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The quantum magnetotransport properties of a nondegenerate two-dimensional gas of electrons in-
teracting with helium-vapor atoms above a liquid-helium surface is studied in magnetic fields up to 20 T
by the ac capacitive coupling technique. The data and the theoretical analysis performed show that in
the ultraquantum limit the generalized or effective collision frequency v, of the electrons increases fas-
ter with magnetic field than the cyclotron frequency w,. Under extremely strong magnetic fields, where
the Landau level width becomes comparable to or larger than the thermal energy, the high-cyclotron-
frequency approximation @, >>v.g, usually assumed in quantum transport theories, is no longer valid.
The self-consistent Born-approximation theory is extended to be valid for any ratio of w. to v4. Then it
describes the data perfectly without any adjustable parameter. The results reported here also give strong
support to the universality of the linear Hall resistivity.

I. INTRODUCTION

In the presence of a strong quantizing magnetic field B
the surface state electrons (SSE’s) on liquid helium
represent a two-dimensional (2D) system of mobile parti-
cles, which has a completely discrete energy spectrum if
interactions are neglected. The unique quality of the heli-
um surface and the simplicity of the interaction potential
of an electron with available scatterers make the SSE’s
very attractive for testing different approaches to the
description of quantum magnetotransport phenomena in
two dimensions. At high enough temperatures (7> 1 K)
the main scatterers are helium-vapor atoms, which can be
considered as short range and elastic. The experimental
densities of SSE’s n <2X 10'* m ™2, are low compared to
other 2D electron systems and the Landau level filling
factor is much smaller than one. Therefore, in the ultra-
quantum limit #w, >>kgT (# is Planck’s constant, . is
the cyclotron frequency, T is the temperature, and kp is
the Boltzmann constant), easily achieved experimentally,
electrons can be scattered only within the lowest Landau
level. Under strong magnetic fields, the Landau level
width T, determined by the interaction with the vapor
atoms, is much smaller than the Landau level separation
fiw,. Therefore the usual ultraquantum limit might be
subdivided in two possible cases: (i) at kz T >>T the elec-
trons are smoothly distributed within the ground level;
(i) at kT <<T the electrons populate the lower tail
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states of the density of states function.

The first experimental studies of quantum magneto-
transport properties of the SSE’s interacting with
helium-vapor atoms or ripplons were performed both on
a solid-hydrogen' and on liquid-helium?~* surfaces in
magnetic fields up to 5 T. They showed that the electri-
cal transport of SSE’s is strongly influenced by quantum
effects. In each study, however, an adjustable parameter
had been necessary to fit the data to the most established
theory,’ based on the self-consistent Born approximation
(SCBA). Data of the magnetoconductivity measure-
ments under extremely strong magnetic fields up to 20 T
reported in Ref. 6 also were fitted to the SCBA theory by
introducing an adjustable parameter in the definition of
the Landau level width.

An additional interest for the investigation of SSE
transport in the ultraquantum limit is to have another
test case of the universality of the linear Hall resistivity
observed in semiconductor 2D electron systems.”® The
original SCBA theory’ applied to nondegenerate systems’
appeared to predict a Hall resistivity p,,, which differs
from the classical value p{5’=B /ne (e is the elementary
charge) at extremely strong magnetic fields, where the
Landau level width T’ < B!/2 becomes comparable to or
larger than k7. This condition can be reached experi-
mentally in the gas-atom scattering regime in fields above
10T.

The purpose of the present work is the detailed study
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of the quantum magnetotransport properties of SSE’s at
extremely strong magnetic fields. In this extreme limit a
new qualitative feature of the field dependence of the con-
ductivity tensor becomes pronounced. Theories of quan-
tum galvanomagnetic effects, including the famous center
migration theory,!? usually assume that at strong and ex-
tremely strong magnetic fields B the longitudinal conduc-
tivity component o,, is much smaller than the Hall con-
ductivity o,,. This so-called case of strong magnetic
fields in a quasiclassical treatment corresponds to the
high-cyclotron-frequency limit o, >>v, where v is a col-
lision frequency. The theoretical assumption implies that
for a real system the effective collision frequency (to be
exact, the total momentum loss per second) in the quan-
tum limit would not increase with B more rapidly than
.. In the present paper, we would like to emphasize
that at least for SSE’s this is not true. The analysis
presented and the data obtained give a strong evidence
that for SSE’s at T>1 K the high-cyclotron-frequency
approximation (w.>>v) is inconsistent with the real
strong-field limit.

