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from polyexcitons in Si

A. C. Cancio and Yia-Chung Chang
Department of Physics and Materials Research Laboratory, University of Ilhnois at Urbana Ch-ampaign, Urbana, Illinois 81801

(Received 6 April 1994)

We calculate the line shapes and total oscillator strengths for phonon-assisted recombination from
polyexcitons, complexes involving two, three, or four excitons, in Si. Line shapes are determined from
ground-state to ground-state transition matrix elements, using variationally determined correlated
wave functions. Wansition matrix elements are calculated with Monte Carlo methods. We 6nd that
about SO'Fo of the total oscillator strength in the decay of the larger complexes can be accounted for
by the ground-state to ground-state mechanism, obviating the need for consideration of excited final
states. The line shapes and widths of the larger complexes are similar to that of the biexciton, with
oscillator strength per exciton increasing slightly with increasing complex size due to many-body
efFects.

I. INTRODUCTION

Recombination luminescence has been an important
source of information about excitonic states in indirect-
gap semiconductors. The principal source of lumi-
nescence from indirect-gap semiconductors is phonon-
assisted luminescence, or PAL, in which the momentum
required to recombine an electron and hole across an in-
direct gap is taken up by the absorption or emission of
a phonon. The PAL line shape is closely related to the
momentum distribution of electron-hole pairs in the crys-
tal and thus serves as a useful probe of the structure
of electron-hole excited states in these semiconductors.
PAI has proven to be one of the most important tools
in the study of excitonic states in Si and Ge. In par-
ticular, it has been used to prove the existence of biex-
citons in Si (Ref. 1) and in uniaxially stressed Si (Ref.
2) and Ge, and has provided the first clear evidence of
the electron-hole liquid (EHL)4's. PAL line shapes and
oscillator strengths can been used to obtain estimates
of the binding energy and radii and concentrations of
small exciton complexes such as the biexciton, and the
band-gap renormalization, density, and electron-hole en-
hancement factor of the EHL. ' PAL luminescence has
also been a crucial tool in determining the phase diagram
of macroscopic excitonic states in these materials under
equilibrium conditions.

A wide variety of excitonic states are observable in Si,
providing a rich Geld for the study of many-body and
few-body Coulombic systems. At low temperatures, a
simple liquid-gas phase diagram has explained the ob-
served thermodynamics of electrons and holes success-
fully. The phase transition is of interest because it is
not only a liquid-gas transition but a metal-insulator one
as well, from a highly metallic quantum liquid of ion-
ized electrons and holes to a weakly ionized gas phase
consisting mostly of excitons coexisting with small popu-
lations of free carriers and small complexes or molecules
consisting of more than one electron-hole pair. The low-
temperature phases have been studied extensively and

are theoretically well understood. The liquid phase is
highly metallic, with average nearest neighbor distances
(estimated as the radius of the sphere containing the av-
erage volume per particle) of about 0.5 exciton Bohr radii
at zero pressure (r, = 0.5), and is well suited to high
density perturbation methods. The saturation density of
the gas phase is low enough to consider the exciton gas
as ideal.

At temperatures near the critical temperature of the
EHL ( 20 K in Si), the electron-hole phase diagram at
intermediate densities is as yet poorly understood. At
densities corresponding to r, & 1.0 the electron-hole sys-
tem occupies a transitional regime between the potential-
energy-dominated exciton gas and the highly degenerate,
kinetic-energy-dominated regime of the electron-hole liq-
uid or plasma, in which many-body correlations are im-
portant and standard mean-Geld approaches fail. Since
the EHL remains at metallic densities up to the criti-
cal point of the liquid-gas transition, it has been con-
jectured that at temperatures near the critical tempera-
ture a metal-insulator transition should occur at a den-
sity lower than the saturated gas density of the liquid-gas
transition. As there are indications that this transition
could be a first-order one, there might then be two dis-
tinct first-order phase transitions and critical points for
the system. This situation has not been seen in liquid
metals, such as liquid Hg; on the other hand, the EHL
is unique among metallic liquids in having a liquid-gas
critical point that is well within the metallic regime with

1 pp 11,13

Recently, time-resolved photoluxninescence studies of
highly photoexcited Si (Ref. 14) and Ge (Ref. 15) at tem-
peratures near the critical point of the EHL have reported
the anomalous time dependence of the PAL line shape of
an expanding electron-hole plasma. This has been inter-
preted as evidence of the existence of a second metallic
condensed phase of electron-hole pairs existing above the
critical temperature of the EHL and at lower densities
than the EHL critical density in these systems.

The luminescence feature has also been interpreted as
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coming &om polyexcitons, or complexes of more than
two excitons bound to each other. Such large exciton
complexes should be stably bound in Si and Ge due to the
highly degenerate conduction and valence band edges in
these materials, reducing the antibinding effects of Fermi
statistics. However, the thermodynamics of the exciton
gas inhibits the formation of these larger complexes ex-
cept at fairly high densities. Luxninescence from polyex-
citons formed out of the expanding plasma in this ex-
periment would inhabit roughly the same region of the
photoluminescence spectrum and exhibit similar time de-
pendence as that of the condensed plasma line reported
A recent study of green-light photoluminescence associ-
ated with simultaneous recombination of two electron-
hole pairs has confirmed the existence of polyexcitons
(PE's) in Si,~s with binding energies consistent with the
PE interpretation of the anomalous phonon-assisted lu-
minescence. However, it is difBcult to determine unam-
biguously the relative importance of electron-hole plasma
versus large molecular complexes in determining the PAL
spectrum in this region.

