PHYSICAL REVIEW B

VOLUME 50, NUMBER 16

15 OCTOBER 1994-11

Langevin molecular dynamics with quantum forces: Application to silicon clusters
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We have implemented a dynamical stochastic scheme to determine from first principles the structure
of complex low-symmetry atomic systems such as surfaces and clusters. The method is based on
Langevin molecular dynamics and quantum-mechanical interactions derived from ab initio pseudopoten-
tial calculations. No fictitious electron dynamics is employed, and insulating as well as metallic or
charged systems can be handled in a straightforward manner. We apply this method together with the
simulated annealing strategy to small neutral and charged silicon clusters, and show that the ground-
state structures can be efficiently obtained with this approach. We also exploit this scheme to perform
first-principles isothermal molecular-dynamics simulations, and examine the adsorption of a Si atom on

a cluster.

I. INTRODUCTION

The structural determination of complex, nonperiodic
systems is one of the outstanding problems in materials
science. Traditional theoretical approaches are hindered
by the large number of degrees of freedom, and the lack
of symmetry in these systems. Consider determining the
structure of a cluster. For very small clusters it may be
possible to create an exhaustive inventory of topological-
ly distinct structures, and examine the total energy of
each structure. In this way, one may examine all possible
structures, and obtain the “true” ground state. However,
once the cluster size exceeds a half dozen atoms or so, it
becomes virtually impossible to construct such an inven-
tory, and to do computations on all the possibilities.
Computer simulations which exploit a simulated anneal-
ing strategy! can help overcome some of these obstacles.
These computer “experiments” are not prejudiced by
preconceived notions of the structure topology. The
challenge with such extensive numerical investigation is
to reconcile an accurate description of the potential-
energy surface with a comprehensive exploration of the
configuration space to achieve a global geometry optimi-
zation.

A number of simulation techniques have been exploit-
ed to perform simulated annealing. Most of the schemes
were coupled to empirical descriptions of the interatomic
potentials. One such scheme is the Monte Carlo (MC) ap-
proach.! This is a robust scheme that is well suited for
complex energy surfaces. Only the energy needs to be
computed in the MC approach; this approach does not
require interatomic forces. However, in general, MC is
not the most efficient approach. Information on forces is
not used, so the simulation can waste time exploring
high-energy configurations. In addition, MC may be
difficult to implement in terms of constructing a vectoriz-
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able computing algorithm.

Traditional Newtonian molecular dynamics (MD) is
more efficient than the MC scheme when the energy sur-
face is smooth, but MD is likely to be affected by the ex-
istence of local minima in complex energy surfaces.
Biswas and Hamann? have proposed a procedure which
combines some of the advantages of MC with MD.
Namely, they implemented a Langevin molecular dynam-
ics (LMD) for simulated annealing. The LMD introduces
a stochastic element into the Newtonian dynamics. The
stochastic nature of the LMD allows energetically un-
favorable configurations to be sampled, and can avoid the
trapping of clusters in metastable states. On the other
hand, LMD takes into account information from the in-
teratomic forces. With an empirical force field descrip-
tion, this approach has been applied to clusters’™* with
some Success.

Classical force fields offer many advantages over first-
principles quantum calculations in the study of the struc-
ture and properties of matter containing more than a few
atoms. Such fields are well known in the study of interac-
tions of closed-shell atoms in terms of central forces, such
as van der Waals interactions. However, open-shell
atoms may interact through mixtures of central two-body
and directional, or many-body, forces. Such many-body
forces are very difficult to replicate with force fields.
Essentially, one is attempting to transcribe ‘“quantum
forces™ into ‘“‘classical forces.” Quantum forces which in-
volve coordination changes, rehybridization, and Jahn-
Teller distortions have no simple classical analog. To
handle such issues, one would like to replace the empiri-
cal interatomic potentials with the “real” quantum
forces. Until recently, this replacement appeared to be
impossible. The time requires for quantum force calcula-
tions can be several orders of magnitude longer, at a
minimum, than the time required for classical forces.
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We illustrate that it is possible to combine LMD with
quantum forces. The forces are determined from ab initio
pseudopotentials constructed within the local-density ap-
proximation. Our approach differs from that of Car and
Parrinello® who incorporated pseudopotentials within a
molecular-dynamics framework. Their approach can be
applied to comé)lex systems and has been used to examine
small clusters.®~!! The Car-Parrinello method uses ficti-
tious dynamics for the electrons and Newtonian dynamics
for the ions, simultaneously minimizing the energy with
respect to the electronic and ionic degrees of freedom.
However, it is not necessary to employ fictitious electron
dynamics to achieve an efficient simulation pro-
cedure. 12714

