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Density dependence of electron scattering at low density
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Several recent experiments have measured the rates of momentum relaxation and energy relax-
ation due to carrier-carrier scattering in GaAs as a function of density in three dimensions and in

two dimensions. This paper examines the power laws for the density and temperature dependence
of these rates based on the Boltzmann equation for electron-electron scattering, &om both analyt-
ical arguments and numerical calculations. The experimental scaling with density is deduced for
three-dimensional scattering over four orders of magnitude of density variation and two-dimensional

scattering over two orders of magnitude. The effects of frequency-dependent terms in the random-

phase approximation for the dielectric function are taken into account, as well as the effects of
electron-hole scattering.

I. INTRODUCTION

In the past few years, a number of experiments have
probed the rate of scattering of &ee carriers in semi-
conductors, primarily &ee conduction-band electrons in
GaAs, as a function of electron density. Extensive data
now exist on the rate of electron-electron scattering at
the conduction band minimum in bulk GaAs in the range
10 —10 cm, six orders of magnitude of density vari-
ation. In addition, similar data &om two-dimensional
quantum wells of GaAs now exist over two orders of mag-
nitude of density. The beauty of these experiments is
that, although the abaolute rate of scattering at a given
density is difficult to determine, the relative change of
the carrier-carrier scattering rate as density varies can
be measured extremely accurately. Measuring the rate of
carrier-carrier scattering in absolute units requires, first,
a measure of the absolute carrier density and, second,
knowledge of the absolute rate of scattering due to all
other processes. An absolute measure of carrier density
requires knowing the quantum efficiency of conversion of
laser photons to carriers as well as the excited volume of
carriers, both of which are difficult to measure to bet-
ter than a factor of 2 uncertainty. Assuming that both
of these are constant, however, the change in density of
Bee carriers depends simply on the change in the laser
intensity used to create them, which can be measured
very accurately. The change in scattering rate with den-
sity can be assumed to be entirely due to carrier-carrier
scattering, since the rates of electron-phonon scattering
and electron-impurity scattering are essentially constant
at low density. Therefore these experiments give a very
clean test of theories of charged-carrier scattering.

Although complicating factors exist, such as screening
of the electron-phonon interaction, elastic and inelastic
scattering with carriers trapped at impurities and de-
fects, and valence-band anisotropy, the theory govern-
ing these measurements to a large degree involves only
the pure electron-electron Coulomb scattering matrix el-

ement, since scattering of electrons with each other via
this process occurs much faster than all other processes,
in most experimental conditions. The theory of Coulomb
scattering is filled with difficulties however, and interpre-
tation of past experiments has been subject to a sense
of ambiguity, that no adequate theory for Coulomb scat-
tering exists which covers all these densities and temper-
atures. This ambiguity stems Rom two inherent prob-
lems with Coulomb scattering: (i) unscreened Coulomb
scattering has divergent cross section, and therefore care
must taken to use a valid theory of screening, and (ii)
solution of the full Boltzmann equation, which gives the
evolution of the particle distribution in time, is numer-
ically intensive, and therefore numerous approximations
of varying degrees of validity have been made.

Successful resolution of these questions would have ap-
plication not only to hot carrier scattering in semiconduc-
tors, but also to plasma physics on large scales. Direct
measurements of the rate at which electrons obtain a
thermal distribution following a perturbation are scarce.
Because Bee electrons can be "created" in a nonthermal
distribution nearly instantaneously in a semiconductor
by a laser pulse, however, and can be monitored opti-
cally thereafter, measurements in semiconductors may in
fact be the most direct way of supplying this information
for plasma physics.

In previous publications, ' I have presented a formal-
ism for numerically solving the Boltzmann equation for
Coulomb scattering of carriers, specifically as related to
measurements of electron-electron scattering on picosec-
ond time scale in bulk GaAs at ultralow densities. ' A
number of questions, however, have remained regarding
the density and temperature dependence of the scatter-
ing. In this publication, I discuss these dependences as
related to a variety of experiments and I address specifi-
cally two other studies of electron-electron scattering at
higher density, namely, a recent study of electron energy
relaxation in two-dimensional (2D) and 3D GaAs (Ref. 5)
and an earlier study of dephasing of electrons in 2D and
3D GaAs ~ 2
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II. MRITINC DOWN THE BOLTZMANN
EQUATIGN

A. Electron-electron scattering

We begin by examining only electron-electron scatter-
ing in a spherical band, e.g. , the GaAs conduction band
at zone center. As discussed at the end of this section, the
theory for electron-electron scattering can be generalized
to apply to electron-hole scattering as well.