Because it is impossible to attach electrical leads to the
SSE system, measurements of its transport properties are
usually done with ac capacitive coupling techniques.!!
These work very well at zero magnetic field, but, with the
exception of ideally circular symmetric geometries used
for o,, measurements, are complicated at high magnetic
fields due to the effects of edge magnetoplasmons.!?!3
Actually, at first we aimed at measuring the Hall resis-
tivity p,, by studying these propagating modes in the
high-field region. However, the behavior of the effective
collision frequency in extremely strong magnetic fields
mentioned above makes the data dependent on both p,,
and p,, and a detailed numerical calculation of the
response of the 2D transmission line formed by the elec-
trons and the electrodes is required to compare the data
with theory. The extended SCBA theory established here
for any relation between longitudinal and Hall conduc-
tivities without any adjustable parameter perfectly de-
scribes the data.

A preliminary presentation of the data and a qualita-
tive analysis has been presented elsewhere.!* After a
more rigorous and quantitative analysis, the present in-
terpretation of the data partly differs from that given in
Ref. 14.

II. EXPERIMENTAL METHOD

For the experiments an electrode array (14 mm diam),
shown in the inset of Fig. 1, was placed at a distance
d =0.5 mm below the helium surface. A circular guard
ring at a negative potential surrounds the electrode array.
The electron sheet is charged to saturation and hence the
density is given by the top plate potential. The distance
between the electrode array and the upper plate is 3.0
mm. The electron pool diameter (13 mm) was calculated
for the confining potentials on the electrodes.!> Electrode
1 was excited with an ac voltage V,.. The currents in and
out of phase with respect to the driving voltage, induced
on one of the outer electrodes (usually diametrically op-
posite to the driving one, e.g., 5), were measured by a
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FIG. 1. The components C and G of the complex admittance
Y =G +joC measured between electrodes 1 and 5 versus mag-
netic field. Data are shown for electron densities of 10.5 (a), 8.2
(b), 5.8 (c), 4.7 (d), 3.5 (e), and 1.2 (f) (in units of 10'' m~2). The
temperature is 2.0 K and the measuring frequency w/27 is 5
kHz. The electrode geometry (14 mm diam) is shown in the in-
set.

current amplifier in conjunction with a dual-phase lock-in
amplifier. For each driving frequency, the currents mea-
sured with the uncharged surface were subtracted from
the data to account for stray resistances and capaci-
tances. The phase shifts are corrected for phase shifts of
the current amplifier. At low frequencies the experimen-
tal system behaves like an RC circuit, so that the conven-
tion is to write the measured complex current as
I=YV,,, where the complex admittance Y is defined as
Y=G+jwC. The phase shift ¢ is defined as
p=arctan(G /wC). Zero phase shift therefore corre-
sponds to a pure capacitive coupling. The homogeneity
of the resistive magnet was sufficient to ignore helium lev-
el variations with the magnetic field.

To compare the experimentally measured phase shifts
with theory, a detailed calculation of the phase shift was
made by numerically solving the basic equations that de-
scribe the ac transport in the sheet.!? As in Ref. 12, the
transmission line model was used, which means that the
local ac density in the electron pool is related to the ac
potential in the pool and to the ac potential on the lower
electrodes according to the local capacitance approxima-
tion. The full inhomogeneous density and capacitance
profile at the edge are taken into account in the calcula-
tions.'® To obtain convergence of the iterative procedure
for solving the equations at high fields, a proper approxi-
mation of differentials should be used.'” The earlier
quantitative discrepancy between calculations and data'®
can now be attributed to convergence problems. The ra-
tio o, /o, (equal to p,, /p,, ) and the conductivity o,
(or equivalently any one of the other conductivity or
resistivity parameters) appear as parameters in the
transmission line model. These calculations are crucial
for the interpretation of the present experiments.