Theoretically the phonon-assisted luminescence of
polyexcitons is interesting for several reasons. The PAL
provides an experimental measurement of the momentum-
distribution of excitons and interparticle correlations in
excitonic systems. In particular the line shape of the X2
observed at low temperature ( 2 K) provides clean data
that can be directly tied to exciton-exciton correlations in
the complex. . Thus one has, at least for the biexciton,
a fairly detailed source of experimental information on
the biexciton ground state against which one may test
various theories. Data from larger PE's have not been
observed at temperatures low enough for clean observa-
tion; the high-temperature data (above T, for the EHL,

20 K in Si) are hard to resolve because of the kinetic
energy broadening of photoluminescence lines. Never-
theless, theoretical predictions of the line shape and os-
cillator strength of PAL luminescence &om polyexcitons
w'ould be useful in assessing the validity of the PE inter-
pretation of above-T, luminescence at intermediate den-
sities.

A line-shape calculation for the biexciton or X2 was
attempted by Cho, s who showed that the form of the
line shape could be determined &om the effective mass
envelope of the X2, he used a simple model for exciton-
exciton correlations to derive a form for the empirical
6t of the line shape. A more quantitative calculation of
the effective-mass envelope matrix element for the X2
line shape has been developed by Kulakovskii et al.
and Timofeev, using a generalization of the exciton ab-
sorption theory of Elliott and the variational theory of
Brinkman, Rice, and Bell. No calculations have been
performed for the X3 and X4 complexes to our knowl-
edge.

In general the quantitative calculation of the line shape
for the polyexciton is quite difficult, since it can depend
quite sensitively on the wave function. Accurate varia-
tional wave functions for the X2 have been difficult to
find given the very small binding energy which one is
attempting to account for and the important role of in-
terparticle correlations in accounting for this binding en-

ergy. The variational calculation of Ref. 18 obtained only
50Fp of the binding energy for the Xq as compared with
an exact Green's function Monte Carlo (GFMC) projec-
tion method. Recently we have used a modified Jas-
trow wave function to calculate the ground-state wave

function of PE's employing the variational Monte Carlo
(VMC) method to calculate integrals, 2~ obtaining about
85'%%u&& of the GFMC ground-state energy for the X2.

In this paper we report the theoretical calculation of
oscillator strengths and line shapes of the PAL spectra of
polyexcitons. We use the variational wave function de-
veloped in a previous paper and a generalization of the
overlap matrix element used in Ref. 2. Matrix elements
are calculated using Monte Carlo importance sampling
methods. The rest of the paper is organized as follows.
The second section gives a description of the general the-
ory of PE's and their recombination through phonon-
assisted luminescence, and Sec. III outlines the Monte
Carlo method used. Section IV outlines our results and
a brief discussion of errors, with a final conclusion in
Sec. V.

II. THEORY OF PHONON-ASSISTED
LUMINESCENCE FROM POLYEXCITONS

A. Polyexciton Hamiltonian

In the limit of weak interactions, one can represent
the single particle band excitations of a semiconductor
through the effective-mass approximation, in which they
are treated as point particles in an effective medium. The
Hamiltonian describing a complex of N electrons (with
coordinate subscripts i and i' and coordinates r) and
holes (subscripts j and j', coordinate s) in this effective
medium is given as

N ( 2 ) N t|'

2me j . ( 2m')

The effective masses m, and ms are determined by tak-
ing the spherically averaged curvature of the conduction
band at its minimum and the valence band maximum,
respectively. The interaction between particles is taken
to be the Coulomb interaction, screened by the static
dielectric constant eo, suitable for weakly bound com-
plexes. This equation is formally equivalent to that of
a finite complex of electrons and positrons interacting
through the Couloumb equation. Vhth a suitable choice
of units, the exciton Rydberg Ex = p,,ge /2e h, and
exciton Bohr radius ax = h /(2p, se2/e), one obtains a
dimensionless form of Eq. (I),

(2)
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In this case the only crystal-dependent parameter in-
volved is the electron-hole mass ratio 0 = ~, equal to
1 for the electron-positron system. The exciton Rydberg
obtained in the spherical approxiuiation, 12.88 meV, is in
fairly good agreement with the observed exciton ground-
state energy of 14.7 meV.

Despite the formal equivalence between the spherical
effective-mass Hamiltonian for electrons and holes in Si
and that for electrons and positrons, there is an impor-
tant difference between the two situations, the degen-
erate nature of the band edges of both the conduction
and valence bands, which leads to quite different physi-
cal behavior. For Si the uppermost valence band has a
fourfold degenerate J = 3/2 —like band maximum formed
&om spin-orbit coupled p orbitals and a conduction band
with six equivalent energy minima at nonzero wave vec-
tors in the [100] and equivalent directions. As a result,
up to four holes (or the filling of the j = 3/2 valence
band edge) and up to 12 electrons (up to the filling of
the six conduction band valleys) may inhabit the lowest

lying single particle states of a particular complex before
Fermi statistics force the occupation of states with higher
kinetic energy. The band-edge degeneracy results in the
stability of complexes of three, four, and possibly more
electron-hole pairs, complexes whose analogs in positron-
electron systems would not be bound. Complexes of up
to five pairs have been observed in Si with measured ex-
citon binding energies of 1.36, 3.83, and 6.34 meV for the
two-, three-, and four-pair complexes, respectively.

B. Wave function

Since the binding energies of the polyexciton complexes
are small compared to that of the exciton Rydberg, a
reasonable starting point for building a variational wave

function is that of a system of N free excitons:

(3)

Qg(A) =
N N,

~ ~

~ k I 4 1

i =Xi'&i

Np,
P

fhh(s» )

N, N],

Here R = (ri, ..., riv, s~i, ..., siv ), and r, z is the distance
between the ith and jth particles. The forms for the pair
correlation functions f„, fi, h, , f,g, and fx are described
in Ref. 21.

Variational calculations for the ground state of the
electron-hole liquid have been made in a fermion hyper-
netted chain approach using the Jastrow wave function
multiplied by electron and hole Slater determinants.
In the macroscopic homogeneous liquid, this approxima-
tion is fa.exible enough to obtain exact limiting behavior
on the long-wavelength and short-wavelength behavior of
the partial structure functions. Ground-state energies of
the Fermi hypernetted chain approach were quite close to
those using VMC and GFMC methods for the electron
gas.