Simulations of the evolution of an electron gas scatter-
ing are based on erst-order time-dependent perturbation
theory, which according to the golden rule gives the rate
of change of the occupation number f of a state k1 as

Of (k1) 2vr ).
k2, k~)

xh[E(k1) + E(k2) —E(k1 ) —E(k2 )]
&&[f1 f2 (& —f1)(& —f2)
-f1f2(I —f1 )(I —f2 )].

As shown in numerous works, including Ref. 7, the
relaxation-time approximation, which assumes a con-
stant matrix element Mq2~ 2, i.e., a single relaxation
time for all particles, gives a completely inadequate de-

scription of the evolution of a charged gas. The matrix
element Mq2~ 2 for charged particle scattering depends
strongly on the momentum and energy of the particles,
according to

1 4+e
121 2 y (K )K2

'I

where K = ~k1 —k1 ] is the momentum exchanged in the
two-body collision and Ru is the energy exchanged. The
dielectric constant e(K, u) must be obtained from many-

body calculations of varying degrees of approximation for
the polarizability of the system. Most numerical stud-
ies of carrier-carrier scattering have used the quasistatic
approximation for charged-particle scattering

e(K, O)/e~ =
I 1+ q,

' 'I

j
where qo is the quasistatic Debye-Huckel screening pa-
rameter, given by

is obtained, where n is the electron density. As reported
in Ref. 9, when the distribution f (E) is Gaussian instead
of Maxwellian, the value of qo is approximately a factor
of 3 lower than (5). It is therefore important to calculate
qo from (4) using the instantaneous distribution of the
electrons in a simulation instead of assuming a constant

ll

Numerical studies of electron-electron scattering have
tended to use (2) and (3), i.e. ,

l l6~'e /e
P2 (K2 + g2)2

(6)

for the square of the scattering matrix element, primarily
because it is simple to calculate. This quasistatic approx-
imation is actually the ~ ~ 0 and long-wavelength limit
of the more general random-phase approximation (RPA)
for the real part of the dielectric function e,

47re2 . f(k+ K) —f(k)
K2«E(k+K) —E(k)+ n

'

h2k2 h (k —K)2 5 (kK cos 8 —K )

Figure 1 plots the probability of a collision, proportional
to M2(K) given by (6), weighted by the energy ex-

changed AE h2kK, assuming K (( k. The function
is strongly peaked at K —qo/2, implying that the most
important scattering events for the thermalization of the
gas will have K with this value (thus justifying the as-

which predicts a resonance for

(4xe2n/e m)1~2, the plasmon energy of the gas. If
~ &( uz, the quasistatic approximation is valid. It turns
out, however, that typical energies exchanged in the ther-
malization of an electron gas at low density are compa-
rable to the plasmon energy, as seen in the following ar-
gument.

The energy exchange in a two-body collision is given

by

4n.e2 ~ Of [E(k)]
Mo

= g gg (4)

where f (E) is the instantaneous particle occupation
number and e is the high-frequency dielectric constant
of the material. The distribution f(E) is given by the
Fermi-Dirac distribution when the distribution is ther-
malized, which is identical to a Maxwell-Boltzmann dis-

tribution for a low density electron gas. VVhen a Maxwell-
Boltzmann distribution is used in (4), the result

C5

&I

0
K/q
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4me n
~ I T

I"IG. 1. The quasistatic Coulomb matrix element

M = 1/(K + qo) weighted by the average energy exchange

AE oc K.
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AE hk(qp/2)/m

vr3mk~T 4vre2n e m

2m e k~T 4xe2n (10)

2
'

i.e., the plasmon energy is comparable to the energy ex-
changed in a typical collision, no matter what the den-

sity and temperature (in the nondegenerate regime. ) We
must therefore look more carefully at the effect of the
plasmon resonance.