To enhance the investigated effects and to avoid possi-
ble broadening of the Landau levels due to Coulomb in-
teractions, the experiments were performed at relatively
high temperatures (~2 K). Higher temperatures imply
an increased vapor-atom density and therefore an in-
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creased scattering rate. This leads to broad levels with
negligible contribution from electron-electron interac-
tions. The largest ratio of I' /kz T that has been obtained
experimentally is about 2.

III. THEORETICAL CONCEPT

To describe the quantum magnetotransport properties
of SSE’s on the liquid-helium surface, we will follow the
approach presented briefly in Ref. 18, which is analogous
to the method of the quantum-mechanical momentum
balance equation.!® This approach allows a direct com-
parison with the center migration theory and reveals the
physical cause of the peculiar behavior of the conductivi-
ty tensor of the SSE’s in the extremely strong magnetic-
field limit. First we use a very simple phenomenological
analysis, which then will help us to find the solution at an
arbitrary relation between o,, and o, for strongly
correlated electrons. Let us consider an infinitely large
isotropic 2D electron system moving along the surface in
crossed magnetic B and electric E fields. The total kinet-
ic friction Fy, acting on the electrons by the helium-vapor
atoms (or the total momentum loss per second) is an un-
known function of the current density j and possibly of
E. In the low driving field limit the expansion of this
function starts with linear terms: F;=—aj—bE. This
is the most general expression of a linear expansion of F,.
The term proportional to E leads to the effect of screen-
ing of the external electric field and can be omitted. The
other one can be rewritten in a more physical way:
Fi,=—N,mvgu, where N, is the total number of elec-
trons, m is the electron mass, u is the mean electron ve-
locity, and v.4 is an effective or generalized collision fre-
quency, which in general is a function of B and electron
concentration n.

The general structure of the conductivity tensor can be
easily found by the use of the balance of forces equation
F;,= —(F.,), where

Fo.=—N,eE+ ¥ m[v,Xw,] (D
e

(v, is an electron velocity; { ) means total, including
quantum-mechanical, averaging; (v, ) =u, and vector o,
is directed along the magnetic field). Here we assume
that there are no localized states of the SSE’s, typical for
the integer quantum Hall effect. This equation together
with the linear expansion of F, gives elementary expres-
sions for the conductivity and resistivity tensor com-
ponents:

o =(en/m){(veB,n)/[w:+V{B,n)]} ,
Oxy:_[wc/veﬁ(B7n)]axx ’ (2)
Prx =MVeg(B,n)/ne?, Pxy =B /ne .

It should be emphasized that here v.; describes a proper-
ty of the whole 2D electron system and may have no rela-
tion to a single-electron collision frequency.

This general structure of the conductivity tensor based
on the simple and direct argument leads to two very im-
portant conclusions. First, the Hall resistivity p,,, which
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follows from Eq. (2), is independent of the detailed depen-
dence of v on B and n and is exactly the linear Hall
resistivity pi’ even in extremely strong magnetic fields.
This result is in agreement with recent evidence of the
universality of the Hall resistivity in degenerate 2D elec-
tron systems at semiconductor heterostructures,7'8‘2°
where, apart from the quantum Hall plateau regions, it
retains its classical value even in the localized Wigner lat-
tice regime. In the inset of Fig. 2, a comparison with the
Pxy from the existing SCBA theory’ is given.

The second important conclusion can be seen by com-
parison of Eq. (2) with the previously used SCBA expres-
sions®’ derived for o, <<o,,. Let us suppose o, >V,
which means o, < v.g/w?. Then the field dependence of
o,.~B 12 which follows from the result of Ref. 2 at
I'<<kyT, gives us the field dependence of v.g~B>’?
which is faster than the field dependence of w, ~B. It
means that the high-cyclotron-frequency approximation
(@, >>veg or 0,, <<0, ) might fail in the case of ex-
tremely strong magnetic fields.