For a finite electron-hole system, the Jastrow wave
function lacks the Hexibility to allow for the unscreened
excitonic correlation one expects for electron-hole pairs at
the surface of the polyexciton in addition to the screened
electron-hole correlation appropriate for high density re-
gions. The use of the free exciton wave function gatv»
allows the incorporation of this kind of correlation &om
the start. In particular, one obtains the correct limit-
ing behavior of the wave function in the limit that any
given electron-hole pair is taken away &om the complex.
The use of this form improves the variational estimate
of the binding energy considerably as compared to that
from the Jastrow wave function. We obtain 2.053(3) Ry
for the biexciton total energy as compared to the exact
GFMC result of 2.060(l) Ry, and 2.019(5) Ry using the
Jastrow form alone.

(4)

where

~(r) = f»(r) If.~(r) (5)

where P»o is the exciton ground state and the sum gp
is over the permutation of electrons and holes. For com-

plexes of less than four holes (and 12 electrons), the spa-
tial component of the ground state is symmetric.

In order to include the correlations induced by the
Coulomb interactions between excitons, additional pair
correlation functions are introduced: f„, f,h, and Jhh,
for electron-electron, electron-hole, and hole-hole inter-
actions respectively. In addition the excitonic wave func-
tion P» is replaced by a form f» which allows for the
possibility of screening of the exciton by the other par-
ticles. The resulting correlated wave function may be
written as

C. Theory of phonon-assisted luminescence

In indirect-gap semiconductors the Brst-order optical
emission process with the Ak = 0 selection rule has a
very low probability for most excited states of the semi-
conductor, typically involving a few electrons and holes
concentrated near the band edges. Conservation of mo-

mentum requires either the electron or the hole or both
to have a k vector far &om its band edge, involving elec-
tronic states with a very low probability of occupation.
Recombination is possible through various second-order
processes, usually involving the simultaneous emission or
absorption of a phonon to conserve momentum. The
phonon momentum contributes an additional degree of
freedom which relaxes the k = 0 selection rule and allows

a continuum of transitions from any given initial state or
to any final state, contributing to an enhancement of the
oscillator strength that partly compensates for the re-
duced second-order matrix element. The phonon has the
desirable property of acting as a probe of the momentum
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5 K2
hv + hO(q+ Kp) = NEs p + + Ep[XN]MxN

5 k2

2Mx (N —1)

Ep [XN—1]~ (7)

One can also consider a hole scattered by a phonon of
nearly opposite moxnentum q+ Ko to recombine with
an electron in valley I. This process produces the same
conservation relations and thus the same line shape and
efFective-mass overlap as the electron scattering pro-
cess, but in general may have a different total oscillator
strength.

The transition probability for phonon-assisted
electron-hole recoxnbination or creation for a given pho-
ton &equency

distribution of the electronic state in question, with the
results of the "experiment" observed by the emission of
light.

In comparison to the recombination line of the &ee
exciton (FE), the PE line experiences broadening as a
result of the more complicated internal structure of the
complex. That is, in addition to the high-energy Boltz-
mann tail characteristic of the FE line, the PE line has an
additional low-energy tail &oxn processes in which the re-
maining N —1 particles absorb some of the energy of the
initial complex. As observed by Cho, this recoil effect is
characterized largely by the long-wavelength correlations
between the recombining pair and the rest of the system,
which are described by the effective-mass envelope.

In detail, the phonon-assisted process X~ -+ X~+q +
hv + hO is described as follows. As phonon emission
and absorption have threshold energies separated by
2hO(Kp) we need consider only emission here. We con-
sider an initial state of a polyexciton with N electron-
hole pairs inhabiting various conduction band minima at
Ko and the degenerate valence band at K = G. The
total momentum of the system is P,. Kp + K, i.e. , the
sum over the momenta of the conduction band minima
plus a sxnall deviation in momentum due to the center-
of-mass motion. The total energy of the complex is
NEs ~ + h K2/2MxN + Ep[XN], that is, the minimal
energy required to create N electron-hole pairs across an
energy gap Es ~, plus the kinetic energy of a complex
with total inass NMx, plus the internal energy Ep[XN]
of the complex in its ground state. In a typical second-
order perturbation theory approach, an electron assumed
to be in valley 1 is scattered by the emission of a phonon
of momentum q —Ko to a point in k space near the
valence band maximum. Subsequently, an electron-hole
pair recombines emitting a photon with zero momentum
and energy hv. The final state consists of N —1 pairs
with total momentum P,. Kp —Kp+ k, and internally is
assumed also to be in its ground state, with internal en-
ergy Ep[XN+i]. Conservation of momentum and energy
give the following relations:

q=K —k,

p(v) = 2xC(E ) ) ) ) P(K) iM; y i

K k q

xb(E; —Ey —hOp —hv).

It involves the sum over final states (k, q) and an average
over initial states K, occupied with probability P(K).
From this expression and the conservation laws (7) the
line shape for phonon-assisted luminescence, after elimi-
nating the phonon xnomentum q by momentum conser-
vation, can be written as

I(hv) = ) exp
~

—
i ) iM(k, K, Kp)i

( n'K'
2Mx N&T )

t' r'K'
xb — + E[XN]

i 2MxN 2MxN —1

E[XN+—i] + Es p
—hO(Kp) —hv)

iM(k, K, Kp)i = iD,„(Kp)i iN(k, K)i . (10)

An explicit derivation of this form using the efFective-
mass approximation is discussed in the Appendix. One
obtains a generalization of Elliott's formula for radiative
recombination of a direct-gap exciton, allowing for the
simultaneous emission of a phonon to conserve xnomen-
tum in the indirect-gap case.