The RPA approximation (7) for e can be written

sumption K « k for qp « k, the low-density limit).
Taking K = qo/2, then, and cos8 at maximum, using
the Debye formula (5) for qo, and taking hk at a typical
thermal momentum gives

that only electrons with energy well above the average
will emit plasmons.

Figure 2(b) shows the same calculation for a Gaussian
energy distribution of the particles, which is a typical
early nonthermal distribution generated by a laser. In
this case, plasmon emission is prohibited for essentially
all of the particles. These two calculations show that (i)
the primary effect of taking the more general RPA ap-
proximation instead of the quasistatic approximation for
a thermalized distribution is to reduce the average screen-
ing by a factor of 2 or so, i.e., to increase the scattering
rate, while for a nonthermalized distribution the screen-
ing is slightly increased, i4 and (ii) plasmon emission will
not occur until the gas is substantially thermalized, when
a number of electrons occupy the high-energy tail of the
Maxwellian distribution. Since the RPA correction factor
is dimensionless, however, the density and temperature
dependencies of scattering rates deduced using the qua-
sistatic approximation will remain correct.

47re k2dk

K'.„(2~)s"('""~E
bk bk

(12)

where kk =
V (&+ K)r —k = Kcoek+Ke/2k Kcoek

Doing the integral over 8, assuming E = 52k2/2m, yields

4z e2 2k2dk df
(hu/K)/e~ = 1—

(hu/K)
4E(k)/k

( I (Eau/K) —2E(k)/ki 'I

i (ibad/K) + 2E(k)/k )
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which is the saine integral as in (4) except for a di-
mensionless logarithmic correction factor. Although the
log function has an infinity at fuu/K = 52k/2m, it is
integrable. Figure 2(a) shows the screening parame-

ter qRpA for a test particle with momentum hk', &om
(12) and (13), as a function of E' = 2m(tuu/K)2/52
5 (k'Kcos8'/K) /2m = E(k' cos8'), for a Maxwellian
energy distribution of the particles. This figure shows
that for most of the particles, the effect of the RPA cor-
rection is to reduce the static Debye screening parameter
by a &action which depends on the dimensionless ratio
of the scattering particle energy to the average energy.
A small fraction of the particles at high energy have a
negative value of qRp~ In this case the matrix element
diverges for K = ~qnp~~, which corresponds to plasmon
emission. In the limit k' )) k, i.e., E' )) k~T, the RPA
correction factor in 13) is proportional to 1/E', which
implies qRpA (x E', and therefore a divergence at en-
ergy Ru = fk k' cos8'q~J ~jm = const = hop. This result
is consistent with the conclusion of Pines and Bohm
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FIG. 2. (a) Heavy line: the screening wave vector qapA,
defined in the text, relative to the quasistatic screening wave
vector qo = qRPA(0), for the Maxwell-Boltzmann distribution
shown as the light line. (b) Heavy line: the screening wave
vector ~p~ relative to the quasistatic screening wave vector
qo = qapA(0), for the Gaussian distribution shown as the
light line.
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B. Electron-hole scattering

Scattering of electrons with holes involves essentially
the same equations as in the above discussion. The Boltz-
mann equation is altered by the addition of a term equiv-
alent to (1), but using fh and Eh, the hole occupation
number and energy, for the scattered particle with mo-

mentum k2. In addition, the integrand must be multi-

plied by a factor C(k2, k2 ) for the wave-function over-
lap of the anisotropic Bloch wave functions for the hole
initial and final states k2 and k2 . As discussed, for ex-
ample, by Wiley, for scattering of an electron with a
hole near zone center which leaves the hole in the same
(heavy or light hole) band, the matrix element (6) must
be multiplied by a factor (1+Scos2y)/4, where y is the
angle between the incident and outgoing hole momenta;
scattering of an electron with a hole which causes the
hole to move from heavy hole to the light hole band or
vice versa requires a multiplication factor of 3sin y/4.
Since, as discussed above, Coulomb scattering at low den-
sity heavily favors scattering with low momentum ex-
change, the value of y will typically be near zero, imply-
ing that scattering of an electron and hole which leaves
the hole in the same band has essentially the same cross
section as electron-electron scattering, while heavy hole—

light hole conversion due to Coulomb scattering is nearly
forbidden.

