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A minimal-parameter tight-binding theory incorporating explicit use of nonorthogonality of the
basis is used to generate a transferable scheme for silicon. Good results are obtained for band
structure, phase diagram, and bulk phonons. The diamond structure is found to be the ground state
even when compared with the clathrate structure. The results for clusters show good agreement
with ab initio predictions. The theory differs from the conventional orthogonal schemes in three
main respects: (1) only three adjustable parameters are employed, (2) no artificial cutoff is used
for interactions and, (3) the need for a coordination-dependent energy term has been obviated for
clusters of any size.

I. INTRODUCTION

Recently, there has been a resurgence of interest in
tight-binding schexnes for semiconductors in general, and
Si in particular. This comes, in part, &om the in-
terest in heterostructures, amorphous Si, the clathrate
form, and other forms where ab initio and local-density
approximation (LDA) schemes prove inadequate due to
system size considerations. The goal is to obtain a trans-
ferable scheme that works well in the range all the way
&om a few atoms to the condensed solid. The published
schemes range from that of Chadi and Cohen with eight
parameters to that of Mercer and Chou with more than
40 parameters. The former is designed to get a good de-
scription of the band structure in the diamond phase, but
shows limited transferability when applied to clusters.
The latter, while giving a good phase diagram by includ-
ing intra-atomic parameters with distance dependence,
has not been tested for clusters of arbitrary sizes. Also,
none of the orthogonal schemes have reported compar-
ison between the clathrate structure and diamond in
their phase diagrams; this is a stringent test, since they
are both fourfold coordinated networks.

Harrisons attempted to provide a minimal tight-
binding theory with just four parameters (in addition
to four dimensionless universal constants) that could de-
scribe qualitatively a wide range of materials and proper-
ties. While the focus of his work was tetrahedral solids,
in later work with van Schilfgaarde ' he emphasized the
necessity of including the nonorthogonality of the local
environment in multicoordinated structures. This impor-
tant factor has been generally overlooked by those seek-
ing a transferable scheme. Nonorthogonal tight-binding
parameters for accurately reproducing band structures
for various crystalline phases of silicon have been ob-
tained by Mattheiss and Patel and by Allen et al. 2

These works not only involve multiple parameters to fit
the Hamiltonian and overlap matrix elements but also
assuxne the vob~me to be constant and, therefore, can-
not be used in molecular dynamics simulations and for
clusters.

We have demonstrated earlier in our tight-binding
molecular dynamics work on silicon and carbon clus-
ters that including nonorthogonality in Harrison s tight-
binding scheme markedly improves the agreexnent with
ab initio results for clusters in the range up to
N = 10. Our scheme was further improved by Ordejon
et al. ~~ We note here that clusters in the range 6—10 are
particularly challenging because of high coordination.

In this paper, we show that the nonorthogonal tight-
binding theory gives a transferable scheme with only
three adjuatable parameters, giving good agreement with
experiment or ab initio work for (i) the zero-temperature
phase diagram (including the clathrate structure), (ii) va-
lence band structure and phonon dispersion for the crys-
tal, and (iii) structure and cohesive energies and frequen-
cies of small clusters.

None of the other tight-binding schemes have so few
adjustable parameters and none have demonstrated ap-
plicability to these many properties. In the following
section, we describe our tight-binding scheme and the
computed results. In the final section, the scheme is com-
pared and contrasted with other xnethods.

II. TECHNIQUE

U= Ui+U„p+Uo,

where U, ~ is the sum of the one-electron energies cI, for
the occupied states:

U~)=)
k

(2)

and U, ~ is given by a repulsive pair potential

(3)

The details of the technique as applied to clusters of
atoxns are given in Refs 3 and 17. Here we give a brief
summary and show the application of the technique to
solids. The total energy is given by the sum
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Q„=)c"P . (4)

The characteristic equation then becomes

Uo is constant that merely shifts the zero of energy. The
nonorthogonal tight-binding scheme differs &om the con-
ventional schemes in the evaluation of the one-electron
energies in Eq. 2. In conventional schemes an unknown
orthonormal set of basis is used in the construction of the
matrix elements of the Hamiltonian. In the generalized
scheme the wave function of the system is given in terms
of the nonorthogonal basis as

rameter whose value is to be determined. Later Ordejon
et al. , showed that putting the same distance scaling as
Eq. (12) into S2 gives much better results for energies and
obviates the need for a coordination-dependent term, in-

troduced by Tomanek and Schluter and used in the con-
ventional tight-binding molecular dynamics schemes.
The elimination of the coordination-dependent term is
crucial for transferability.