The effective-mass overlap for phonon-assisted radia-
tive recombination is given by

The distribution of kinetic energies of the initial system
P(K) has been take " ' e a standard Boltzmann distri-
bution for an ¹ xcicon complex with total mass NM~
derived from the total exciton mass Mx = m, + ms.
We have ignored the possible thermal population of ex-
cited internal states in this expression. The PE systems
here are characterized by large kinetic energies, and one
expects excited states only on the order of the binding
energy. At the temperatures relevant to the observation
of PE's (T ) 10 K) this effect could be important for
the X2 given its small binding energy, but in this case it
may be more reasonable to consider these excited states
as perturbations of the exciton line than as an intrinsic
part of biexciton luminescence.

The characteristic width of the PE recombination line
is expected to be on the order of the momentum distri-
bution of electron-hole pairs in the polyexciton complex,
which should be dominated by a small region bq I/ax
about Kp. Intrinsic phonon and optical matrix elements
do not vary appreciably except over a momentum range
on the order of the width of the Brillouin zone and thus
may be considered as constants over the range of mo-
menta important to the matrix element. The matrix el-
ement then can be separated into that for the phonon-
assisted radiative recombination of an electron and hole
situated at the conduction and valence band extrema,
multiplied by an efFective-mass overlap integral that in-
corporates the dependence of the matrix element upon
the momentum of the pair:
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%(k, K) = N( N'K —k)

dr1dr2 drNds1ds2 .dsNPN(r1, r2, . . . , rN, s1, s2, . . . , sN)

xe~'~ ~ "l'~ ' "-'ijb(r1 —s1)QN 1(r2, . . . , rN, s2, . . . , sN),

where the r, and s, are electron and hole coordinates re-
spectively, and pN and pN 1 are the ground states of the
N- and N —1-exciton complexes. The center-of-mass co-
ordinates for the recombining electron-hole pair, denoted
Rq, and the N —1 remaining pairs, R~ q, are coupled
through a recoil momentum & K —k. This recoil mo-
mentum describes, in the center-of-mass reference frame,
the equal and opposite momenta of the two final-state
components of the system. After integrating out the cen-
ter of mass of the initial state, it is the only free variable
remaining in the recombination process. The efFective-
mass matrix element essentially measures the probability
that the XN complex in its ground state can be found in
a state with a coalesced electron-hole pair carrying mo-

mentum q = K —k and the other N —1 excitons forming
an XN+1 ground state, in a sense providing a "snapshot"
of the N-pair system at the instant of recombination.

Since we are calculating an overlap between the N-
pair and N —1-pair states, one may be led to think of the
electron-hole pair recombination, with the ensuing cre-
ation of a Bose particle (the photon) in terms of the cre-
ation of some kind of quasiparticle (or quasipair) hole. In
a Bose many-body system, the quasihole orbital formed
by removing a particle from an N-particle complex can be

defined by taking the overlap between the ground states
of the N- and N —1-particle complexes:24

1
Q(r) — dr2 ' ' ' dr N4'N 1(r—2 ~ rN )

Z

xdN(r —RN-1, r2, , rN),

where a coefBcient Z is included to normalize the orbital.
In contrast to a fermion system, the ground state of a
Bose system has only one quasiparticle state, reQecting,
in a Hartree picture, the occupation of the same orbital
by all the particles. Transitions involving the emission
of particle in a weakly interacting system would then be
dominated by the creation of this quasihole state, that is,
be dominated by the ground-state to ground-state tran-
sition, with the total transition strength associated with
the quasihole given by Z.

In our case, we are considering the decay of an electron-
hole pair into a boson, within a system that is symmetric
to the exchange of electron-hole pairs, so we should ex-
pect a similar behavior. If we consider the analogous
expression for subtracting an electron-hole pair from an
N-pair system we get

1
Qx(r~ s) dr2 ' ' ' drNds2 dsN 4N 1(r2~ ~ ~ ~ rN, —s2, . . . , sN)~X

xWN(r —RN —1, r2, . . . , rN, s —RN —1,S2,SN)

The recombination probability ~X(k)~ can be rewrit-
ten in the formalism of a quasiparticle transition in terms
of this "quasiexciton" orbital as

~N(k)
~

= drdr' exp[—ik (r —r')]
v'~x

xQx(r')Qx(r) (14)

where the dependence of Q» separately on the electron
and the hole coordinate is suppressed, and the norm Z~
is given by an integral over ~Q(r)~ . The probability of
the decay of the ground state of the N-exciton to an
N —1-exciton complex is thus determined by the proba-
bility of finding an electron-hole pair with momentum k
in the associated quasiexciton orbital, multiplied by an
overall transition strength Z~.

The possibility exists that the final state of the system
is not an intact X~+q complex in its ground state, but

that it absorbs internally some of the energy of the re-

combination process. Possible alternate final states are
the N —1 complex in a bound excited state, states with
one or more electron-hole pairs split oE into &ee exciton
states, and, at higher energies, states with free electrons
and holes. Such states are in principle not as important
to recombination as the ground state.

The efFects of excited 6nal states can be estimated &om
the integrated intensity of the phonon-assisted line:

I = I hv hdv.

For the range of frequencies important to the phonon-
assisted process, the major contribution to this integral
is &oxn the effective-mass matrix element. The intensity
Ioo &om ground-to-ground processes is given by an inte-
gral over final states k of the ground-to-ground transition
probability:
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I&& = Zx = ) [N"(I(,)]'.

In comparison, one can calculate the total intensity of the
line by summing not only over the final-state center-of-
mass momentum k, but over all possible internal states
n as weQ. The total intensity Iq t is then simply given by

(17)

where N "(I(:) is the recombination matrix element be-
tween the ¹ xciton ground state and the nth excited
state of the (N 1) co—mplex. The total intensity It q can
be shown to be proportional to the electron-hole two-
particle density at r = 0, p, h, (0):

I~.~ =):).(6(r' —s.))

= p.h(0) (IS)

The total radiative lifetime of the complex is then ob-
tainable from Iq~q.