When the presence of holes is taken into account in the
screening, (7) is altered to

4xe
e(K, cu)/e = 1 —, ) C,p(k, k+ K)K2V~

k, n, P

f (k+K) —fp(k)
E (k + K) —Ep(k) + Ru

where the subscripts o. , P = e, t, 6 refer to conduction-
electron, light-hole, and heavy-hole bands. Cross terms
between the electron and hole bands are strongly sup-
pressed by the large band-gap energy in the denominator,
while cross terms between heavy and light hole bands are
supressed by the wave-function overlap factor discussed
above, so that the screening becomes simply

(K )/ 1 + lee, RPA + ll, RPA + hh, RPA
(15)

The three terms can be calculated separately from the in-

stantaneous electron and hole distributions. In the qua-
sistatic limit this leads to the conclusion that the total
screening is given by

fL~ A) Ah
&RPA ~ E + E +

@
(16)

Particle mass does not enter. At early times following
a laser pulse, when the hole population has much lower

average energy than the free electron population, this
would imply that screening due to holes will be more
significant than screening due to other electrons. Fig-
ure 2 shows, however, that if the hole population is sub-

stantially colder than the electron population, the contri-
bution of the holes to screening of the electron-electron
scattering will be negative and comparable to or reduced
in magnitude from the static value, partially canceling
the contribution of electrons to the screening and thus
increasing the scattering rate.

On the other hand, Kocevar and co-workers have ar-
gued, on the basis of comparison to molecular dynamics
calculations, that holes contribute far less to screening
of the electron-electron scattering than indicated above.
Their argument is that the holes cannot respond quickly
enough to the motion of the electrons to adequately
screen them, which is to say that the linear response
assumption of the random-phase approximation breaks
down on short time scales. This may be the case. Even
if holes do contribute to screening as indicated above,
however, the density dependence of the screening will
not be affected at early times in experiments with band-
to-band excitation, since the free hole density is propor-
tional to the &ee electron density generated via this ex-
citation method.

III. DENSITY DEPENDENCE
OF MOMENTUM RELAXATION

A. Low-density regime

Since the presence of holes does not aHect the density
dependence of monentum relaxation in band-to-band ex-
citation experiments, in the following we treat simply the
electron-electron scattering in order to deduce the basic
power laws. Taking the matrix element (6) in the qua-
sistatic approximation (remembering that rates deduced
this way will have to be multiplied by a dimensionless
RPA correction factor), the total scattering rate out of
some state kq can be written in the low-density limit as

2 V2

xh(kl + k2 —klI —k2~)

xb(E& + E2 —El ~
—E2~), (17)

where V is the volume and g is the band degeneracy.
Since this expresses the rate of scattering out of some
element of momentum space d3ki, one can call this a
momentum relaxation rate. It is common, however, to
define the "momentum relaxation rate" using the above
integral weighted by the factor (1 —cos0), where 0

cos kl kr /klkl is the scattering angle, so that zero
weight is given to elastic scattering which does not change
the direction of the particles. Equation (17) expresses
the "unweighted" momentum relaxation rate, or "total"
scattering rate. Since dephasing of the coherent quantum
wave functions of the particles is directly proportional to
this rate, it can also be called the "dephasing rate. "

Let us examine carefully the limit of this total scat-
tering rate, or dephasing rate, at low density. Substi-
tuting the matrix element (6) into (17), and ensuring

momentum conservation by substituting ki ——kq + E
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and k2 ——k2 —K, one finds that (17) reduces to

4

KdK
o (K'+ q')"

where k = (ki —k2)/2. The integral over K in (].g)
reduces to 1/2qo in the limit qp « k„, i.e., in the low-
density limit. This just recovers the well-known total
cross section for screened Coulomb scattering o„qq oc

1/k2qp2.

Since the occupation number f (k2) is proportional to
the density n in the classical regime, and (4) implies that
qp is proportional to n, this means that the total scat-
tering rate (17) is constant at low density. (Numerical
calculations of the same rate by a Monte Carlo method
also find a constant total scattering rate as density is
varied, 2i in agreement with this analytical argument. )
As discussed above, this does not change if RPA cor-
rections are included. This expresses a fact similar to
Olber's paradox for astrophysics —the 1/r potential im-
plies that in an infinite system, although the strength of
the interaction falls oH' at large distance, the number of
particles at that distance increases as r, so that the total
contribution remains the same. This unweighted momen-
tum rate does not tell the whole story about the electron
gas thermalization however. The momentum relaxation
rate weighted by (1—cos 8), which is related to transport
measurements, does fall with density —in the low-density
limit ki ki and the term (1 —cos8) —82/2 —K2/2ki2
is proportional to qp/T, which implies a momentum re-
laxation rate falling linearly with n. As discussed below,
the energy relaxation rate also falls as density decreases.