In the approach presented here, we do not use fictitious
electron dynamics. We constrain the system to the
Born-Oppenheimer surface. This constraint requires a
self-consistent solution for each time step of the simula-
tion, but the time steps used in this procedure can be one
to two orders of magnitude larger than with the Car-
Parrinello method.!®> Our procedure is also more
straightforward to implement for metallic systems. We
would like to stress that the Langevin dynamics used here
is a proper scheme to generate a canonical ensemble. It
can be exploited to perform isothermal molecular-
dynamics simulations as well as simulated annealing.

As an illustrative application of the method, we exam-
ine silicon clusters. Specifically, we will study several
clusters of Si, with n <13. We determine the ground
state of neutral and charged species of these clusters, and
exploit the Langevin constant-temperature scheme to ex-
amine a simple adsorption process. Si clusters present
obstacles to an accurate theoretical description. Angular
forces are important, and can vary significantly from one
coordination state to another. Our experience with semi-
conductor surfaces, which is confirmed by previous work
on silicon clusters, suggests that small clusters can under-
go large reconstructions, and do not resemble fragments
of crystalline silicon.

Experimental data on silicon clusters have suggested a
complex structural and electronic behavior. The reactivi-
ty of silicon clusters with gas-phase molecular reagents
can vary strongly according to the cluster size. For ex-
ample, Sij;* is much less reactive than other clusters
when exposed to oxygen, ammonia, ethylene, or water. 16
This low reactivity to a variety of different species sug-
gests that the S;;° cluster may possess a special
geometry. In fact, interatomic potentials for neutral
species have suggested that silicon clusters exhibit an
icosahedral growth pattern with Si;; and Si;q being spe-
cial structures.> Moreover, silicon clusters as a function
of size have very different mobilities.!® Small clusters
Si,, n $25 exhibit a uniaxial growth pattern, whereas for
n 225, the growth pattern suggests a more spheroidal
geometry. This morphological transformation is also
compatible with the growth patterns suggested by intera-
tomic potentials. However, the structures suggested by
interatomic potentials are not in accord with quantum
calculations. ‘“Quantum” Langevin molecular dynamics
(QLMD) can provide insights into such issues. We can
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explore a variety of morphologies without prejudice to-
ward any particular model.

II. COMPUTATIONAL METHODS

In our simulations, the ionic positions, Rj evolve ac-
cording to the Langevin equation:

M;R;=—Vy E({R;})—yM;R;+G; , (1)

where E({R;}) is the total energy of the system and
{M;} are the ionic masses. The last two terms on the
right-hand side of Eq. (1) are the dissipation and fluctua-
tion forces, respectively. The dissipative forces are
defined by the friction coefficient y. The fluctuation
forces are defined by random Gaussian variables {G;, ],
with a white spectrum:

(GA1))=0,

)
(GHD)GX1t'))=2yMkpT5;8(t —1') .

The angular brackets denote ensemble or time averages,
and a stands for the Cartesian component. The
coefficient on the right-hand side of Eq. (2) insures that
the fluctuation-dissipation theorem is obeyed. 718

For a system with natural or periodic boundary condi-
tions, it can be shown (see the Appendix) that the canoni-
cal distribution

3 MR, P+ E((R,})

J
kyT (3)

Py~ exp|—

is a steady-state equilibrium solution of the probability
distribution associated with the equations of motion (1)
and (2).!° Langevin dynamics can therefore be used as an
alternate to Nosé dynamics® to perform constant-
temperature simulations. In contrast to Nosé dynamics
the LMD based on Egs. (1) and (2) includes a physical
heat exchange process which occurs through “collisions
and friction” of the particles with the heat bath. The
random forces establish the temperature of the system
from the fluctuation-dissipation theorem. The presence
of a physical viscous medium makes the LMD approach
particularly well suited for simulating a cluster in a buffer
gas.