The electron-hole two-particle density p,g(r) is defined
as the average density of electron-hole pairs at a distance
r from each other,

N, NI,

ps[)r —s(),= J d
+ ) ) (6(r; —r)b(s, —s)).

N, Ng

For a homogeneous system such as the EHL, the pair
distribution function g,g(r) is obtained by dividing p, g
by the density of electrons squared. The lifetime is then
usually written in terms of the density squared multiplied
by the enhancement factor g,q(0). ' For the purposes of
calculating p,g(0), it is convenient to define a two-particle
density in the center-of-mass reference kame,

dR'dS' g (r, R', r, S') Q, (R', S')
qx(r, r) =

(22)

As a shorthand the electron coordinates not involved in
the transition are denoted collectively by R', hole co-
ordinates S'. This calculation is separated into that of
the overlap integral using unnormalized trial wave func-
tions obtained &om a VMC calculation, and that of the
normalization of each wave function. The unnormalized
overlap calculation is sufBcient to obtain the PAL line
shape to within an arbitrary constant; the normalizations
are necessary for a quantitative estimate of the total os-
cillator strength.

The overlap integral for the quasiexciton orbital for a
given electron-hole pair in an N-pair complex, as a func-
tion of distance from the center of mass of the (N 1)—
remaining pairs, can be done in the following manner. 24

One samples the final-state probability density ~QN
over the (N —1)-complex coordinates R' and S' by Monte
Carlo techniques and calculates the wave function for
the N-pair complex formed by inserting an electron-hole
pair at a distance r &om the center of mass of the other
particles. One obtains an estimate of the overlap up to a
normalization factor by averaging the ratio of the N-pair
to the (N 1)-pair w—ave functions over a set of configu-
rations (R', S'),

O[QN, QN ~](r) =
(Rr S'}

Repeating the calculation for various values of r for the
same set of configurations (R', S') yields an estimate of
the quasiexciton orbital as a function of r.2~ At the same
time, by taking the average expectation value of the ra-
tio squared of the two wave functions, one obtains an
unnormalized estimator P[QN, QN &] of the density of
coalesced electron-hole pairs, p,s(r, r), as a function of
distance &om the center of mass.

p~p, (r, s) = ) ) (6(r; —RN —r)6(sz —RN —s)).

(20)

P[vpN, QN ~](r) =
(a', s'}

(24)

The density of coalesced electron-hole pairs may be ob-
tained as an integral over the electron and hole coordi-
nates of this function for the case r = s:

A numerical integral over the coordinate r gives the total
density of coalesced electron-hole pairs, p,g(0).

The normalized overlap and coalescent electron-hole
density functions are

p.s(o) = f dry s(rr). , (21)
qX(r, r) = N O[QN, QN )]

Representation of this quantity as an integral, rather
than a limiting case of a function, allows for its calcu-
lation by Monte Carlo methods with greatly improved
statistics.

and

h( )
]]@ ~]g

[0N PN 1]—(26)

III. MONTE CARLO CALCULATION
OF MATRIX ELEMENTS

We have the calculation of the following overlap matrix
element:

The N term accounts for the sum over all possible
electron-hole pairs of the matrix elements 0 and P
calculated for the recombination of one specific pair.
N[@N, @N q] = ]]@N ) (]2/(]@N)]2, is determined by im-
portance sampling techniques. 2 A reasonable impor-
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tance sampling probability density was obtained in terms
of a model quasiexciton orbital Fx(r, s):

1.2

1.0
X2, O = 10

ly~(B, S)l = ) II'x(Pri, Ps, ) I

P P

x lgN, (Pa', Ps') I',

where B and S denote the coordinates of all N electrons
and holes, and P indicates a permutation of electron and
hole coordinates in order to symmetrize yN. The estima-
t» of N(&~ &~ i] usi-ng l~~(» ~) I' «sample (» ~}
1S
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IV. ANALYSIS AND DISCUSSION

A. Recoil matrix element

FIG. 2. Phonon recoil momentum probability distribution
IN(k)I for polyexcitons. Momentum is scaled by a factor
of ~ to show scaling behavior. Triangles denote the X2
complex line shape using the variational theory of Brinkman,
Rice, and Bell (BRB), taken from Ref. 2.

1.2

1.0

l 1
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We have calculated the quasiexciton orbital Qx(r) and
coalesced electron-hole pair density p, ~(r, r) using the
exciton-gas-Jastrow polyexciton wave function [Eq. (4)].
Separate calculations of about 10000 samples each were
done for a coalesced electron-hole pair at a fixed distance
&om the center of mass of the other N —1 pairs. Errors
for each point were quite small, in most cases less than
1%.

In Fig. 1 we plot quasiexciton orbitals Qx(r) for com-
plexes with two, three, and four electron-hole pairs as a
function of distance &om the center of mass of the N —1
remaining pairs. The orbitals are almost identical for

distances less than an exciton radius, with the X2 show-

ing a much longer asymptotic tail, consistent with its low
exciton binding energy. Figure 2 shows the recoil prob-
ability IN(k)l obtained from the square of the Fourier
transform of Q(r). Here it is convenient to plot IN(k)I2
against the scaled momentum k' =

N zk. In this case
we see that the recoil momentum distributions of each
complex in terms of k' are nearly identical. The func-
tion N(k') is the Fourier transform of the quasiexciton
orbital [Eq. (13)] defined not in terms of the distance of
the quasiexciton &om the other N —1 pairs of the com-

plex, but &om the center of mass of the total N-pair com-
plex. As mentioned earlier, the latter distance is equal
to that of the former scaled by a factor of & . Thus
each successively recombining electron-hole pair inhabits
essentially the same quasiexciton orbital as the previous
one, with the recoil energy of the final state changing
each time only because it has less mass.

