equa-
tion:

1
V, (z, )+Ei, +

2 Bz~ m~z Bz~ 2piai

2

W(a„z, ) f, (z, )=Ex(a,)f,(z, ) . (4)
~r

The effective attractive potential represented, e.g., in Fig.
1 of Ref. 14, is given by

W(ai, z, ) =f dz& ~ f& (zh )
~ S[2(z,—z& )/ai], (Sa)—oo

where

8 1 8 8 1 8
2 Bz m Bz Bzi, mi, Bzh

2

2@i S(y)= f dxx
x +y

(5b)

e+ V, (z, )+ Vp, (zi, )—,
i

4,„=E,„4,„, (1)

@,„(r„r~) =f, (z, )f~(z& )g zo(p), (2)

where fh(zi, ) is the normalized hole envelope function,
corresponding to the eigenenergy Ei„and Pzo(p) is the
normalized 2D hydrogenic 1s-like wave function, con-
taining the variational extension parameter a~

—p/a

a~
(3)

Then, one injects Eq. (2) into (1},multiplies by the com-
plex conjugate of the zi, and p-dependent parts of Eq. (2),
and finally integrates on these coordinates; one obtains
the following difFerential equation for f, (z, }

where z„z& are, respectively, the coordinates along the
growth axis (z,z') of the structure of the electron and the
hole, and p the in-plane relative coordinate. m„and m&,
are the effective masses for the motion along z. The her-
miticity of the efFective-mass Hamiltonian imposes the
general form of the two first kinetic energy terms in Eq.
(1).' ' Nevertheless, in practice, the on-axis efi'ective
masses m„and m&, have z-independent values within
each material, which leaves us with simple second-
derivative operators. The eventual mass mismatch at the
interface between two layers can be included by particu-
lar boundary conditions, namely the continuity of the en-
velope function itself and of the probability current. ' '

Concerning the electron-hole reduced mass for the in-
plane motion pz we can take an intermediate value of the
corresponding kinetic energy by averaging (pi) ' over
the whole structure. V, (z, ) and V&(zi, ) are the respective
conduction and valence potential profiles and c„ the
background dielectric constant, which can be taken as
the mean of the values for both materials, as long as
image-charge effects are neglected. ' In all comparable
works on type-II quantum wells, ' ' the ansatz, hereaf-
ter called the 2D approximation, chosen for the shape of
4,„(r„r&), allowed the following separation of in-plane
and on-axis motions:

can be easily fitted by a continued fraction. In practice,
we replace the varying potential W(ai, z, ) by a fitting
stepwise function (we take steps of 0.1 nm in width).
Then Eq. (4) can be solved by a classical transfer-matrix
algorithm: inside each 0.1 nm wide "minilayer, "f, (z, ) is
a solution of a simple second-order differential equation,
since both the potential and effective mass are constant.
Thus f, (z, ) is a combination of plane or evanescent
waves, whose wave vectors are connected to the energy
by the dispersion relation, k =(1/fi)[2m, (E —W)]'
The eigenenergies are those that insure the conditions of
continuity of f,(z, ) and of (1/m, )Bf,(z, )/Bz, at all in-
terfaces between "layers. " The latter condition allows us
to account for the mass mismatch between different ma-
terials' ' in a way that remains mathematically con-
sistent with Eq. (4). The problem can be suppressed by
taking identical masses in both materials, as apparently
done in Ref. 14 (see, e.g., their Hamiltonian). Following
this work, we will present results obtained within this ap-
proximation.

The fundamental confinement energy Ez(ai) solution
of Eq. (4) then has to be minimized over ai. The so-
called binding energy of the exciton is simply given by
Eb =E,+E& —Ez, where E, is the confinement energy of
a free electron in the potential well V, (z, ), in type-I
structures. In type-II systems, since V, (z, ) is a potential
barrier, one must let E, =O. This procedure allows a
parameter-free determination of the normalized envelope
function f, (z, ) and, consequently of the excitonic oscilla-
tor strength, proportional to the probability P for finding
the electron and the hole at the same point

P= 2/a f dz f,(z)f„(z}

Involving a single variational parameter, this method
provides a time-saving and quite accurate description of
excitons in both type-I and type-II structures. Moreover,
the use of a transfer-matrix algorithm allows a straight-
forward inclusion of perturbations such as electric fields.

