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We have incorporated electric fields into the eight-band k.p theory, which we have applied to hetero-

structures, in conjunction with the envelope-function approximation. We use the method of Baraff and

Gershoni to implement the electric-field effects in a computer program that calculates the optical prop-

erties of direct-band-gap heterostructures in one, two, and three dimensions. Using this method, we cal-

culate the interband and intersubband electroabsorption of multiple quantum wells as well as the inter-

band electroabsorption in superlattices. We illustrate the evolution of the Stark localization of the elec-

tron wave function under the application of an external electric field in superlattices. Comparison with

experimental data, available in the literature, exhibits very good agreement between theory and experi-

ment, with respect to the spectral shape, the absolute magnitude, and the electric-field dependence of the

absorption.

I. INTRODUCTION

The electronic and optical properties of semiconductor
quantum wells (QW's) and superlattices (SL's) is a subject
of great interest for both fundamental and applied
research. In particular, the properties of heterostructures
in the presence of an applied electric field perpendicular
to the interfaces have been studied. ' The electric field in-
duces a pronounced redshift of the heavy-hole exciton
resonance, while the quantum confinement prevents the
dissociation of the exciton and maintains a well-defined
resonance. This effect, also known as the quantum
confined Stark efi'ect' (QCSE), has been investigated by
means of photoluminescence (PL), time-resolved PL,
PL excitation, photocurrent, and direct absorption due
to both interband and intersubband transitions.

This interest in the QCSE is strongly motivated by its
applications in a variety of electro-optic devices such as
modulators, wavelength selective detectors, ' optically
bistable switches, " and others. ' Thus, a need for an ac-
curate model for the electroabsorption properties of
QW's and SL's exists not only on a pure scientific ground,
but also as an important engineering tool.

The eight-band k p method, as formulated by Kane, '

is remarkably successful in describing the electronic and
optical properties of diamond and zinc-blende bulk lat-
tices. This method allows for an empirical determination
of the structure of the electronic bands that are closest to
the fundamental band gap. In order to make this deter-
rnination, parameters such as band gaps and effective
masses are needed. These can be measured with a high
degree of accuracy. Together with the envelope-function
approximation, ' this method forms a powerful tool for
modeling the optical and electronic behavior of the most
technologically important intrinsic and extrinsic bulk
semiconductors. Eppenga, Schuurmans, and Colak
showed that this method works as well for the description
of the optical properties of QW's realized in these bulk
semiconductors. ' Using a Fourier expansion of the

eight-band envelope functions, and thus bypassing the
difticulty in matching conditions on each internal inter-
face, Baraif and Gershoni (BG) have formulated a
method for modeling quantum structures and superlat-
tices in several dimensions. ' Their method and ap-
proach are unique in that they provide one general
method for calculating the absorption of bulk semicon-
ductor, one-dimensional QW SL's and multiple quantum
wells (MQW's), two-dimensional quantum systems such
as quantum wires, and three-dimensional systems such as
quantum dots. For all of these systems an equally simple
means of modeling the optical transitions across the fun-
damental band gap (interband transitions}, as well as
transitions between sublevels within the conduction band
and within the valence band (intersubband transitions),
are provided. '

In this paper, we generalize the BG method to include
electric fields. %e show that the inclusion of electric
fields is straightforward and does not result in any in-
crease in computer requirements. The scope of this paper
is the following. In Sec. II we briefly outline the theory
and the approximations involved in the modeling. In Sec.
III we compare our calculations with experimental data
from the literature. Our model is applied for modeling
the QCSE in MQW's and the formation of a Stark ladder
in a SL. We conclude by calculating the QCSE in transi-
tions within the conduction band. A short summary is
presented in Sec. IV.