The repulsive term is taken to be a sum of classical
short-ranged pair potentials, also with a simple exponen-
tial dependence with distance

where

) (H,~
—E„S;,)c," = 0,

2

(5) We fix P=4o. . In our nonorthogonal theory this pairwise
repulsive term is very small, and can in fact be omitted
altogether.

We further introduce a simple distance dependence in
the nonorthogonality coefficient, K,

0;~ =,*. H ~ d r,
K(r) = Ko + n(r —dp) (14)

and

In matrix form Eq. (5) becomes

As shown later, this dependence yields better transfer-
ability by giving improved agreement at both the cluster
and bulk ends.

The eigenvalues of a system with nonorthogonal basis
set can then be obtained &om

(H —E„S)C"= 0. detiH;~ —FS;, i
= 0. (15)

If V,~ denote the Hamiltonian matrix elements in or-
thogonal theory, the Hamiltonian matrix elements in the
nonorthogonal scheme is constructed according to the
prescription given by van Schilfgaarde and Harrison,

1 2
H~ = V~ 1+ ——S2

where

(S„—2y 3S,„—3'„+3'„)2=
4

(10)

is the nonorthogonality between sp hybrids and K is a
nonorthogonality coefficient. Note that unlike van Schil-

fgaarde and Harrison, we retain S„„in S2 for consis-

tency since we set Szz proportional to Vz& . We find

that by doing so the pairwise repulsive coefficient can be
significantly reduced and perhaps eliminated. The quan-
tities Spy

„

in turn are determined &om

V„„,p (d) =
Vgg~p (do)e (12)

where do is the bond length for the crystal and o. is a pa-

AA'P K( )
.

In this form H;~ and S;~ are more transferable between
different environments than the original orthogonal ma-

trix elements V,.~, since the effect of overlaps in differ-

ent environments is explicitly contained. In our earlier
work, S2 was held to be distance independent. The
Vq~ „(d)are taken to have a simple exponential depen-
dence with d:

Evaluation of (15) is expedited by the use of the well

known Cholesky factorization in which S is factored into

S = BBt.

TABLE I. Parameters used in the present scheme for sili-

con.

A priori parameters
8 ~o

(eV) (~) '

-6.52 2.36
(eV)

-13.55

Adjustable parameters
a Ko Xo

(A-') (eV)
16 17 005

This factorization is always possible provided S is posi-
tive definite.

The theory involves the following six parameters: The
diagonal matrix elements (atomic term values) e, and e~;
the covalent radius (= do/2); the interaction fallofF rate
o.; the nonorthogonality constant K; and the repulsive
coefficient yo. Of these, e„~„,and do are set a priori
&om Harrison's work, and are not adjusted. The param-
eter values are summarized in Table I. The four Vpp

„

are derived &om the dimensionless universal parameters
through a prescription given by Harrison, and have the
values V„=—2.37 eV, V,„=2.52 eV, V„~ = 3.32 eV,

Vpp
———1.07 eV.

Thus, in our scheme there are only three adjustable
parameters, o, , K, and yo. These can be fitted simply
either to a dimer or the crystalline solid for experimental
bond length and frequencies. As will be shown, fitting
at either end does not substantially alter results at the
other end owing to the transferability. In our case, we

fixed the parameters to minimize the errors at both ends.
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III. RESULTS

A. Solid

In this section, we present our results obtained using
the nonorthogonal scheme. All the results are obtained
without introducing any artificial cutoE in the interac-
tions. In practice this is achieved by increasing the shell
size until results remain unchanged. We find inclusion of
up to the third neighbor shell (corresponding to a cutoff
of 5 A.) to be suflicient (and in some cases, e.g. , band
structure calculation, necessary) for obtaining converged
results.

Figure 1 shows the zero-temperature phase diagram for
silicon obtained by our method. In computing the elec-
tronic energies special point integrations were performed
and tested for convergence. Compared to the higher co-
ordinated structure (fcc, sc, P tin) the diainond struc-
ture is lower in energy, as is found in other transferable
schemes as well. ' '5 As can be seen in the figure, in our
scheme the diamond structure is lowest in energy even
when compared with the clathrate structure~ with the
same coordination, although the difference is quite small
(0.04 eV/atom). We believe inclusion of nonorthogonal-
ity is crucial in correctly differentiating these two struc-
tures which are so close energetically.