Unfortunately, as discussed by Wu, ' who first applied
this formalism to type-I systems, using the 2D function of
Eq. (3} gives less accurate results than using a 3D func-
tion, especially in the case of low band offsets. For usual
type-I structures with deep and narrow enough quantum
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Potential discontinuity for
I electrons (meV)

Potential discontinuity for
X electrons (meV)

Potential discontinuity for
heavy holes (meV)

I -electrons effective mass (mo)
X-electrons effective mass (mo)

longitudinal XI
transverse X,

heavy-hole effective mass (mo)

1068

—197

457
0.067

4.1

0.19
0.37

TABLE I. Numerical parameters used in our calculations of
GaAs-A1As quantum wells. For simplicity, effective masses for
X electrons are those of A1As, while we took GaAs values for
heavy holes and I electrons. As stated in the text, these values

are those taken by the authors of Ref. 14, for the sake of com-
parison.
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FICy. 2. The left-hand half of the "envelope function" j,(z, )
for a 4-nm-wide GaAs-AlAs quantum well. Both cases of X,
and X„» excitons are shown. Solid lines represent the solutions
obtained using the present 3D approximation, while dashed
lines correspond to the 2D approach of Ref. 14. A thin dotted
line shows the interface between GaAs and A1As.

is explained by the fact that no confinement layer, but
rather the Coulomb attraction itself, controls the spatial
extension of the electron, especially along the z axis. This
is why the z dependence of the relative motion must enter
the hydrogenic part of the trial function. As evidence of
this explanation, Fig. 1 shows that the enhancement of
the binding energy is found smaller for X, excitons
( —18%), than for X„» ones ( -52%). This is due to the
large value of the longitudinal effective mass for X, val-

leys [4.1mo (Ref. 14}],which insures that the X, electron
is maintained closer to the interface than the X„electron
by the effective Coulomb attraction of the hole. This is
confirmed by Fig. 2, which displays the left-hand half of
the electron "envelope function" f, (z, } calculated for the
ground-state X-like excitons in a 4 nm wide GaAs-A1As
quantum well. Both 2D-like and 3D-like approximations
are presented; f, (z, ) can be expressed as

FIG. 3. Calculated values of the electron-hole overlap in-
tegral J, versus the thickness of the GaAs layer for the type-II
excitons. The conditions are those of Fig. 1.

f, (z, )= f fp dp dz& [f&(z& )]

X[tp(p, z, —z&)] [f,(z, )]

' 1/2

(10)

We have chosen to represent this function rather than the
probability density, only because this allows a clearer
view of the penetration of the electron in the GaAs layer.
Note that the 2D-like approximation (y=yzD) yields
simply f, (z, ) =f, (z, ). The difference between both ap-
proximations is dramatic: the spatial extension of the
electron is quite smaller using the 3D model. This is par-
ticularly true for the X electron, due to its smaller
effective mass along z. Consequently, the improvement
brought by the 3D approach is yet more eloquent when
comparing squared electron-hole overlap integrals,
displayed in Fig. 3, and obtained as

J= f dz f, (z)f&(z)y(0, 0) (11)

These integrals are directly proportional to oscillator
strengths for I -like and X,-like direct excitons, and only
give an indication of this strength for X»-like excitons, '

which are indirect in k space. An order of magnitude can
exist in favor of the 3D model. The reason for this is the
very small overlap between the electron and hole wave
functions, due to their short penetration across the inter-
faces. Any lack of precision on the exact behavior of
these wave functions can have important consequences
on the accuracy of the calculated overlap integrals. In
particular, assuming, for simplicity, an infinite-well-like
envelope function for the confined carrier, as done in Ref.
15, may yield correct binding energies but inaccurate os-
cillator strengths.

The 3D approach is thus far more accurate than the
2D one. This is particularly true for cases with very nar-
row or very shallow potential wells, or with small
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effective masses, where the large spatial extension of wave
functions forbids the use of too drastic approximations.

IV. CONCLUSION

To summarize, we have used an adiabatic "effective-
potential" approximation to calculate binding energies
and oscillator strengths of type-II excitons. We have evi-

denced a dramatic improvement of accuracy, when

choosing a 3D-like trial function instead of the usual
2D-like one. This improvement is proved by the impor-
tant increment of binding energies, when comparing both
hypotheses. We have shown that the choice of the 3D
trial function is even more crucial for a correct estima-
tion of oscillator strengths. The 3D model is strongly
recommended, in particular, for an accurate treatment of
type-I —to —type-II transitions which occur, for instance,
in CdTe-(Cd, Mn)Te quantum wells, under magnetic
fields. "
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