II. THEORY

The single-particle electronic-energy eigenvalues and
eigenfunctions in a periodic semiconductor system are
given by the solutions of the Schrodinger equation:

H%= [p2/2mo+ V(r)]%(r)=E%'(r},

where H is the Hamiltonian, %(r) is the wave function of
the electron, E is its energy, mo is its mass, p is its
momentum operator, r is its position vector, and V(r) is
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the potential in which it moves. In the effective-mass ap-
proximation, the wave function is expressed as a sum
over zone-center Bloch functions ujo(r},

%(r)=g FJ.(r)ujo(r),
J

(2)

where F~(r) are called envelope functions. Throughout
this paper the sum in Eq. (2) runs over the eight bands
closest to the fundamental gap. More specifically, we
consider only two conduction-band Bloch functions
denoted by ~s, f ) and ~s, l ), and six valence-band Bloch
functions denoted by ~x, 1 ), ~x, $), ~y, t), ~y, J, ), ~z, t ),
and ~z, $ ), respectively. The functions are named accord-
ing to their symmetry and spin properties. ' The
Schrodinger equation for a homogeneous bulk semicon-
ductor is now given by a set of eight coupled equations:

QH, , (k)F;(r)=E(k)F (r), (3)

where H;(k), are the matrix elements of the Hamiltonian
in this approximation and k is the electron wave vector.
Following Kane, ' a second order in k perturbation ex-
pansion is used to obtain the matrix elements HJ;(k).
Thus the solution to Eq. (3) yields the band structure of
the bulk material near the Brillouin-zone center (k=0).
The parameters in the matrix element, H.;(k), can thus
be obtained from comparison with experiments or with
other methods of band-structure calculations. The gen-
eralization of Eq. (3) to include strain has recently been
carried out by Bahder, ' extending previous work by
Pikus and Bir. '

In order to include an externally applied electric field,
Eq. (3) has to be modified slightly. The modification
affects only the diagonal matrix elements of Eq. (3). This
can be accomplished if one uses the prescription' that in
the presence of external fields, which are described by a
vector potential A and a scalar potential P, the wave vec-
tor k in Eq. (3) is replaced by k —(e/c) A, and the energy
E is replaced by E —tI}. The latter replacement is not
mentioned in Ref. 14, but can be arrived at, in a straight-
forward manner, if one treats the scalar potential as the
fourth component of the covariant four-vector A. These
replacements are similar to the prescription for con-
structing the Hamiltonian for a free electron in an exter-
nal electromagnetic field. The conclusion that the elec-
tric field affects only the diagonal terms of the effective
Hamiltonian was used before us in four- and six-band
models. '

When using Eq. {3) to obtain the band structure of a
bulk semiconductor close to the Brillouin-zone center,
the crystal momentum k is interpreted as a label to the
Bloch wave functions. Equation (3) can also be used to
solve a heterostructure problem, in which case k is inter-
preted as the difFerential operator (1/i)V The resulting.
matrix equation becomes

plane waves and the resulting matrix equation is solved,
as described in Ref. 16. The problem of wave-function
matching at the interfaces is solved by using surface in-
tegrals, instead of using a more cumbersome algebraic ap-
proach. All of the integrals that are needed in the calcu-
lation of the matrix elements are evaluated analytically,
making the method highly efticient.

In our implementation, we assume piecewise constant
electric fields along the Cartesian axes. These are defined

by the confining potentials, and do not, necessarily, coin-
cide with the crystallographic axes. In two or three di-
mensions, corresponding to quantum wires and quantum
dots, the electric field is specified by its components along
the Cartesian axes and may, therefore, not be chosen in-

dependently for each region. It is, in fact, not possible to
include arbitrary fields within each material region
without violating Maxwell s equations. If arbitrary elec-
tric fields are included in each region, the problem must
be solved self-consistently. This would modify the elec-
tric fields. For the time being, self-consistency is not in-

cluded in our calculations. Thus, our calculations yield
accurate results only for relatively low concentrations of
charge carriers (typically below 1X10'~ cm ).