Qualitatively, an expression for v g(B,n) can be simply
found by comparing Eq. (2) with the result of the SCBA
theory in the high-cyclotron-frequency limit. But there is
one limiting case for which we can calculate Fy or v
directly.

Since the properties of the system of helium-vapor
atoms are well known (compared with the properties of
the 2D electron liquid), it is easier to calculate Fy, as a
momentum acquired by the vapor gas per second. In the
most general case the interaction Hamiltonian of the
SSE’s with helium-vapor atoms can be written as

Hy= 3 V—K<1|eikz|1)P—qa;<'—K'aK'- (3)
K.K'

Here Vg is a 3D Fourier transform of the
electron-helium-atom interaction potential FV(R);
R={r,z}; K={q,k}; p,=3.expliq-r,) is a 2D Fourier
transform of the electron density; ag is a creation opera-
tor of the “He atom; (1| |1) means the average over the
ground surface state level. The same Hamiltonian can be
used also for scattering on static impurities, and in this
case we should take the mass of the atom M = « in the
final formulas.

By the use of Eq. (3) the momentum acquired by the
vapor atoms per second and the kinetic friction F, can be
found in the Born approximation as a function of the dy-
namic form factor S (q, ) of the 2D electron liquid:

N

Fr="" 3 1™ DRIV g Pn@aS(q80), @
i &k
where
2h . .\ |2
Stqo)= 2373 [(lp-dli) 88— E,—#o)
j

_ 1 e .
N, J 7 dtexp(—iot)pgp_q(0) -

E; is the electron energy spectrum unknown in the gen-

eral case; iAo =¢c\&) —el)_¢ is the energy exchanged at a
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collision; e{¢'=#?K ?/2M is the gas atom spectrum; n ¢’ is

the vapor atom distribution function. In the general case
we should keep #iAw0, but at temperatures 7> 1.3 K,
the broadening I >>#iAw, and we can consider an
electron-atom scattering as completely elastic (iAo =0).

The main problem here is to calculate the dynamic
form factor S(q,w), since the density operator which
should be used for averaging is not an equilibrium one in
the presence of a driving field. We could of course use
the linear-response theory, which would be the approach
of the center migration theory. But there is another more
simple approach applicable to strongly correlated sys-
tems. There is an analogy for such approach in usual
quasiclassical kinetic theory. For strongly correlated
electrons we can consider the real distribution function to
be a shifted Fermi function f(E, —#k-u) instead of cal-
culating a correction to the equilibrium Fermi distribu-
tion function caused by the driving field. Then the
current or the drift velocity u is to be found from the
momentum  conservation law  equation. For
electron—helium-vapor atom scattering both these ap-
proaches give the same result [21], which hereby is in-
dependent on correlation.

According to the analogy mentioned above, let us con-
sider that due to the mutual electron-electron interaction
the electron liquid is in equilibrium in the center-of-mass
frame moving along the surface with drift velocity u.
Mathematically this means that the dynamic form factor
of the electron liquid in the laboratory frame
S(q,0)=S,(g,0—q-u),'®?! where Sy(g,0) is the equilib-
J

_ 3mhVin‘esly
Vel SN mk,TA

where 78 is the helium-vapor density; A is the surface

area; H, is the single-electron Hamiltonian, which in-
cludes the interaction with helium-vapor atoms; f(E) is
the equilibrium electron distribution function; y is the
parameter of the electron wave function {1[z)
~zexp(—7yz); and ( ); means the average with respect
to the scatterers’ variables. If we would use a two-
dimensional plane-wave electron state |k ) for calculating
the trace in (6), we would obtain the zero-magnetic-field
result for the collision frequency,?! which together with
Eq. (1) would give a semiclassical Drude formula. In the
quantum limit, the Landau quantum states |n,X ) should
be used.