The LMD coupled to the simulated annealing pro-
cedure can provide a general tool for complex structural
optimization. The temperature can be controlled without
rescaling the velocities, as is often done in Newtonian
MD. Energy can exchange into and out of the system as
required by the temperature of the heat bath. Simulated
annealing need not follow each time step of the “natural
evolution” of the physical system. Annealing rates can
be faster if the dynamics lead to acceptable “shortcuts”
relative to the natural evolution. As opposed to MC
simulations, LMD and MD simulations sample the
configuration space by collectively moving the particles.
LMD and MD simulations also move faster to the mini-
ma in a potential-energy surface by exploiting the intera-
tomic forces. On the other hand, the stochastic nature of
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the random forces present in LMD helps the system to
escape from metastable states in a manner reminiscent of
“uphill” moves in MC simulations.

The interatomic forces —VRjE ({R;}) in Eq. (1) are

determined quantum mechanically within the local-
density approximation to density-functional theory. We
use pseudopotentials with a plane-wave basis in a super-
cell configuration. Provided the supercell is large, in-
teractions between neighboring cells are minimized, and
the solutions of the Kohn-Sham equations represent
those of an isolated cluster. Unfortunately, this pro-
cedure can result in a large plane-wave basis. We use a
fast iterative diagonalization procedure?! and exploit a
Broyden mixing scheme?? to accelerate the convergence
of the self-consistent field. At each step in integrating the
equation of motions, we determine the self-consistent
field. We use the difference between the self-consistent
charge density and the superposition of atomic charge
densities at each step to extrapolate the charge density at
the next step.

In determining the charge density, metallic states are
conveniently handled by means of the Gaussian broaden-
ing scheme.?*~?° This technique allows us to treat clus-
ters having occupied and empty orbitals which are
quasidegenerate, and also properly sample metallic
configurations which may occur in a cluster at 7 >0.
For charged clusters, the broadening method can be ex-
ploited to include a partially occupied electronic orbital.
The neutrality of the supercell is maintained in this case
by introducing a compensating jellium background. 2

The ab initio pseudopotential for silicon has been opti-
mized for use with a plane-wave basis. This potential was
generated using the method of Troullier and Martins.?’
The potential, based on the atomic ground state, as
3523p23d°, was cast into the Kleinman-Bylander separ-
able form?® with s and d nonlocality. We checked that
this potential accurately reproduced the structural and
elastic properties of crystalline silicon.

With respect to other technical details, we used the
exchange-correlation functional by Ceperley and Alder?
in the parameterized form given by Perdew and
Zunger.’® The plane-wave cutoff in the basis was taken
to be 7 Ry. We used a simple cubic supercell with edge
a =18 a.u. for the smallest clusters (n <6). We tested
these parameters by using a cell with double volume and
an energy cutoff of 12 Ry. Changes in the structural pa-
rameters were less than 1%. For Si, and Si;; we used cu-
bic supercells of dimension a =20 and 25 a.u., respective-
ly. We sampled the charge with the I' point, and a
Gaussian broadening of 1.5X 1072 Ry was used in deter-
mining the state occupation.

With respect to the parameters in Eq. (1), we used a
Langevin friction parameter ¥y =5X10"* au. To in-
tegrate the equations of motion (1), we used a modified
Beeman integration procedure®! with a times step of 330
a.u., or 8 fs. For our simulated ground-state search of Si,
clusters, we heated a fragment of crystalline Si, a random
structure or a structure resulting from an earlier faster
annealing, up to 3000-3500 K, and cooled it to 300 K
with six to eight temperature regimes (depending on the
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cluster size). The annealing schedule was approximately
linear and about 100 integration steps were used for each
temperature regime. The initial temperatures,
3000-3500 K, were far above the melting point of silicon
(~1750 K) and allowed the simulation to proceed from a
weakly interacting state.

III. THE STRUCTURE OF SILICON CLUSTERS

The ground-state structures for the Si,, n =7, clusters
are presented in Fig. 1. We present the bond lengths and
angles in this figure, and compare to Hartree-Fock calcu-
lations*?33 which include correlation effects via perturba-
tion theory. The resulting ground-state structure of our
calculations is in very good agreement with the Hartree-
Fock work. The largest error concerns the second-
neighbor distance for the Sis cluster, which is underes-
timated by 6%. Inspection of the structure of the small
clusters, in Fig. 1, shows that their growth can be related
to the adsorption of new atoms at appropriate edge-
capping or face-capping locations, followed by relatively
minor distortions of the overall cluster structure.