The model, which uses a discrete Fourier expansion of
the envelope functions, requires a periodic-potential
structure in each direction. Thus, in addition to the
structural periodicity of the quantum structure, the elec-
trostatic potential should also be periodic. For this pur-
pose, we introduce an electric field into one of the regions
of our unit cell, in such a way that the potential drop
over the entire unit cell is zero. The region into which
this "fake" field is introduced is chosen so that it does not
affect the calculated electroabsorption. Figure 1 illus-

trates the potential structure in a typical simulation of a
superlattice under an applied electric field. The interest-
ing region {four quantum wells in Fig. 1}denoted by C is
situated between barriers A, which have unrealistically
high potentials in order to prevent coupling effects with
neighboring unit cells. Additional cladding layers 8 are
sometimes introduced in the calculated structure to mini-
mize edge effects caused by the introduction of the isolat-
ing barriers A. These barriers do not affect the spectrum
at the range of interest, thus the corresponding electric

g H, (r, V)F;(r) =EF (r) . . (4)

In the BG method the functions F, (r) are expanded using

FIG. 1. A typical potential structure used for simulations.
The electroabsorption is calculated only for the part of the
structure that is denoted by C.
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field can be chosen at will. It is chosen such that the total
potential drop across the entire unit cell is zero.

We will now describe three different effects we have
calculated: (i) the Stark effect in multiple quantum wells,
(ii) the formation of Stark ladders in an
Al„Ga, „As/GaAs superlattice, and (iii) the Stark
effects on interconduction subband transitions. These ex-
amples have been chosen in part to establish the validity
and accuracy of our method and in part to illustrate the
range of properties that may be calculated using the same
unified method.

III. COMPARISON WITH EXPERIMENTS

A. Stark efFect in unstrained quantum wells

We have used the method to compare our calculations
with the measured electroabsorption spectra of Bar-
Joseph et al. Their structure consisted of a superlattice
of alternating Inp barriers and lattice matched
In„Ga, „Asquantum wells, each 100 A thick. The ab-
sorption was measured at normal incidence, i.e., the light
propagated parallel to the growth direction and was po-
larized parallel to the QW planes (TE polarization). Fig-
ure 2 shows the measured and computed absorption spec-
tra at zero electric field and at a field of 150 kV/cm. The
computed spectra have been rigidly shifted 10 meV to-
wards lower energy in order to partially account for the
binding energy of the excitons. The input structure to
the computer program was similar to that shown in Fig.
1. In order to reduce the unit-cell length, we used in this
case only three QW's in a cell. This, in turn, reduces the
number of plane waves required in the Fourier expansion
of the envelope functions and shortens the computing
time considerably. We found that for states close to the
QW band edges it is often sufficient to use a single quan-
tum well in the simulated unit cell. This is not the case
for higher-energy states, where a substantial overlap be-
tween the wave functions of adjacent wells occurs. Here,
it is necessary to use several quantum wells. The number
of QW's needed were found by a simple convergence test
of the calculated spectrum at the energy range of interest.
For the calculation of Fig. 2(b) we found full convergence
using 41 plane waves, giving a computing time of about 1

h on a modern workstation.
As may be guessed from the diagram of the potential

shown in Fig. 1 the lowest-energy electron states are
"pulled" by the electric field to the right and tend to con-
centrate in the right corner of the right region B. In con-
trast, the highest-energy valence-band states tend to con-
centrate in the left corner of the left region B. These
states, which result from the introduction of the isolating
barrier 3, do not describe the experimental situation
realistically. Fortunately, their overlap is negligible and
they contribute very little to the calculated absorption
(more than three orders of magnitude less than the ab-
sorption from states localized in the same wells). Howev-
er, increasing the number of wells in the unit cell has a
computational disadvantage. It forces us to consider
many states covering a large range of energies from the
lowest-energy states, which contribute very little to the
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absorption, to the relevant higher-energy states, which do
contribute to the absorption. In the calculations, results
given in Fig. 2(b), we had to consider 24 conduction-band
states and 46 valence-band states before convergence was
achieved. At normal incidence the electromagnetic radi-
ation fields are polarized parallel to the superlattice
planes (TE). At this polarization, the heavy-hole to
conduction-band transitions at zero in-plane wave vector
are allowed and are, approximately, three times stronger
than the corresponding transitions from the light-hole
bands. Without an applied electric field three spectral
features are observed in the experimental absorption
spectrum [displayed by the solid line in Fig. 2(a)]. These
features, at energies of 0.77 eV (denoted 1„in the figure),