B. High-density classical regime

energy-relaxation measurements of Kash show that the
quasistatic approximation works well below that density,
one can estimate the point at which the quasistatic ap-
proximation for the screening length (with RPA correc-
tions) breaks down. We have, for a Gaussian distribution,

3 X 4~e2n n'/'
qp =

e~k~T x

C. Two—dimensional scattering

Similar considerations can be made for momentum re-
laxation in two dimensions. In this case, the quasistatic
matrix element for electron-electron scattering is

1 (2m e2) 2

V (K+„) (21)

where the screening parameter qp is given by

2xe2 Bf[E(k)j
qo a BE (22)

Writing down the equivalent integral in two dimensions
as (18), one has

f(ki) Bt k„o
1

k„qp

dK
(K+ qp)2

for k„pp qp. (23)

where z is some multiplier of the average interparticle
distance. Assuming T=300 K, a crossover at n = 10
cm implies that the Debye formula for the screening
length breaks down when the screening length is less than
x 2 times the interparticle spacing.

This balance of qp increasing as n to cancel out the ef-
fect of increasing scattering partners cannot continue as
density increases indefinitely. The screening length can-
not be less than the average interparticle distance and
in fact is not likely to be less than a few times the in-
terparticle distance. The quasistatic formula (4) predicts
a screening length decreasing as n /, however, while
the interparticle separation decreases only as n ~/3. At
some point, the screening length will begin to follow the
interparticle spacing, decreasing as n / . In this case,
the total scattering rate (18) will depend on density as

1 Bf n

f(k) Bt qo
n"

n2/3

~ n'/'

This is nearly exactly the density dependence seen in the
study of dephasing of nondegenerate electrons in GaAs
by Becker et al. Since that dependence was seen for den-
sities above 10 cxn, while, as discussed below, the

This yields the result that in the low-density limit, the
unweighted momentum relaxation rate, or dephasing
rate, is independent of density in two dimensions as well
as in three dimensions. The scaling of the screening con-
stant (22) will break down when screening length be-
comes comparable to the interparticle distance, as dis-
cussed above. In that case we have

1 Bf n

f(k) Bt qp

nX/2

~ n'/' (24)

which is exactly the dependence seen in two dimensions
in the study in GaAs by Bigot et al.2 by the same experi-
mental method used by Becker et al. for bulk GaAs. The
data of Bigot et al. give a lower bound on the crossover
density for the breakdown of the quasistatic screening
approximation, since an N / dependence was observed
at all densities above 10 cm . Writing an equation
like (20), using (22), assuming a breakdown of the qua-
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sistatic screening at 10 cm, gives a value of x equal
to 6 or 7, which is reasonable since screening in two di-
mensions is much less efBcient than in three dimensions.
No dephasing data exist for lower density. The energy-
relaxation data of Kash for two dimensions cover the
range 10 —10 cm and are consistent with the scaling
laws deduced here, as discussed below, but, as shown in
that discussion, the energy relaxation rate in two dimen-
sions does not depend on the screening length.

IV. DENSITY DEPENDENCE
OF ENERGY RELAXATION

5'k' 5 f 5'k', h'k,', )
2m ) ( 2m 2m j
2

k, —k2 —[(kg —K) —(k2+ K) ]2m ~

2h lk, . Kl
(kg + k2) K (25)

which is strictly proportional to K. As seen in Fig. 1,
the Coulomb matrix element strongly favors scattering
with K = qo/2. Since, as shown in Sec. IIIA, the total
scattering rate is proportional to n/(v Eqo2), the energy
relaxation rate will have a density dependence given by
this number times the average change in energy separa-
tion,

A. Three-dimensional scattering

We have seen that the total scattering rate is indepen-
dent of density in the low-density limit. This comes about
because even scattering of electrons at extremely large
separation, with extremely low energy exchange, con-
tributes to the total momentum relaxation rate. These
scattering events contribute very little to the energy re-
laxation of the gas, however. An estimate of the energy
relaxation rate, the rate at which a distribution broadens
in energy width, can be obtained by weighting the inte-
gral (18) by the change in the energy separation of the
two particles in a collision,

1 n
~c.m. gO )

TE 8q2

that is, 1/w@ oc n~~2. This is essentially the density de-
pendence seen in electron energy-relaxation experiments
in bulk GaAs in the range 10 —10 cm by Kash.