For these small clusters, it is relatively straightforward
to determine the ground-state structure. However, even
for a cluster as small as Sig, issues can arise as to the
“true” ground state. A typical annealing for Siq is shown
in Fig. 2. The initial random geometry, the final struc-

(2.57,2.93) Y]

FIG. 1. LDA ground-state geometry of the neutral Si,-Si;
clusters. The bond lengths are in A. The results from the
Hartree-Fock calculations (Refs. 32 and 33) are given in
parentheses. The corresponding bond angles are 6, ;=63° (63°)
for Siy, 6,.3.5=280° (73°) and 6,.,;=2383° (88°) for Sis, 0,;4=70°
(75°,71°) and 6,.,.3="T71° (68°,70°) for Si¢, and 6, ;,=62° (63°) and
6,.,.3=060° (60°) for Si.
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FIG. 2. Binding energy of Si¢ during a typical Langevin an-
nealing run from 3000 to 300 K. The time step At is 8 X107
sec. The initial, final, and some of the intermediate
configurations of the cluster are shown Bonds are drawn for in-
teratomic distances smaller than 2.60 A.

ture, and a few representative examples of the structures
occurring during the anneal are illustrated in this figure.
During the annealing process, we can examine possible
high-temperature structures. For example, in the early
stages of the anneal, a triangular prism structure occurs.
This structure has been found to be a structural unit for
several clusters with n >8. We find as lowest-energy
structures two isomers which are quasidegenerate within
the accuracy of the calculation. These structures are a
bicapped tetrahedron and an edge-capped trigonal bipy-
ramid which subsequently relaxes to a distorted octahed-
ron (Fig. 2). Hartree-Fock calculations yield binding en-
ergies for these two structures which are also within 0.01

TABLE 1. LDA bond lengths (in A)and angles for Si,” -Si; ™
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eV/atom. In Fig. 1, for simplicity, we represented only
the distorted octahedron.

We examined the negatively charged clusters Si,, ~ with
n <7, and found structures similar to those of the neutral
clusters (Fig. 1). Optimized structural parameters for
these clusters are given in Table I together with the cor-
responding Hartree-Fock results. 3% The bond lengths are
in excellent agreement with the Hartree-Fock results. A
typlcal bond-length difference from the Hartree-Fock
work is on the order of ~0.03 A. We have also done
some calculations for the positively charged clusters, e.g.,
Si¢*, using the same annealing procedure as for the neu-
tral cluster. In the case of Si6+, we do find some structur-
al changes from the neutral cluster. Namely, we find the
edge-capped trigonal bipyramid as the final structure of
the annealing process.

In Fig. 3, we show the lowest-energy structure ob-
tained for Si;;. The structure can be described as a
capped “antiprism.” This structure is consistent with the
result of other LDA calculations.!! We found some oth-
er minima from the annealings corresponding to some-
what different structures. These structures differed from
the structure shown in Fig. 3 by some local distortions
and some bond switchings. Such structures were about
0.03 to 0.05 eV/atom higher in energy than the structure
shown in Fig. 3. The relaxed icosahedral structure, in-
stead, is about 0.2 eV/atom higher in energy than the
capped antiprism.

The ideal icosahedral structure for Si;; is unstable
against Jahn-Teller distortions. One possible issue which
has not been investigated theoretically is the effect of
charging the Si; cluster. This may be an important con-
sideration as the reactivity studies have been performed
on Si;;" clusters and not on the neutral species. The
ideal icosahedral Si;; structure possesses a fourfold-
degenerate highest-occupied orbital populated by two
electrons. Removing an electron from the neutral Si;;

. The bonds are labeled according to

Fig. 1. The results of the Hartree-Fock (HF) calculations (Ref. 34) are also given.

Bond (angle) LDA HF
Si, (I1,) d, 2.15 2.20
Si; (B,) dy, 2.29 2.32
92_1_3 59° 57°
Si,~ dy, 2.31 2.32
di; 2.35 2.37
0,23 61° 61°
Sis™ dy, 2.32 2.34
d,; 2.70 2.75
61_3_5 96° 950
h-13 71° 72°
Sig~ di, 2.41 2.41
dys 2.59 2.56
0134 81° 83°
6513 65° 64°
Si;~ d, 2.53 2.54
dy 3 245 2.42
91_3_4 69° 72°
6r.13 58° 57
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FIG. 3. Low-energy structure for Si;;. This structure can be
seen as a capped “antiprism.” Top and side views of the struc-
ture are illustrated.

cluster stabilizes somewhat the icosahedral structure
against the Jahn-Teller distortion. The energy difference
between the icosahedral type and the antiprism type of
structure decreases to about 0.1 eV/atom.