0.80 eV (denoted 1I ), and 0.89 eV (denoted 2&), are
identified as the highest heavy-hole band (HH1) to the
lowest electron-band (EL1) transition, the highest light-
hole band (LH1) to EL1 transition, which is overlapping
with the second heavy-hole band (HH2) to EL1 transi-

Wavelength (nrn)

FIG. 2. Experimentally (a) and computed (b) absorption
spectra of the In„Ga, „As/Inp MQW at electric fields of 0
kV/cm (solid line) and 150 kV/cm (dashed line). The experi-
mental data are from Ref. 23.
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tion, and finally the second heavy-hole band (HH2) to the
second electron-band (EL2) transition, respectively. The
calculated spectrum [described by the solid line in Fig.
2(b)], shows the same features and is generally similar in
shape to the experimental one. There is, however, one
prominent difference between the two spectra. The cal-
culated HH1 to EL1 transition does not, in spectral
shape, resemble the enhanced resonance observed at this
transition energy. This is expected, since our model ig-
nores the excitonic effect, which is known to be impor-
tant for near-band-gap optical transitions of QW's even
at room temperature. It is, thus, surprising that our
model describes the LH1-EL1 and HH2-EL2 transitions
correctly. In particular, the observed enhancement of the
latter transition is described quite accurately according to
our calculations. We thus conclude that, at room tern-
perature, excitonic effects are only important for the
transition that is closest to the band edge. The enhance-
ments observed for the higher-energy transition are more
probably due to poles in the joint density of states. When
a strong transverse electric field (150 kV/cm) is applied to
the superlattice, the absorption spectrum undergoes a
considerable change [dashed line, Fig. 2(a)]. The absorp-
tion edge shifts towards lower energy, the peaks get wider
and the magnitude of the absorption at the edge is sharp-
ly reduced. The latter is intuitively expected since the
lowest-energy electron (EL1) and the highest-energy hole
(HH1) wave function will localize at different sides of the
QW's. In this case, our simulations [Fig. 2(b), dashed
line] provide a good description of the lowest HH1 to
EL1 transition and of the almost complete disappearance
of the HH2 to EL2 transitions. We thus conclude (unlike
the authors of Ref. 22) that at these conditions even the
lowest-energy exciton is completely destroyed by the elec-
tric field.

There are some differences between the calculated and
the measured spectra. In the calculated spectrum, the
LH1 to EL1 transition, which peaks at around 0.77 eV,
seems to be double under the infiuence of an electric field.
This is reasonable since this peak (at zero electric field)
also corresponds to the normally forbidden HH2 to EL1
transition (see Fig. 3), which becomes allowed with elec-
tric field. This effect is not observed experimentally. We
do not know the reason for this discrepancy. In addition,
the absolute magnitude of the calculated absorption is
roughly 30% less than the magnitude of the measured ab-
sorption. We do not feel that this is an indication of a
problem with the computational method, as it is difBcult
to obtain an accurate determination of the absolute
strength of the measured absorption. We consider the
agreement to be very good.

In order to calculate the absorption spectrum, one
needs to know the dispersion curves of carriers in the
simulated quantum structure. The valence-band disper-
sion used for the calculations whose results are shown in
Fig. 2(a) (no electric field) and Fig. 2(b) (150 keV/cm) is
shown in Figs. 3(a) and 3(b), respectively. In Fig. 3(a)
each dispersion curve is degenerate four times. For each
energy there are four degenerate states having wave vec-
tors and spins, which difFer only in sign. This is due to
the time-reversal and inversion symmetry of the effective

a) HH1 HH2

0.0

-0.1

0.0

-0.1

0.02 0.04 0.06 0.08 0.10

k vector

FIG. 3. The calculated valence-band structure of the
In, Ga, „As/InP MQW subject to an applied electric field of 0
(a) and 150 kV/cm (b).