If the high-cyclotron-frequency approximation is valid
(w,>>v.q), Eq. (6) together with the expression for the
conductivity tensor component o, ~(e’n/mv.g/w?
gives the same result as the center migration theory,!
which is the starting point for the SCBA theory.> There-
fore all details of the calculations of v are the same as
those of o, in Ref. 5. The final expression for v.4 can be
written as

veg= (20, /m)coth(fiw, /2kg T)
X[cosh(I" /kgT)
—(kgT/T)sinh(T /kgT)1/1 (T /kgT) , (7a)
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rium dynamic form factor. If we take into account basic
properties of the equilibrium form factor such as
So(g, —w)=exp(—#iw/kzT)Sy(q,®), we can transform
Eq. (4) in order to obtain a more convenient form for the
low-velocity expansion:

N, .
Fomor 3 3 1™ DRIV PP
q,q' kk'

XSo(g,Aw—q-u)q
X {1—exp[fiq-u/kzT1]} . (5)

This expression of F; as a function of the dynamic
form factor is a basic one for studying quantum transport
phenomena for strongly correlated 2D electron systems,
including the 2D Wigner solid. At low driving fields
#iq-u <<kgT we can expand Fg and find the effective col-
lision frequency as it was defined just above Eq. (1). In
this paper we intend to test the approach and will there-
fore consider the more simple case, when electron-
electron collisions affect only the distribution of the SSE’s
and do not substantially change their energy spectrum.
It means that we will neglect the level broadening caused
by the Coulomb interaction (as shown in Ref. 22, this
effect will be most significant below 1.5 K and 5 T). At
such conditions we can represent S,(q,®) as a trace in
the one-electron space and insert it into the expression of
vep Which follows from Eq. (5). For a short-range in-
teraction potential [V(R)=V,6(R)] and for elastic
scattering (Aw=0) one can find

> g2 [dE f(E)1— £ (E)Te[8(E —H, )expliq:t)8(E —H, Jexp( —iq-1)]), , (6)
q

[
where I,(x) is the modified Bessel function of order 1,

T=#{(2/m)w vy} '"?, and vo=(3V3n'®)ym)/8#°. Here
a semielliptic shape for the density of states function of a
Landau level is used. For the Gaussian shape the col-
lision frequency will have a slightly different form:

veg=w,V (T /4ky T)
Xexp[ — (T /4ky T)*1coth(#iw, /2kpzT) . (7b)

As expected, in the high-cyclotron-frequency limit
these expressions for v .4 and Eq. (2) give the same result
as in the approaches in Refs. 1, 2, and 6. It means that in
the quantum transport theory of electrons scattering on

. vapor atoms, as in the case of the quasiclassical kinetic

theory, there is no dependence on electron correlation as
long as the Coulomb broadening is neglected.

The SCBA for the evaluation of Eq. (6) is valid if the
parameter I' /fiw_ is small,’ while the high-cyclotron-
frequency approximation requires another parameter
I'/kgT to be small, as follows from Eq. (7). Since the
Landau level broadening caused by the interaction with
vapor atoms increases with B as I'~B!/2, the first pa-
rameter I' /#iw, decreases with B, but the second I'/kpT
increases with B so that the high-cyclotron-frequency ap-
proximation will eventually fail. As can be seen from Eq.
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(7), veq( B) increases with B faster than &, up to D~kzT.
At higher I', according to Eq. (7a), the ratio v 4/w, still
increases, while according to Eq. (7b) it attains a max-
imum. In Fig. 2 the ratio vg/0, =p,, /py, is plotted for
different temperatures as a function of B. It should be
emphasized that for 7<1.6 K the difference between
Egs. (7a) and (7b) is numerically negligible up to 20 T.

It should also be mentioned that the level broadening
I' [see below Eq. (7a)] is expressed in terms of well-
established basic parameters of the electron—helium-
atom interaction (including ¥, and y), which cannot be
changed without strong arguments. The broadening usu-
ally is expressed in terms of the theoretical collision fre-
quency v, or corresponding mobility calculated in Ref.
23, which, however, should not be used as an adjustable
parameter.