Within the LDA framework, several isomers for Si;;
are within a few kpT, at the experimental temperature.
Under these conditions, dynamical stabilization effects or
effects beyond the LDA (Ref. 35) may play a critical role
in determining the most probable structure. Understand-
ing the low reactivity of Si;; and its relationship to the
icosahedral structure are still somewhat problematic.
We believe further experimental and theoretical analyses
will be necessary to settle such issues. For instance,
theoretical and experimental photoelectron or Raman
spectra’® may be very useful to identify the relevant
structures. Although, to our knowledge, no experimental
photoelectron spectra are yet available for Si;;, we are
presently investigating the electronic spectra of the clus-
ters at finite temperature.

IV. ADSORPTION OF A SILICON ATOM

The growth of the small clusters can be depicted as the
result of an edge capping or face capping of a smaller
cluster (Si, ; or a magic number cluster), followed by
relatively minor distortions of the overall structure.
Therefore, it may be useful to investigate a growth pro-
cess by sequential addition of atoms. This approach may
help the search for low-energy structures of the clusters.

We have studied the binding of an adatom to the Si,
cluster by means of Langevin constant-temperature simu-
lations. For these simulations, we used a 25-a.u. cubic
cell and positioned the Si atom 10 a.u. away from the sur-
face of the cluster. We generated starting configurations
with the Si atom at various angles from the cluster. The
simulations were carried out at two different tempera-
tures: 1500 and 2000 K. The isothermal simulations pro-
ceeded for about 1.5 ps. During this time the adatom
could bind to the cluster and the new system evolve iso-
thermally for ~0.5 to 1 ps. The structure was then
quenched to 300 K in ~1-2 ps.

Snapshots of typical configurations occurring during a
simulation at 2000 K are presented in Fig. 4. The initial
configuration is shown in Fig. 4(a). The adatom binds to
a single atom of the cluster [Fig. 4(b)], and then moves to
edge-capped locations [Fig. 4(c)]. The simulation then
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FIG. 4. Binding of an adatom to the Si; cluster at 2000 K.
(a) The initial configuration, (b—d) some configurations observed
during the isothermal simulation, and (e) the annealed structure
are illustrated.

samples some face-capped configurations [Fig. 4(d)]. The
structure resulting from the annealings after the iso-
thermal simulations at 2000 K was the bicapped octahed-
ron shown in Fig. 4(e). The latter structure coincides
with the stable form of Sig. "3 At 1500 K, the annealed
structures were either an edge-capped Si; type of struc-
ture or a bicapped-octahedron type of structure. The
latter geometries included the ground-state structure
shown in Fig. 4(e).

It is clear that by using relatively low initial simulation
temperatures (1500-2000 K), the annealing corresponds
to a selective type of search which can easily result in lo-
cal minima. On the other hand, because the adatom
simulations exploit the high symmetry of the clusters and
their natural tendency to grow by face capping, or even-
tually edge capping, such simulations appear to be useful
to generate low-energy structures at a relatively low com-
putational cost. This type of search can always be im-
proved by using a higher simulation temperature, since
one eventually ends up reproducing a full annealing.

V. CONCLUSIONS

We have presented an ab initio approach to determine
the structure of complex low-symmetry atomic systems.
The approach is based on Langevin molecular-dynamics
and quantum-mechanical forces derived from self-
consistent pseudopotential calculations. No fictitious
electron dynamics is involved. As an illustrative applica-
tion of the method, we have examined several clusters of
Si, with » <13. We have determined the ground state of
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neutral and of some charged species of these clusters, and
exploited the Langevin constant-temperature simulation
approach to examine a simple adsorption process.

The random forces in Langevin molecular dynamics
are useful for eliminating kinetic barriers and ‘“‘shaking”
ions out of metastable states. However, their effect on
the evolution of the electronic states, if not decoupled
from the ionic motion, is undesirable, and could even be
counterproductive. It is not clear that a Car-Parrinello
approach based on fictitious electron dynamics is ap-
propriate for implementation into a Langevin molecular-
dynamics procedure. Moreover, we find the numerical
effort in self-consistently solving the Kohn-Sham equa-
tions at each time step by iterative diagonalizations to be
comparable®’ to the effort involved with a Car-Parrinello
simulation.