Hamiltonian. (We neglect the small inversion asymmetry
of the III-V compounds. '

) The application of an exter-
nal electric field breaks the inversion symmetry and only
the Kramers degeneracy, which is associated with the
time-reversal symmetry, is left. This is demonstrated
clearly in Fig. 3(b) where each dispersion curve from Fig.
3(a) is split into two curves of similar behavior. A similar
but much smaller effect is found for the conduction-band
states as well (not shown).

B. Stark localization of carriers in suyerlattice minibands

Semiconductor superlattices can be designed and fabri-
cated such that their energy spectra contain minibands of
some tens of meV width. Carriers, in these minibands,
are free to move along the growth axis and their wave
functions are spread over the entire superlattice. In such
a system, it is relatively simple to apply an electric field
along the SL growth direction, such that the potential
drop over one period of the SL is comparable to the
width of the minibands. This sets an experimental stage
for testing old quantum-mechanical predictions such as
Bloch oscillations, the formation of a Stark ladder, and
field-induced localization.

The intuitive way to understand the evolution of the
system with the application of an external electric field is
the following. The SL is a series of coupled QW's, and it
is the coupling between the QW s that gives the mini-
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FIG. 4. (a) Measured TE polarized photocurrent spectra of an Al„Ga& „As/GaAs superlattice subject to various electric fields.
The labeled peaks are explained in the text. (After Ref. 28.) (b) and (c) The calculated absorption spectra of the same superlattice
subject to the same electric fields for TE and TM polarization, respectively.

bands their widths. The application of an external e1ec-
tric field results in a removal of this coupling, and the
genuine energy spectrum of the individual QW's is re-
stored. The energy diff'erence between states localized in
adjacent QW s is given by the potential difference be-
tween the two QW's. As a result, the spectrum of the en-
tire SL evolves into a ladderlike set of discrete levels and
the wave function of carriers in these levels tends to grad-
ually localize over a few adjacent wells. This simple pic-
ture was recently checked experimentally by means of
photocurrent excitation spectroscopy by Mendez and co-
workers. In Fig. 4, we compare their experimental
measurements with our model calculation. Figure 4(a)
shows the measured photocurrent spectra of a superlat-
tice for various electric fields applied along its growth
axis. The spectra, which are taken from Ref. 27, were ob-
tained from measurements performed on a SL imbedded
in the intrinsic region of a p-i-n structure. The SL con-

0
sisted of 60 periods of alternating 30-A-thick GaAs layers
and 35-A-thick A10656ao 35As layers. For the measure-
ments, unpolarized light at normal incidence to the layers
was used. For comparison we show, in Figs. 4(b) and
4(c), the calculated spectra for light polarized parallel to
the layers (TE polarization, like the experiment) and for
light polarized parallel to the growth axis (TM polariza-
tion), respectively. The input structure to the calculation
consisted of seven wells, isolated by high barriers, in a
similar way to that illustrated in Fig. 1. Full convergence
was reached with five wells in the simulation unit cell,
and 49 plane waves in the Fourier expansion of the en-
velope wave functions. Sixty states were calculated for
each in-plane k vector. These calculations were thus
somewhat more demanding than the corresponding cal-
culations of the Stark effect in a MQW structure. The
photoconductivity spectra, displayed in Fig. 4(a), show a
considerable complexity and are quite rich in spectral

features, especially at high electric fields. It is seen both
in the experiment and in the simulation that the spec-
trurn, which was originally quite featureless, acquires
more structure and identifiable peaks appear as the ap-
plied field increases. The peaks evolve with the applica-
tion of the field, both in intensity and in spectral position.
In order to facilitate an easy identification of these spec-
tral features, we use the calculated spectra in the TE po-
larization [Fig. 4(b)] and in the TM polarization [Fig.
4(c)]. In the TE polarization, the heavy-hole associated
optical transitions are roughly a factor of three stronger
than the corresponding light-hole associated transitions.
In contrast, in the TM polarization the heavy-hole transi-
tions are almost inactive. The use of the polarization
selection rules for the interpretation of the measurement
is very useful. From inspection of Figs. 4(b) and 4(c) it
can be seen that the strong peaks, observed at energies of
1.703 and 1.74 eV when the highest field is applied to the
SL, are heavy-hole and light-hole associated transitions,
respectively. This is in agreement with the interpretation
of the authors of Ref. 27, who marked these peaks as 0(h )