Kulakovski et al. have used the variational wave func-
tion of Brinkman, Rice, and Bell to obtain the recoil
momentum distribution for the X2, with the effective-
mass overlap matrix element [Eq. (11)]. Their results
are shown for comparison in Fig. 2. The recoil momen-
tum cutoff is some 50—100'%%uo larger than that obtained
with our wave function. It is probable that the large
disagreement of the two matrix elements stems &om the
same kind of diKculty that underlay the calculation of
the BX lifetime in Ref. 23.

I a a a a I a a a I—0.
0.0 1.0 2.0 3.0

~/~x

a a I a a a a I

4.0 5.0
a

6.0 B. Zero-temperature approximation

FIG. l. Quasiexciton orbital for polyexcitons at zero
electron-hole separation, measured as a function of distance
from the center of mass of the rest of the complex. Normaliza-
tion is arbitrarily set by 6xing the orbital to 1.0 at the origin.
Statistical errors are indicated by horizontal bars.

The role of the recoil matrix element in determining
the PAL line shape is most marked in the limit of zero
temperature. In the zero-temperature limit of Eq. (9) the
Boltzmann factor is replaced by a b-function at K = 0
as the probability distribution for the initial X~ state.
The resulting expression for the line shape is given by
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( h'k'

where p is the photon energy shifted so that its zero lies
at the transition energy for the bottom of the X~ band
(taking the XN total momentum K = 0) to the bottom
of the X~+q band (total momentum k = 0):

p = hv + hn(KQ) —Eg p
—Ep[X~] + Eo[Xpg y].

At T = 0, only the kinetic energy of the final state plays
a role in the line shape, and is proportional to the re-
coil energy between the phonon and (N —I) complex.
The PAL line shape thus becomes a direct measure of
the momentum distribution of electron-hole pairs in the
polyexciton.

Zero-temperature PAL line shapes for polyexcitons are
shown in Fig. 3. The heavier masses of the larger XN
bring their line shape widths down to that of the biex-
citon, but have generally a longer low-energy tail. The
predicted X2 linewidth at half maximum for Si is roughly
0.7 meV assuming an exciton energy of 14.7 meV and ex-
citon radius of 44.3 A; this compares moderately well
with the biexciton linewidth of 1.26 meV taken &om
the low-temperature experimental data of Thewalt and
Rostworowski. ~

The T=O line shape applies for temperatures corre-
sponding to energies smaller than the typical recoil width
of the PAL line, on the order of 10 K in Si. This is a tem-
perature regime for which the EHL dominates the spec-
trum on the low-energy side of the &ee exciton line, and,
in practice, only the biexciton line has been observed un-
der these conditions. The efFect of temperature on the
X2 line shape has been studied by Cho. At temperatures
low compared to the recoil energy width, the line shape
is convoluted with a Boltzmann distribution, adding an

15.0

exponential tail of width kT on the high-energy end of
the line shape shown in Fig. 3. With increasing tem-
perature, the growing Boltzmann tail slowly shifts the
peak energy of the line to higher energies, until for tern-
peratures comparable to the recoil energy the line shape
is roughly symmetrical and centered at the high-energy
edge of the zero-temperature line (p = 0). Given similar
linewidths for the X3 and X4 complexes, one may expect
a transition to the high-temperature line shape to occur
at roughly the same temperature as for the X2. With a
recoil energy of about 1.25 meV for Si this translates into
a temperature of 15 K, close to that of the EHL critical
temperature. One expects polyexciton PAL luminescence
near the EHL critical temperature to be characterized by
broad, nearly symmetrical lines, with widths of 2—3 meV
each. As the separation between each line is also on the
order of a few meV, resolution of the luminescence of
each individual line should be quite poor under practical
conditions.

C. Oscillator strength of PAL

Figure 4 shows the (unnormalized) density of coalesced
pairs in an N-pair complex as a function of pair distance
&om the center of mass of the rest of the complex. We
calculate the total density of coalesced pairs &om the
integral of this function, divided by the normalization
factors discussed in Sec. III. In Table I we show the
integrated emission intensity Ipp &om the ground-state
to ground-state process used to estimate the phonon-
assisted line shape, and the intensity It ~ summed over all
possible excited states of the final exciton complex. The
deviation &om 1 of the ratio of the ground-to-ground
intensity to the total intensity measures the relative con-
tribution of internally excited final states to the total
observed emission. This is seen to be small. Alternately
one may interpret this as determining the extent to which
the transition is explainable in terms of the quasiexciton
model for the recombining electron-hole pair. In partic-
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FIG. 3. Zero-temperature line shape for phonon-assisted
luminescence from polyexciton complexes. Frequency mea-
sured relative to that of luminescence from the X~ band edge
to the X~~z band edge (zero kinetic energy for both states).
Units are in terms of m, E»/M», the kinetic energy of an
exciton with center-of-mass momentum a& .

—0.2
0.0 1.0 2.0

r/ax
3.0 4.0

FIG. 4. Probability of coalescence of an electron-hole pair
in the ¹ xciton complex, as a function of distance from the
center of mass of the remaining N —1 pairs.
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TABLE I. Integrated emission intensities for PAL from polyexcitons. Listed are number of
excitons, integrated ground-state to ground-state intensity for electron-hole recombination (Ioo),
integrated intensity summed over all final states (I&,), the fraction of the total intensity taken up
by the ground-to-ground channel, and the total intensity per exciton. Also shown is the electron-hole
contact density p,'„(0) extrapolated from the electron-hole two-particle density function. Errors in
the last digits are shown in parentheses.

N
I

Ioo

0.7180(20)
1.139(6)
1.920(8)

Itot

0.3183
0.7216(20)

1.328(5)
2.080(8)

Ioo/Aor.