One advantage of the Langevin approach is that it can
be used to simulate properties as a function of tempera-
ture. It is an ideal tool to examine the properties of clus-
ters in a buffer gas, as the random fluctuation and dissipa-
tive forces have a physical analogy in the collision and
dissipative effects with gas molecules. The method can
also be used in the simulation of surfaces, or the deposi-
tion of atoms on surfaces. A temperature gradient per-
pendicular to the surface can be easily introduced by
means of the fluctuating forces. Such a procedure may be
useful to simulate crystal growth.
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APPENDIX

The generalized Langevin equation reads'®
P

dr (A1)

N
=m1(7)+ 2 Ujkgk(t) ’
k=1
where ¥ =(y,,...,py) is a set of variables characterizing
the state of the system, mi =(m, ..., my) a set of deter-
ministic external forces, and g(¢)=[g(¢),...,gy(¢)] a

set of Gaussian random forces with a white spectrum:

(gk(t)>=0 ,
(A2)
(ge(t)g; (")) =2¢c;;8(¢ —1") ,

where the angular brackets denote macroscopic (ensem-
ble or time) averages.

The transition probability, P(¥,,t,|¥,t) associated
with the process described by Eq. (A1) satisfies a Fokker-
Planck equation:!®
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d,P+divJ=0, (A3)
where
J=mP—D gradP (A4)
and where D is defined by
D;= % T 0 jiCir - (A5)

The Langevin equation (1) with the conditions (2) is a
special case of Egs. (A1) and (A2) where N is six times the
number of particles n, in the system. This special case is
obtained by setting

j)'=(R’1‘,...,R,fa, ’f,...,V,fa) )
with V,=R;, and

A=V, VE IR VED, .

FLARSL VD],
with

and by imposing o;;=c;; =0 for i#}, and o; =c; =0 for
i =3n,. The conditions on ¢;; and o ; imply that the only
nonvanishing elements of D are

{Dj; }j>3naE {dia}?:‘,’;}:’;z .

The Langevin equation is often referred to as the Kramer
equation when the components of ¥ are the position and
velocity.

We are interested here in the long-time behavior of the
transition probability for a Langevin process described by
Egs. (1) and (2) with natural boundary conditions or with
periodic boundary conditions and a periodic potential.
In the long-time limit, # — oo, the probability distribution
is expected to be a stationary solution of the Fokker-
Planck equation. The stationary solution is given by

div/=0. (A6)

With the restrictions given above on 7 and D, which
apply to Eqgs. (1) and (2), one finds [by direct insertion in
(A6)] that a probability distribution of the Boltzmann
type,

P~ exp (A7)

—B [zj;%Mj|Vj[2+E({R,-})” ,

is a stationary solution of the Fokker-Planck equation for
f=v/M;B. The latter relationship leads to the
fluctuation-dissipation equation (2) when

{GHONZTn ={0,;8;(D)} j=3n, +1,n

is used in Eq. (A2). One can also show that the station-
ary solution (A7) is unique for a process described by the
Kramer equation.




11770

1S, Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science 220,
671 (1983).

ZR. Biswas and D. R. Hamann, Phys. Rev. B 34, 895 (1986).

3J. R. Chelikowsky and J. C. Phillips, Phys. Rev. B 41, 5735
(1990); J. R. Chelikowsky, K. M. Glassford, and J. C. Phil-
lips, ibid. 44, 1538 (1991).

4J. R. Chelikowsky, Phys. Rev. Lett. 67, 2970 (1991).

SR. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

®D. Hohl, R. O. Jones, R. Car, and M. Parrinello, Phys. Rev.
Lett. 55, 2471 (1985); J. Chem. Phys. 89, 6823 (1988).

P. Ballone and W. Andreoni, Phys. Rev. Lett. 60, 271 (1988);
R. Car, M. Parrinello, and W. Andreoni, in Microclusters,
edited by S. Sugano, Y. Nishina, and S. Ohnishi, Springer
Series in Materials Science Vol. 4 (Springer-Verlag, Berlin,
1987), p. 134; P. Ballone, W. Andreoni, R. Car, and M. Par-
rinello, Europhys. Lett. 8, 73 (1989); U. Rétlisberg, W. An-
dreoni, and M. Parrinello, Phys. Rev. Lett. 72, 665 (1994).

8R. Kawai and J. H. Weare, Phys. Rev. Lett. 65, 80 (1990).