and 0(l), respectively. Indeed, as can be deduced from
the inspection of the associated envelope wave functions,
these transitions originated from electrons and holes,
which are localized in the same QW. Similarly, a detailed
comparison between the measured spectrum and the cal-
culated ones, as well as inspection of the calculated en-
velope wave functions (as shown, for example, in Fig. 5),
a11ows us to unambiguously identify the peaks denoted by—2, —1, +1, +2, and —11 as well. These peaks corre-
spond to transitions involving e1ectrons with a wave func-
tion primarily localized in one well and holes with a wave
function primarily localized within wells one or two
periods away.

Although there are similarities between the computed
and experimental spectra there are also differences. The
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144 kV/cm

structure. At a field strength of 32 kV/cm the heavy-hole
wave function is completely localized in one well (chosen
to be the middle well in the figure), while the electron is
only partially localized. This is a consequence of the
greater effective mass of the heavy hole. At increasing
field strengths, the electron becomes more and more lo-
calized. A field of 144 kV/cm is required to localize the
electron to one well. At this field, as can be seen in Fig.
5, the heavy-hole and the electron wave functions are lo-
calized on opposite sides of the same QW. Thus, the con-
ventional situation of the quantum confined Stark effect
in a single QW is restored.
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FIG. 5. The calculated electron {solid line) and heavy-hole
(dashed lines) probability of distribution in a superlattice subject
to various applied electric fields. The structure is also shown in

the top of the figure, where the black areas represent the
artificially high potential isolating barriers.

energy difference between the computed spectra and the
experimental spectra is about 10 meV. It can also be not-
ed that while the experiments start to show considerable
structure at an electric field of about 28 kV/cm, the com-
puted spectra require an electric field of about 32 kV/cm
before well-resolved features appear. We believe that
some of these discrepancies can be attributed to the
neglect of excitonic effects. Others are the result of the
comparison between photocurrent measurements and ab-
sorption calculations. One should bear in mind that the
photocurrent excitation spectra also include contribu-
tions from transport as well as carrier collection
efiiciency, which may depend on the carrier energy and
the field strength. The formation of different electric-field
domains, due to screening by residual carriers, may also
contribute to the complexity of the experimental data,
and some uncertainty in determining the electric-field
strength from the voltage on the device. We believe that
in a comparison with absorption data, instead of photo-
current data, some of these discrepancies will disappear.

The electric-field-induced localization effect, as calcu-
lated by our model, is demonstrated in Fig. S. In Fig. 5,
we display the calculated electron (solid lines) and
heavy-hole (dashed lines) probability distribution (abso-
lute magnitude of the envelope wave function squared) at
various electric Se1ds. At zero electric field, the wave
functions are delocalized and spread over the entire

C. The Stark efFect on intersubband transitions

Optical transitions between conduction or valence sub-
bands have become the subject of intensive research and
engineering efforts. Scientifically, these transitions pro-
vide a direct probe into the electron and hole population
densities and relaxation processes within their respective
subbands. Technologically, they increase the range of the
optical response of the conventional III-V heterostruc-
tures to longer wavelengths than obtained by interband
transitions, and they allow the achievement of
significant absorption at long wavelengths from hetero-
structures of indirect materials such as silicon and ger-
manium. A variety of light detectors and emitters,
which use these intersubband transitions, have been pro-
posed and constructed. ' Optical gain and lasing oscilla-
tions in intersubband devices have recently been report-
ed. These devices use electric fields to collect the gen-
erated charge carriers and to align the subbands of con-
secutive QW's. The latter is of utmost importance, since
it allows operation in resonant conditions under which
transport is ef6cient and population inversion can be
achieved. Our model provides the means to accurately
calculate the effect of the electric field on the subband
structure and on the optical transitions between these
subbands. In fact, the model applies to intersubband
transitions as successfully as to interband transitions. We
demonstrate this, in this section, by calculating the Stark
effect on the inter-sub-conduction-band transitions of an
Al„Ga, „As/GaAs MQW structure. We compare our
calculations to the measured results of Harwit and
Harris, who demonstrated this effect.