IV. RESULTS AND DISCUSSION

A representative set of data for the components C and
G of the complex admittance Y as a function of the mag-
netic field B is shown in Fig. 1 at a frequency /27 of 5
kHz for several electron densities. Both components os-
cillate as a function of the magnetic field with a gradually
decaying amplitude. Resonances are inhibited because of
the strong damping. Roughly, these data are similar to
the previously published data taken in the field range
below 4 T.!3 Somewhat larger ratios n /w were used for
the present data, in order to obtain sufficient signal
strength at higher fields. Consequently, the oscillation
period is larger too. The oscillations are a result of the
Hall effect in strong magnetic fields which leads to a lo-
calized edge mode (“‘edge magnetoplasmon”?*), even for
very low frequencies.!* The propagation constant, which
is proportional to the Hall resistivity, was previously
directly obtained from the phase shift. Here this tech-
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FIG. 2. The ratio veg/@. (=py /pxy) is shown as a function
of the magnetic field for the three temperatures: 2 K [mobility
1.7 m%/Vs (Ref. 23), curve 1], 1.6 K [mobility 5.7 m?>/V's (Ref.
23), curve 2], and 1.2 K [mobility 39 m?/V s (Ref. 23), curve 3].
Full curves correspond to Eq. (7a) and dashed lines to Eq. (7b).
The inset shows the calculated ratio of Hall resistivity to its
classical value p{c'= B /ne versus magnetic field for the different
theories for the temperature of Fig. 1 [2 K, mobility 1.7 m*/V's
(Ref. 23)]. Line a is p,, from Eq. (2). Lines b and c are the Hall
resistivities calculated from the original SCBA theory, where
line b is with a Gaussian density of states and line ¢ with a sem-
ielliptical density of states.
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nique was planned to probe the Hall resistivity, but the
analysis in the presence of very strong magnetic fields
turns out be much more complicated and also to be
dependent on p,, .

For a further analysis, the phase shifts, obtained from
the data of Fig. 1 for different electron concentrations,
are plotted in Fig. 3(a) as a function of the magnetic field.
In Fig. 3(b) the measured phase shifts for several frequen-
cies are shown at a fixed electron density of 5.8X 10!
m~ 2. The curves d in Fig. 3(a) and h in Fig. 3(b) are tak-
en for such a low n/w ratio, that the amplitude is un-
measurably small in fields higher than 10 T. These
curves are representative for the low-field regime. In this
regime, the @(B) curves are linear, except for the region
close to the origin. The maximum phase shift before the
signal has decayed is then about 10 rad. An extensive

0 5 10 15 20

Magnetic Field (T)

0 5 10 15 20
Magnetic Field (T)

FIG. 3. (a) The full lines are the measured phase shifts
@=arctan(G /oC) for some of the electron densities in Fig. 1.
10.5 (a), 5.8 (b), 3.5 (c), and 1.2 (d) (in units of 10" m~2). The
dashed lines are the calculated phase shifts which use the p,,
and p,, from the new theory for the same parameters as the ex-
perimental data. The dash-dotted lines, numbered (al)-(d1),
are the calculated phase shifts with resistivities from the origi-
nal SCBA theory, for the same parameters as the experimental
data. (b) Same as (a), but now for a fixed electron density of
5.8 10'' m~? for frequencies of 3.0 kHz (e), 5.0 kHz (f), 10.0
kHz (g), and 15.0 kHz (k). The curves calculated according to
the original SCBA theory and corresponding to the data (e)-(h)
are designated by (el)—(h1).
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series of measurements in the field range up to 10 T has
verified this behavior. It has been shown!® that in the
linear @(B) regime the phase shift ¢ is proportional to the
edge mode propagation constant ggyp (@ =ggmpl, Where
1 is the distance along the perimeter of the electron sheet
from the driving electrode to the detecting electrode).
The experimentally determined propagation constant,
which is in agreement with the theory of Volkov and
Mikhailov,* is given by

EEW  EEQWP,,
demp = = > ®)

ao a

where the dimensionless constant a describes the inho-
mogeneous edge of the electron layer and eg; is the
dielectric permittivity of liquid helium. The second
equality is valid if o,, <<o,,. The experimentally deter-
mined propagation constant in fields up to approximately
10 T is in good agreement with Eq. (8). With p,, =B /ne,
the constant «=0.2710.05 in agreement with Ref. 13.