0.9948
0.8579
0.9229

I.ii/N
0.3183

0.3608(20)
0.4428(27)
0.5200(20)

p, i, (0)

0.3183
0.733(15)
1.317(22)
2.096(32)

ular, we observe a very close fit for X2 recombination
by the transition to the ground state of the exciton. One
possible explanation of this e8'ect is that the exciton exci-
tation spectrum is characterized by a large gap in energy,
0.75E~, between the ground and first excited 2p and 28
states. The X2, characterized by a very weak exciton
binding energy of 0.05E~, should not mix in these ex-
cited states strongly. In addition, for configurations in
which one pair is coalesced, our trial wave function bi-
ases the remaining electron-hole pair towards the exciton
ground state. One expects that excited-state mixing will
be less for the restricted region of configuration space im-
portant for pair recombination than on average. As final
states, the X2 and X3 should have states at much lower
excitation energies, starting at around the binding energy
of the complex, consisting of low lying exciton scattering
states or perhaps a weakly localized exciton bound by
van der Waals interactions to the rest of the complex.
Thus it is not surprising that final-state eKects are more
important in the larger complexes.

One can compare the oscillator strength of an N-pair
complex to that of an equivalent system of N indepen-
dent excitons by considering the oscillator strength per
pair Itot/X of each complex to the oscillator strength of a
single exciton. Physically, this gives the density of holes
in the vicinity of a given electron and is proportional to
the oscillator strength for that electron to recombine with
one of them. In the case of N noninteracting, isolated ex-
citons, each electron may recombine with the hole bound
to it in the exciton state with probability proportional
to ~gx(0) ~2 and has essentially no probability of recom-
bining with the other holes; the oscillator strength per
pair of the noninteracting system is just the coalescence
probability 1/x for the exciton ground state. The oscilla-
tor strength per exciton for polyexciton recombination is
listed in Table I. We observe an oscillator strength that
increases linearly with the number of pairs as

Itoi/N = 0.8~ + (N —1)0.11.

Each electron in the polyexciton is strongly correlated
with one hole, as in the isolated exciton, and experiences
a weaker, screened, correlation with each of the remaining
holes in the system.

Finally we note that the total oscillator strength It t is
identical to p, l, (0), the electron-hole two-particle density
for r = 0, defined as

This factor can be independently calculated using a sim-
ple binning procedure. One can sample the variational
wave function giv to obtain M configurations of the N-
pair polyexciton and calculate the &action of electron-
hole pairs that fall within a range Ir, r +b) of each other.
The result is a histogram plot of the two-body density

p,g(r) Using t. his method to estimate p,p„(0) is quite in-

efBcient since the large majority of particle pairs sampled
will lie at distances outside any reasonable bin radius 8

at the origin. However, cusp conditions on the two-body
density at small distances can be utilized to extrapolate
the distribution function to a reasonable value at zero.
Estimates for the coalescence density p, s(0) using this
extrapolation method are shown in the last column of Ta-
ble I. These are in good agreement with the coalescence
densities measured by the importance sampling method
outlined in this paper, providing a strong check of the
method.

D. Discussion

Two main. possibilities for error in the line shape and
integrated intensities occur. One is the result of inaccura-
cies in the variational wave function used to describe the
efFective-mass ground state. In particular, the asymp-
totic behavior of the polyexciton wave function as one
removes an electron-hole pair far &om the rest of the
complex has been only roughly modeled. The discrep-
ancy between our calculated linewidth and that observed
experimentally is at least to some degree caused by the
choice of our trial wave function. Our model is exact for
loosely bound complexes and deals only approximately
with the three- and four-body correlations that should be
important for short-range configurations, and account for
a significant fraction of the binding energy. As a result
the variationally optimized wave function obtained with
the current model should overestimate the volume of the
PE and underestimate its recoil linewidth. A previous
study of the eKect of correlations on the bound exciton
lifetime shows that their inclusion greatly e8'ects the re-
combination matrix element, with a variation of almost
two orders of magnitude &om a Heitler-I ondon model to
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a nearly exact wave function.
The other consideration is the accuracy of the efFective-

mass model itself. To what extent is the effective-mass
calculation of p, i, (0) reasonable considering that it is ac-
curate only in the long-wavelength limit? One expects
some distortion of the electron-hole wave function when
the electron and hole are within a unit cell or two of each
other, precisely the region which determines recombina-
tion matrix elements. As a result, the total lifetime mea-
surement cannot be considered to be quantitatively ac-
curate, and may be off by an order of magnitude without

significant changes in the binding energy of the complex,
which would depend much more on the behavior of the
wave function at average electron-hole separations. On
the other hand, the line shape should not sufFer as much
&om this limitation. It depends on the relative change in
the overlap matrix element as one pulls the recombining
electron-hole pair away &om the rest of the complex, and
is peaked about wavelengths of several exciton radii. The
presence of such long-wavelength correlations with other
particles should not infiuence too strongly the nature of
the correction of the effective-mass matrix element due
to the electron-hole interaction at very short distances.
This kind of correction can then be absorbed into the
definition of the phonon matrix element D,„without too
much consequence to the calculation of line shapes or
intensity ratios such as Iso/It~t.

phasis of the small-wave-number components. The devi-

ation of the band structure of Si from the spherical bands
considered here should also afFect the observed linewidth.
In general, the experimentally observed binding energies
for the complexes are deeper than their theoretical coun-
terparts, leading to the expectation that the typical recoil
energy should be larger and the PAL linewidth broadened
with realistic band-structure effects. At present, the ex-
perimental data for the larger complexes cannot be easily
compared with since they include the unresolved con-
tributions of several species of polyexcitons, most likely
with a background of electron-hole plasma as well. Fur-
ther experimental probes of the metal-insulator transi-
tion in electron-hole plasmas may be necessary to under-
stand the nature of the intermediate density regime.
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V. CONCLUSION

This paper reports the calculation by variational
Monte Carlo methods of the line shape and oscillator
strength of the phonon-assisted photoluminescence &om
polyexciton complexes. The polyexciton PAL line shape
of polyexcitons is found to be modeled well by the treat-
ment of the recombining pair as an uncharged Bose quasi-
particle. In a sense, this is caused by the projection of the
properties of the phonon onto the recombining electron-
hole pair in the phonon-assisted transition. We find, as
expected for a quasiexciton picture, that the ground-state
to ground-state transition is the dominant channel for
phonon-assisted decay. In addition, the probability den-
sity of the quasiexciton orbital varies only slightly with
the number of excitons in the complex, allowing for a very
simple model of the line shape. Calculated line shapes
show a rough independence of the number of electron-
hole pairs in the complex, with oscillator strengths per
pair increasing gradually with number of pairs.