The structure reported on in Ref. 8 consisted of 50,
120-A-thick GaAs QW's separated by 350-A-thick bar-
riers of Alo 5Gao 5As. The center 150 A of each barrier
was doped at 5 X 10' cm with silicon impurities. For
the calculation we used an input structure, similar to that
displayed in Fig. 1, with only one QW in a unit cell.
Twenty-seven plane waves were used for the expansion of
the envelope wave functions. An electron concentration
of 1.12X10 cm in each period, and thermal equilibri-
um at 94 K, was used for the calculations to match the
experimental conditions. In Fig. 6(a} the measured inter-
subband absorption spectra from Ref. 8 are disp1ayed
with an electric field of 36 kV/cm (solid line) and without
an electric field (dashed line). The calculated spectra are
displayed for comparison in Fig. 6(b). The spectra con-
tain one peak with energy width of about 5 meV at half
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conduction-band absorption with and without electric field.
The experimental data is after Ref. 8.

the rnaximurn. The peak is attributed to the optical tran-
sition from the EL1 to the EL2 electron levels in the
MQW's. As can be seen in Fig. 6, both the experimental
and the computed transitions shift about 1 meV towards
higher energy with the applied field. The energy position
of the experimental and calculated transitions is, howev-
er, different by about 15 meV. This discrepancy can be
attributed to an inaccuracy in the determination of the
width of the MQW's due to differences between the actu-
al growth rate and the estimated one, as the authors of
Ref. 8 themselves suggested. In fact, our calculations of
the transition energy agrees well with the calculation
done in Ref. 8. Thus, the single-band effective-mass mod-
el is quite accurate for the calculations of optical transi-
tions between confined electron levels. The single-band
model is not sufhcient, however, when transitions be-
tween sub-valence-band levels and transitions from
confined levels to levels in the continuum are modeled.

The absolute magnitude of the calculated absorption,
as well as its spectral width agrees well with the experi-

ment. We show, in Fig. 7, that the low-energy tail of the
calculated transition is due to the difference between the
effective mass of electrons in the EL1 and the EL2 levels
and the thermal distribution of electrons in the ELl level
of the MQW's. It is seen, in Fig. 7, that electrons that oc-
cupy states of higher in-plane crystal momentum have
lower transition energies and lower optical-matrix ele-
ments for the transition. The maximum transition energy
is, thus, between EL1 and EL2 states, which have zero
crystal momentum. This also explains the sharp edge at
the high-energy side of the calculated transitions. The
discrepancy between the calculated and measured line
shape of the transitions, which is much more symmetric,
can be attributed to inhomogeneous line broadening
mechanisms (mainly well-width fluctuations ), which are
not included in the model.

IV. CONCLUSION

We have used the fact that the electric-field operator is
diagonal in the k-p approximation (Kane model) to intro-
duce it into an eight-band envelope-function effective
Hamiltonian. This Hamiltonian is applicable to semicon-
ductor quantum structures of zero, one, and two dimen-
sions, such as quantum dots, quantum wires, and quan-
turn wells, respectively. In order to test the model and
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demonstrate its usefulness, we have applied it to three
diferent cases of electroabsorption: the quantum
confined Stark effect in single quantum wells, the Stark
effect in a superlattice, and the Stark effect seen in inter-
subband transitions. The calculations have been com-
pared with published experimental data and found to
agree well with the measurements. Most of the
differences may be attributed to excitonic effects, which
are not included in the model.
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