A more quantitative comparison of theory to the re-
sults of Kash can be made by solving the full Boltzmann
equation (1) using the Coulomb matrix element with qua-
sistatic screening. As shown in previous publications,
when the distribution can be assumed isotropic, the to-
tal rate of change of the number of particles in an energy
range (E, E + dE) can be written as

I'o(Eg)dE = (4vrk, dkg)
df (kg)

2 OO OO ~high

(f(» )f(k2 ) [
—f( ~)][1 —f(k2)] —f(k~) f(k2) [1 —f(kl)][1 —f(k2)])

(27)

with kt„sh = min(kq+kI, k2+k2)/2 and ki = max(lk&
kql& lk2 —k2l)/2; a similar equation is written for total
scattering into the same energy range. (Umklapp pro-
cesses are ignored. ) Although we are interested in the
energy relaxation, the integral is not weighted by the
change in energy separation as discussed above, because
the full solution of the Boltzmann equation keeps track
of where all the electrons go; the rate of broadening in
energy is obtained by a direct evaluation of the width of
f(E, t) as a function of time.

A typical solution of the Boltzmann equation simulat-
ing the experiment of Kash is shown in Fig. 3. In these
experiments, a cold thermal distribution is created by
an intense laser pulse preceding the probe pulse by 50
ps. This is represented by a Maxwell-Boltzmann distri-
bution at 200 K in this model (half the LO phonon en-
ergy). Self-consistent quasistatic screening based on (4)
using the instantaneous distribution f(E) is incorporated
in the calculation of M(K), but RPA and hole-scattering
corrections are not. The continuous function for the num-
ber of particles at a given energy n(E) is represented in

10

&~ i0'

0 50 100 150 200 250 300 350
E (mev}

FIG. 3. Boltzmann-equation solution of a model of the
Kash pulse-probe experiments (Ref. 5). The probe is assumed
to be created instantaneously at t = 0 in a Gaussian distribu-
tion at 8 = 300 meV in the presence of a Maxwell-Boltzmann
distribution with density 2 x 10 cm . The curves corre-
spond consecutively to the distribution at t = 0, 0.35, 0.71,
1.09, 1.47, and 1.82 ps.
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FIG. 4. Summary of the energy loss rate found by Kash
(Ref. 5) (open circles), and calculated from the model shown

in Fig. 3, as a function of density. Filled circles, initial probe
energy width 10 meV; 61led triangles, initial probe energy
width 20 meV.

these calculations as a set of discrete values n, for a set
of energy channels (E;,E; + dE;) = (E;,E;+r), which
approximates the continuous function well as long as the
slope [n(E;+r) —n(E;)]/dE; is small. In addition, for the
Boltzmann equation solution to be valid, the change in
the matrix elexnent for scattering to final states separated
by dE must also be small, i.e., dE « 5 kqo/2m.

Figure 4 shows a summary of the instantaneous energy
relaxation rate, defined as

an, &

n . Bt ) „.b.
(28)

compared to the energy loss rate found by Kash, 5 as
a function of the electron density in the low-energy
Maxwellian distribution generated by the pump pulse.
As seen in this figure, the scaling of the rate with density
in three dixnensions seen by Kash is reproduced. The
increase of the energy relaxation rate as n ~ falls off
slightly at high density because Pauli exclusion becomes
significant; the Kash data are not inconsistent with this.
The energy relaxation rate depends on the initial energy
width of the probe pulse, as discussed in Ref. 7; the upper
curve in Fig. 4 (10 meV width) corresponds most closely
to the experiments of Kash. Since the absolute value of
the density in the experiments of Kash is certain only to
within a factor of 2, and RPA and hole corrections are
not included in the theory, a direct comparison of the
absolute value of the thermalization rate as predicted by
the model to that of experiment is not possible. Never-
theless, the model reproduces the energy relaxation rate
found by Kash roughly within a factor of 2. The faster
relaxation seen in the experixnents can presuxnably be ac-
counted for by including hole scattering and RPA eKects,
which increase the scattering rate but do not change the
density dependence, as discussed in Sec. II.