In Fig. 2 we show the band structure for the diamond
structure. This is almost identical to the band struc-
ture obtained by Harrison using the universal parame-
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FIG. 2. The band structure for crystalline silicon in the
diamond structure.

ters within the orthogonal scheme, although we obtain an
indirect gap. As can be seen, the valence band is well re-
produced, while the gap is larger than experiment. This
is a consequence of the minimal basis set, and is true for
all such tight-binding schemes. One can easily improve
the conduction bands by the inclusion of s' states as used
in later work by Harrison. These states, however, are
not important for determining ground state energies and
forces.

The force constants were evaluated by computing en-

ergy changes due to mutual displacements. The vibra-
tional &equencies at some symmetry points are given in
Table II. While the acoustic branch phonons are in excel-
lent agreement with experiment, the optical modes show
deviations up to about 27%%uo from experiment. 2 This
should be contrasted with the best orthogonal schemes
that achieve agreement to only within 45%%uo while using
many more parameters. As shown in the next section on
clusters, the same scheme gives a reasonable vibrational

frequency for the symmetric stretch mode for the dimer.
In Sec. IV we will indicate the possibility of further im-
provements at both the cluster and bulk ends.

B. Clusters

DIAMOND

0.8 0.9 1 1.1 1.2

Relative Unit —Cell Volume

FIG. 1. The cohesive energies of various structures of sili-
con using the present scheme.

We next brieBy describe our results for small silicon
clusters using the present scheme. All geometries were
optimized by molecular dynamics relaxation using pre-
cisely the same tight-binding parameters. The molecu-
lar dynamics procedure has been previously described.
Once again, no cutoK is used in all our calculations. Al-
though our method was originally introduced with ap-
plications to these clusters, the present inodel (which in-
cludes modifications proposed by Ordejon et ol. ) gives
overall improvement in the results. The most notable
improvement is the absence of an ad hoc coordination-
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TABLE II. Comparisons showing transferability for silicon. The numbers in parentheses are
experimental values.

Si (dimer)
Si (diamond)

Reference 21.
Reference 14.

'Reference 22.
Reference 4.

Bond length
(A)

2.29 (2.24)
2.35 (2.35)

Binding eneI gy
(eV/atom)

1.57 (1.56)
5.11 (4.92)

Vibrational frequency
(cm ')

587 (517)'
I'To =656 (517)'
Li,o =496 (417)'
Li,~=408 (368)
Xi,o=580 (463)'
XTo=448 (414)'

dependent term needed in earlier schemes. 3' ' We use
the same energy expression [Eq. (I)] for comparing en-
ergies in our search for minimum energy geometries. In
Table III we give binding energies of the most stable clus-
ters. In comparing our absolute cohesive energies with ab
initio results, a constant shift of 1 eV to our computed
values brought all values into excellent agreement. While
the structural results are the same as in Ref. 17, the ener-
gies are in slightly better agreement with ab initio values.

For Si2, we obtain a dimer bond length of 2.29 A and
a vibrational &equency of 587 cm . The corresponding
experiinental values are 2.24 A and 517 cm i, respec-
tively. In Table II we compare our results with experi-
ment for bond lengths, cohesive energies, and vibrational
&equencies at the dimer and bulk ends to illustrate the
transferability of the present scheme.

The minimum energy structure for Si3 is found to be
an open triangle with C2„symmetry. For N = 4, we
find the stable structure to be a rhombus (D2h, symme-
try). These results are in good agreement with ab initio
calculations.

For Si5, the lowest energy configuration is found to be a
strongly compressed trigonal bipyramid (Dss symmetry)
with apex atoms holding the triangle together, shown in
Fig. 3, in agreement with the a,b initio results. 4

In the case of Si6, we find the face-capped trigonal
bipyramid (Fig. 3) to be 0.05 eV lower in energy over
a distorted edge-capped trigonal bipyramid. This is in
excellent agreement with ab initio results which find
the former to be 0.04 eV lower in energy compared with
the latter.

For Sir, we find the pentagonal bipyramid (Fig. 3) to
be more stable than a tricapped tetrahedron by 1.02 eV.
This is in agreement with ab initio calculations, which
give an energy difference of 0.952 eV.

In case of Si8, the lowest energy structure is a dis-
torted bicapped octahedron with C2g symmetry (Fig. 3).
Another minimum is obtained at 0.568 eV higher for an
undistorted bicapped octahedron (Dsh, symmetry). This
is in excellent agreement with the ab initio calculations
which find an energy difference of 0.56 eV between these
two structures.