9J-Y. Yi, D. J. Oh, and J. Bernholc, Phys. Rev. Lett. 67, 1594
(1991).

10y, Kumar and R. Car, Phys. Rev. B 44, 8243 (1991).

Iy, Rétlisberg, W. Andreoni, and P. Giannozzi, J. Chem.
Phys. 96, 1248 (1991).

I2R. M. Wentzcovitch and J. L. Martins, Solid State Commun.
78, 831 (1991).

I3T. A. Arias, M. C. Payne, and J. D. Joannopoulos, Phys. Rev.
B 45, 1538 (1992).

14N, Binggeli, J. L. Martins, and J. R. Chelikowsky, Phys. Rev.
Lett. 68, 2956 (1992), present a preliminary version of this
work.

15Simulated annealing with the Car-Parrinello method could, in
principle, be performed without the adiabatic constraint and
using larger time steps. This, however, may not necessarily
lead to a faster annealing, especially in the case of metallic
systems, in which charge oscillation is normally a problem.

16M. F. Jarrold, Science 252, 1085 (1991); M. F. Jarrold and V.
A. Constant, Phys. Rev. Lett. 67, 2994 (1991).

I7R. Kubo, Rep. Prog. Theor. Phys. 29, 255 (1966).

184, Risken, The Fokker-Planck Equation (Springer-Verlag,
Berlin, 1984); R. L. Stratanovitch, Topics in the Theory of
Random Noise (Gordon and Breach, New York, 1967); N. G.
Van Kampen, Stochastic Processes in Physics and Chemistry
(North-Holland, Amsterdam, 1981).

19To generate a canonical distribution, P =exp[ —E ({R;})/
kyT], in coordinate space, a Langevin equation of the type
RJ:—aRiE({Rj})+Gj(t), where G; are Gaussians random

N. BINGGELI AND JAMES R. CHELIKOWSKY 50

variables with a white spectrum: (G;(1))=0,{G;(1)G,(t'))
=2kpT5;;8(t —t'), could be used. This approach would cor-
respond to the high viscosity limit of Eq. (1).

203, Nosé, Mol. Phys. 52, 255 (1984); W. G. Hoover, Phys. Rev.
A 31, 1695 (1985).

21y, L. Martins and M. L. Cohen, Phys. Rev. B 37, 6134 (1988).

22C. G. Broyen, Math. Comput. 19, 577 (1965).

23C. L. Fu and K. M. Ho, Phys. Rev. B 28, 5480 (1983).

243, de Gironcoli, P. Giannozzi, and A. Baldereschi (unpub-
lished).

25For the quantum-mechanical forces, the terms relative to the
single orbital contributions are simply weighted by the elec-
tronic level occupation number. This procedure insures a
proper variational scheme for total energies computed with
the Gaussian broadening technique. See also Ref. 24.

26This approach has been used to study charged impurities, see,
e.g., C.G. van de Walle, P. J. H. Denteneer, Y. Bar-Yam, and
S. T. Pantelides, Phys. Rev. B 39, 10791 (1989); S. Froyen and
A. Zunger, ibid. 34, 7451 (1986).

2TN. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991);
43, 8861 (1993).

281, Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425
(1982).

D, M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566
(1980).

305, P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

313, C. Tully, G. H. Gilmer, and M. Shugard, J. Chem. Phys. 71,
1630 (1979).

32K. Raghavachari and V. Logovinsky, Phys. Rev. Lett. 55,
2853 (1985).

3K. Raghavachari, J. Chem. Phys. 84, 5673 (1986); Phase Tran-
sitions 24-26, 61 (1990).

34K. Raghavachari and C. M. Rohlfing, J. Chem. Phys. 94, 3670
(1990).

35J. C. Phillips, Phys. Rev. B 47, 14 132 (1993).

36E. C. Honea, A. Ogura, C. A. Murray, K. Raghavachari, W.
O. Sprenger, M. F. Jarrold, and W. L. Brown, Nature 366, 42
(1993).

37For Si,;, a total of about 150 matrix-vector multiplications per
eigenstate were performed at each LMD time step for diago-
nalization and self-consistency. QOur time step is about 60
times larger than in the Car-Parrinello simulation for Sij, in
which a single matrix operation per electronic state is per-
formed at each step. Thus, the computation burden as mea-
sured by the number of matrix multiplications per LMD time
period is comparable.