The line shapes calculated here are a starting point to-
wards a quantitative characterization of the luminescence
&om these complexes. There are two lines along which
improvements can be made: employing a trial wave func-
tion that has a more accurate treatment of interparticle
correlations, and the inclusion of realistic band-structure
effects such as anisotropies and spin-orbit and valley-
orbit interactions. Like the bound exciton wave function
we have previously studied in Ref. 23, the wave function
probably overestimates the volume of the center-of-mass
motion of the recombining exciton about the rest of the
complex. As a result, the peak intensity of the PAL line
shape is probably overestimated with particular overem-

APPENDIX: DERIVATION OF THE EFFECTIVE
MASS PAL MATRIX ELEMENT

V = ) V,s(k„kg, q, 0) ai„bi,gdtcot,

ke,kg, q

(Al)

where a, 6, c, and d are electron, hole, photon, and
phonon destruction operators respectively.

Assuming this form of interaction, the phonon-assisted
recombination matrix element may be determined us-
ing fnst-order perturbation theory techniques similarly
to the single-photon emission process in direct-gap re-
combination. In particular, consider an indirect-gap ex-
citon of total momentum K and internal excitation state
denoted by ~,

A derivation of the matrix element for phonon-assisted
luminescence is easily obtained starting with a minimal-
ist model of the phonon-assisted radiative recombina-
tion in which an electron-hole pair with total momentum
k, +kg ——q is annihilated to create a photon-phonon pair
with the same total momentum. We consider a general
"black box" form for this interaction, V,ir(k„kh, , g, 0),
assuming nothing about the detailed nature of the sepa-
rate phonon and photon emission processes but conserva-
tion of momenta, e.g. , ignoring umklapp processes. This
kind of interaction can be derived by summing over the
intermediate states of the second-order perturbation the-

ory process described in Sec. II or &om alternate models
of phonon emission such as the exciton-phonon coupling
model used by Cho. This interaction can be treated as a
perturbation to the polyexciton Hamiltonian of the form
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]r, K) = ) I" [(k —k')/2]
k,k'

xb(K, k+ k') a~t +„bkt „,]0), (A2)

where electron and hole momenta have been de6ned rela-
tive to those of the conduction and valence band extrema,
k,o and k 0. One obtains for the matrix element for re-
combination to the crystal ground state

(0]Vtr]rt K) —) Vff(k p + k, k p + k, q, 0)
k,k'

xF [(k —k')/2] h(K, k+ k'). (A3)

At temperatures low enough for the exciton to be bound,
both the thermal distribution of the total momentum
K and the spread of relative momenta described by
the electron-hole correlation envelope F are of order
of an inverse exciton radius, a& . As with the direct
emission process, one can thus assume that the cou-
pling V,tr(k, o + k, k„() + k', q, 0) varies slowly over the
range of k and k' important for the determination of
the matrix element and can be represented by a constant
D,„=V(k„o, kd)). With this approximation and taking
a Fourier transform of the matrix element coordinates,
one obtains the following expression for the recombina-
tion matrix element:

( ~V O~ Ke)n= D,„fP (r ) erp(ik . R)d(r) dRdr.

~ (A4)

The effective-mass phonon-assisted recombination ma-
trix element is thus an extension of Elliott's theory for ex-
citon absorption, with the phonon playing the passive
role of relaxing the K = 0 constraint of the direct-gap
process.

The extension of {A4) for the transition matrix element
!

between the N-exciton and the N —1-exciton + phonon
+ photon complex proceeds as follows. For an initial
electronic state ]N, w, K), of N electron-hole pairs with
total momentum K and internal quantum number v plus

Nq phonons with momentum q and No zero-momentum
photons, and a final electronic state ~N —l, r', K'), the
matrix element is given by

M(K', q, K) = QNv + 1/No + 1(N —1, 7.', K'[

x ) V(k, q)a, +k b, k ]N, r, K). (A5)
k

To obtain an expression in (first quantized) coordinate
space for the Monte Carlo calculation, one may use the
expressions

(RS]N, &, K) = (rq, . . . , r)v, sq, . . . , stv [N, &, K)
= exp(iK Rtv)gP(r), . . . r rtv, sq, . . . , s)v),

(A6)

where RN is the center of mass of the N-pair system and
involves relative coordinates, and

(RS]at „bt, „ iN —1, r', K')

= S [exp(i z" rq) exp(i 2" sq) exp(iK' Rtv q)

xQ (r2, . . . , rtVr s2r. . . r stV)]r (A7)

where R~ q is the center-of-mass coordinate of the
N —1-pair complex and S is the symmetrization oper-
ator. Given that (t) is independent of Rtv ) and RN,
one can rewrite the second state in terms of three compo-
nents, one involving RN, another the distance between
the center of mass of the recombining pair and that of
the N —1-pair subsystem, R = "2" —RN q, and one
involving the relative coordinates of the single and N 1-—
pair states. The expression is then given by

(RS]a,+„b, , ]N —l, r', K') = S (exp[i(K'+ q) Rtv]exp[i( ~ q —&K') R]
2 2

I

x exp[ik {r) —sq)] 4i (r2, , rt((, s2, , slav) }. (A8)

The matrix element for PAL is now given by the inte-

gral over spatial coordinates B and S for the holes and
electrons of the product of the two terms (A8) and (A6).
One obtains, after integrating over the center-of-mass co-

ordinate R~, the expression for the internal recoil of
the electron-hole pair and X~+q complex as given by
Eq. (11) and a conservation of total momentum term
b(K'+ q —K).
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