For Si9, we have considered three geometries: the dis-

N=5 N=6

TABLE III. Cohesive energies (in eV/atom) for Si~ clus-

ters. Our computed values were shifted up uniformly by 1 eV
to bring absolute values into agreement with ab initio values.

X
2
3

5
6
7
8
9
10
Solid

Symmetry

C~v

D3~
C2
Dsh.
C2h.

Cg„
C3~

Reference 15.
Reference 4.

Binding energy
Ab initio

1.56
2.54
3.17
3.3
3.6
3.8
3.65
3.6
3.82
4.92

(eV/atom)
Present work

1.57
2.49
3.19
3.36
3.62
3.78
3.75
3.80
3.90
5.11

N=7 N=8

N=lo

FIG. 3. Geometries of the lowest energy structures of small
silicon clusters from N = 5 to 10 obtained using the present
molecular dynamics scheme.
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torted tricapped octahedron, a distorted tricapped trigo-
nal prism proposed by Ordejon et al. (C2 symmetry),
and the tricapped octahedron with t 3 symmetry. We
find the first structures to be unstable, distorting to the
second structure. The tricapped octahedron with C2
symmetry is found to be 1.08 eV less stable. The ab
initio work of Raghavachari and co-workers only con-
sidered an undistorted trigonal prism when comparing
with other structures and found all these structures to
be almost isoenergetic when correlation effects were in-
cluded. More recent ab initio calculations~~ using an
unrestricted Hartree-Fock calculation using 6-31G* basis
including correlation effects have suggested the distorted
tricapped trigonal prism to be slightly lower in energy
than other structures. Approximate LDA calculations
also predict this structure to be lower in energy over the
other two structures. ~7 En light of these 6ndings this ge-
ometry must be considered as a candidate for the Si9
cluster when searching for ground state by other meth-
ods.

For Sicko the minimum energy structure (a tetracapped
trigonal prism with Cs symmetry, Fig. 3) is 1.51 eV
more stable than the tetracapped octahedron (Td symme-
try). This should be compared with the ab initio results
which obtained an energy difference of 1.04 eV between
these structures.

Transferability from solid to cluster is crucial to
the study of crystal growth. Clusters in the range
N = 6—10 are particularly challenging on account of
the multicoordinated geometries predicted by ab initio
calculations~s for these clusters. The orthogonal tight-
binding schemes have found it necessary to introduce an
ad hoc coordination-dependent term to get reasonable
agreement with ab initio values for cohesive energies. 1s'~s

This term is cutoff dependent and its use in molecular dy-
namics is rather awkward since it can give rise to spurious
forces. This term also makes any accurate search for true
ground states using simulated annealing methods impos-
sible. We believe its presence is a necessary consequence
of the lack of proper environment dependence present in
conventional orthogonal tight-binding schemes.

schemes ' ' have had some success, the number of ad-
justable parameters had to be increased considerably. We
believe this to be the result of the implicit assumption of
orthogonality of the atomic basis in the formalism. Re-
sults for clusters in the range N = 6—10 presented here as
in Ref. 17 clearly show that the coordination-dependent
term found necessary in the orthogonal schemes is due
to the lack of sufficient local coordination information in
the electronic energy term. The present scheme employs
no coordination-dependent term and by the proper treat-
ment of the overlap interactions contains the effects of lo-
cal atomic configuration entirely in the electronic part of
Eq. (2). As shown by van Schilfgaarde and Harrison, s'M

the nonorthogonality can be separated out entirely as a
two-body repulsion term only in systems dominated by
two center bonds. The orthogonalization of atomic or-
bitals to approximate the Wannier functions, however,
depends on the structure, and for multicoordinated sys-
tems the separation of nonorthogonality into a two-body
repulsion term cannot be assumed.

In the present scheme, even with so few adjustable pa-
rameters, we have not exhausted all degrees of freedom.
One can obtain a more accurate fit to LDA values for
the various phases by employing a more sophisticated
distance dependence in the parameters without altering
cluster results. It is significant to note that Ordejon et
al. ~7 used a very different distance dependence (n = 0.89

~) while obtaining the same ground states for clusters
in the range N = 6 —10. Also, as mentioned before,
the retention of S„„in the expression for S2 reduces the
value of yo needed (e.g. , it is 0.486 eV in Ref. 17 while
it reduces to 0.05 eV in the present work). Further, the
results also did not change significantly when this small
repulsive coefficient was eliminated altogether. Our goal
in this work is merely to show that reasonable agreement
with a wide range of properties is possible with the fewest
parameters and a simple scaling of the parameters by
explicitly treating the nonorthogonality in tight-binding
theory.
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