Instead of defining the energy relaxation rate by the

FIG. 5. Summary of the thermalization-rate data of Refs.
7 (open squares) and 8 (open circles).

time for a narrow (e.g. , Gaussian) distribution to be de-

pleted and broadened, as in the experiments of Kash,
we can define a long-term "therxnalization time" as the
earliest time at which the entire electron distribution
can be well fit by a Maxwell-Boltzmann distribution,
N(E) oc Er~ e @~"~T. Quantitatively, one can express
this as the time at which I(E)/Er ~, where I(e) is the ob-
served energy distribution, fits a straight line on a semilog
plot with correlation of 90%. The experiments of Refs. 7
and 8 measure this time at low electron density; Fig. 5
shows a summary of the thermalization rates measured
in these experixnents. Since the "thermalization time"
measures the rate of the change of the 8hape of a distri-
bution, the energy relaxation rate (26) must by normal-
ized by k~T to give the proper dependence on T; instead
of the weak Tr~z dependence of (26), the thermalization
tixne has the temperature dependence T ~ . The den-
sity dependence, however, is unchanged. As seen in Fig.
5, the thermalization rate scales approximately as n ~

at the highest densities, consistent with this argument
and similar to the results of Kash.

This dependence was seen in the numerical calculations
of Ref. 9 within the numerical uncertainties; however,
that work argued for a constant rate of thermalization at
low density on the basis of an analytical argument [Eq.
(8) of Ref. 9] which used an improper weighting for the
energy broadening. The constant rate of thermalization
seen at extremely low densities in Refs. 7, 9 and 8 is still
not understood. Reference 9 showed that the constant
rate of thermalization cannot be due to phonon emis-
sion; recent work has confirxned the argument of Ref.
7 that it is not due to inelastic scattering with donors.
The answer most likely lies in the fact that the thresh-
old density for this eKect is also the density at which
the average interparticle spacing becomes comparable to
the aborption length of the laser light in GaAs ( 2 pm)
and therefore the screening becomes weaker and quasi-
two-dimensional, even though the density of states of the
electrons remains three dimensional.

B. Two-dimensional scattering

Just as in Sec. IVA, the density dependence of the
energy relaxation rate in two dixnensions can be found by
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TABLE I. Density and temperature dependence of rates for electron-electron scattering.

Low density
3d
2d

Dephasing

T1/2
Tl/

Energy
relaxation

1/2Tl/2

Thermalization

1/2T —1 /2

nT '

High density
ad
2d

1/3T —1/2

1/2T 1/2

n2/3 2/3T —1

nr '

weighting the result for the total scattering rate. From
Sec. III C, the energy relaxation rate in two dimensions
is proportional to n/qo. This is weighted by the change
in energy separation per collision, proportional to v Eqo,
to give an energy relaxation rate proportional to n.

At higher densities, when the screening length becomes
comparable to the average interparticle separation, the
same result is obtained because the energy relaxation
rate does not depend on the screening length, in the
above estimation. Therefore the results of Kash, 5 which
showed an energy relaxation rate proportional to n, are
consistent with the results of Bigot et al. , which found a
dephgaing rate proportional to n ~ in the same density
range.

V. CONCLUSIONS

Table I summarizes the density and temperature de-
pendence of the various rates discussed in this work, in
two and three dimensions in both the low-density regime
and the screening-limited regime. The electron gas is
assumed nondegenerate in all cases—if the gas is degen-

crate, then Pauli exclusion will reduce the rate of increase
at higher densities from these power laws or even cause
rates to decrease with increasing density.

Although complicating factors due to holes and plas-
mons exist, these do not substantially affect the theoret-
ical predictions for the density dependence of the scat-
tering. The success of these calculations at deducing the
observed power laws in a number of experiments shows
that the density dependence of the scattering rates can
be understood primarily in terms of the basic predictions
for electron-electron scattering.
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