A linear @(B) relation is no longer observed for data in
the field range beyond 10 T [curves a —c in Fig. 3(a) and
e—g in Fig. 3(b)]. The maximum phase shift that can be
obtained for nonzero signal strengths at fields near 20 T is
limited to about 5 rad. However, the simple interpreta-
tion of the data according to Eq. (8) fails when o,, be-
comes comparable to o, (or equivalently p,,~p,,),
which is the case here (see Fig. 2). Under such condi-
tions, the decay length, wavelength, and width of the
edge mode all become comparable and the idea of an edge
mode loses its meaning. The data can then only be ana-
lyzed by a rigorous numerical calculation of the phase
shifts for the given experimental electrode geometry and
applied dc potentials.

The numerically calculated phase shifts, which use the
ratio B=p,, /p,, and p,, as parameters, are plotted also
in Fig. 3, along with the experimental curves for both the
original SCBA theory*> and the new theory [Egs. (2) and
(7)]. The data are very well described by the new theory
without any adjustable parameters and significantly devi-
ate from the original SCBA theory. For both theories,
the calculated phase shifts increase nonlinearly with field
as do the experimental curves. The phase shifts from
Egs. (2) and (7) are larger than from the original SCBA.
The nonlinear behavior observed here, as opposed to the
linear behavior observed at lower fields, is characteristic
for the value of B approaching unity and is not due to a
nonlinear Hall resistivity as suggested earlier.!* It should
be noted from Eq. (2) that the ratio S is the same in both
the original SCBA theory and in the theory presented
here. The difference between the theories corresponds to
neglecting 12 in the denominator of the expression for
o,, in Eq. (2) in the original SCBA theory. This affects
the individual expressions for the conductivities, but not
their ratio.

With B being the same in the two theories, the
difference in the calculated curves can be attributed to
the difference in the individual values of the absolute con-
ductivities (or resistivities) in both theories. As suggested
by the simple limiting case corresponding to Eq. (8), the
most natural other transport parameter for the present
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experiments is p,,. This is illustrated in the inset of Fig.
2, where the nonlinear p,,(B) curves from the original
SCBA theory (b and c) are compared to the linear p,,(B)
behavior which follows from Eq. (2). The curves b and ¢
are for a Gaussian and elliptical density of states (DOS),
respectively. Note that in the present field range with the
theoretical level broadening, the results barely depend on
the shape of the DOS. This is also true for the calculated
curves in Fig. 3, which are therefore only drawn for an el-
liptical DOS. As shown before,'* the shape of the DOS
becomes important in the limit ' >>kpT.

Since the longitudinal conductivity can be written as
0 5x =Blpyy(1 +B2)]"! with B being the same in both
theories, the relative differences between the o, in both
theories are the same as the relative differences in the p,,.
The present experiments therefore are equally sensitive to
test the differences between the two theories as would be
a o, experiment (for instance, Ref. 6). The two types of
experiments are independent and complementary.

V. CONCLUSION

We have investigated the quantum magnetotransport
phenomena of the SSE’s interacting with helium-vapor
atoms under extremely strong magnetic fields. It was
found that in the quantum limit the effective collision fre-
quency v, which was defined to express the total
momentum loss of the 2D electron system, has a very
strong field dependence. The ratio Veg/@.=p,y/Pxys
which decreases with B in usual systems, is shown to at-
tain a minimum for SSE’s in the strong quantizing field
regime and then increases to a value of the order of one
in high fields. Therefore the high-cyclotron-frequency
approximation (w, >>vg or 0,, <<0 ) eventually fails
in the limit of extremely strong magnetic fields and the
more general expression for the conductivity tensor valid
beyond the approximation must be used. This conclusion
and the theoretical concept presented here can be applied
also to other 2D electron systems interacting with impur-
ities or with static distortions of interfaces.

The data and the theoretical analysis performed show
that quantum magnetotransport phenomena in two di-
mensions can be perfectly (without any adjustable param-
eter) described by the use of the generalized SCBA theory
in which the specific field dependence of the ratio
v.(B) /o, is taken into account. The investigation of the
Hall effect of the SSE’s has given an additional proof of
the universality of the linear behavior of the Hall resis-
tivity, observed in degenerate 2D electron systems.
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