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Electronic structure of the SbG, heteroantisite defect in GaAs:Sb
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The defect theory of Hjalmarson et al. [Phys. Rev. Lett. 44, 810 (1980)] combined with the bond-
orbital model of Baranowski [J. Phys. C 17, 6287 (1984)] are used to calculate the wave function and
hyperfine-interaction tensor of the SbG, heteroantisite defect in GaAs. The defect potential is extended
to the nearest-neighbor sites. The hyperfine-interaction constants are in good agreement with the elec-
tron paramagnetic resonance data. The results show that the outward relaxation of nearest-neighbor
atoms must be taken into account for the quantitative description of this defect.

I. INTRODUCTION

The existence of the SbG, heteroantisite defect in GaAs
has been proven, even though its metastable
configuration is still under investigation. The experimen-
tal evidence for this defect comes from electron paramag-
netic resonance (EPR), ' photo-EPR, magnetic circular
dichroism data, the space-charge technique, and the
Hall e8'ect, as well as from deep-level transient spectros-
copy (DLTS). All of these data have provided detailed
information about the electronic structure of this defect.

In particular, the hyperfine-(hf) coupling constant be-
tween the magnetic moment of the unpaired defect elec-
tron and the magnetic moment of the antimony nucleus,
obtained from the EPR (Ref. 1) and photo-EPR (Ref. 2)
experiments is one of the key parameters for understand-
ing the microscopic structure of the heteroantisite defect.
From the theoretical standpoint, to calculate this quanti-
ty would be interesting. The EPR spectrum from Ref. 1

reveals that the defect is so localized that its EPR spec-
trum contains little information about the defect's sur-
rounding. Therefore it is an isolated antisite defect
Sbo,As4. It is supposed that the orbital part of its
ground-state wave function is s-like This fact indicates
that adopting the tight-binding picture may well account
for some of the electronic properties.

In the present paper, the theory of the EPR of deep im-

purity states developed by Ren et al. based on the
tight-binding theory of defects by Hjalmorson et al. is
used to calculate the wave function of an electron local-
ized on the Sb&, defect in GaAs. To improve the calcu-
lated wave function, the defect potential is extended to
the nearest-neighbor sites. The amount of lattice relaxa-
tion for the nearest-neighbor atoms is evaluated by use of
the bond-orbital model of Baranowski. From the calcu-
lated wave functions, the hf constants of an electron with
an Sb or an As nucleus are obtained and compared with
EPR data. In addition, the inhuence of lattice relaxation
on the wave function and thereby on the hf constant is
discussed. It is found that our results are comparable

with those of calculations based on density-functional
theory (DFT). '

The remaining part of this paper is organized as fol-
lows. Section II describes the method used for the
present calculation. The results will be presented in Sec.
III, followed by a discussion of their meaning and com-
parison with the available experiments and theory. A
brief summary is contained in Sec. IV.

II. THEORETICAL FORMALISM

A. Tight-binding Green-function method

or

[I—Go(E)V]/=0 .

The bound-state energies E of the defect satisfy the deter-
minantal equation

det[I —Go(E) V]=0 . (4)

The wave function ib has a nontrivial solution. If the per-
turbation matrix V is nonzero only in a very small sub-
space of the full Hilbert space Ho, the problem can be
treated efficiently in a basis of localized functions.

The EPR spectra of the Sbz, antisite defect in GaAs
show that the antisite antimony atom is surrounded by a
tetrahedron of four equivalent arsenic atoms and is in an

It is recognized that the electronic properties of local-
ized defects in solids can be adequately described using
the Koster-Slater tight-binding Green-function tech-
nique. " The defect electron state ~lb) bound by the
short-range potential V satisfie the Schrodinger equation

(Ho+ V)/=ED,

where E is the defect electron energy. In terms of the
Green function [Go(E)=(E Ho) '] of the—host crystal,
the above equation can be written as

/=GO(E) V1b
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Here E„i, and Ink) are the eigenvalues and eigenvectors
of the host Hamiltonian which is described by an empiri-
cal tight-binding Hamiltonian Ho, ' and the summation
on wave vector k in the Brillouin zone is performed with
use of the special k-point method of Chadi and Cohen. '

Because the defect potential V only extends up to the
atoms of the R =l shell, a set of linear homogeneous
equations for ( A iol I g ) and ( A, 11(tP) may be obtained
from Eq. (6):

( A, 01(p) =(6 v +6, v, )( A, ol lp)

+(6 V, +6,V„)(A, ill/),
( A, 11(tP) =(6, V +G„V, }(A, ol($)

+ ( 6„V„+6„V„)& A, 11(y&,

(8)

s-like state, with the breathing-mode relaxation. From
group theory, the defect state lg) transforms according
to the irreducible representation A, of the Td point
group. Hence lf) is expanded in a set of basis functions
(A, Rm &,

Il() = y ) A, Rm ) & A, Rm Il(),
Rm

where I A, Rrn ) are orthogonal symmetric combinations
of sp3 hybrid orbitals around the antisite atom .R
indexes the Rth shell around the antisite atom site, e.g. ,
R =0 for the antisite atom and R =1 for the shell of the
nearest neighbors, and m marks the mth basis function of
the Rth shell transforming according to the A, irreduc-
ible representation. For example, the s orbital of the an-
tisite antimony atom forms the basis function
I A, ol ) = IS ). The A i combination of four inward-
directed hybrids centered at the nearest-neighbor sites
constructs I A, 1 1 ), and so on.

In the present study, both the diagonal matrix elements
of V on the nearest neighbors of the antisite atom and the
off-diagonal matrix elements of V, which couple the an-
tisite atom to its nearest neighbors, are included. Thus
the potential parameters being introduced are the follow-
1ng:

v =&A,ollv(A, ol)=&slvls),
v„=&A,ollv(A, »&, v„=(A, lllv)A, ol&, and
V»=(A, 11(VIA,11). Then the solution of Eq. (2)
reduces to

& A, Rmltt &=& A, R~IGIA, 01&v & A, oily&

+&AiR~IGIA, ol) v„&Ai»lp&

+(A, R~IGIA 11&v„&A, oil@&

+& A, R~ IGI A, » & v»& A, »l@&,

in which the Green-function matrix elements of the host
crystal can be obtained from

& A, Rm lnk) & nkl A, R'm'&
AiRm 6 AiR'm'

nk nk

Because of the restriction of Eq. (9}, only one of the
two equations in (8} is independent. The normalization
condition (itII itl) =1 gives another independent equation
for ( A, 01($) or ( A, ill/):

dgoo dG„—(Ci +C3 ) —(C2+ Cq )

—2(C, +C3)(C~+C4) =1, (10}
d60,

where C, = Voo ( A, ol
I lt ), Cz = Via ( A i 01 I f)

C3 = Vo, ( A, 11(g),and C4= V» ( A i 1 1(g).
If the matrix elements of the defect potential are

known, the combination of one of the two equations in (8}
with Eq. (10) gives the wave functions ( A, oil/) and

( A, 11($). Then the ( A, Rm lg) for each shell can be
obtained from Eq. (6).

8. Defect potential

An adequate representation of the effective impurity
potential needed to define the defect as a deep trap re-
quires precise understanding of effects such as Coulomb
interactions, lattice relaxation, and charge-state splitting.
In the tight-binding method, one can avoid some of these
effects by making use of the trends of the perfect-crystal
Hamiltonian matrix elements and by defining the pertur-
bation V in a qualitative way.

Vhth regard to the matrix elements of V, the diagonal
element V,m used is the sanM as given by Hjalmarson
et al. s for the strain-free theory,

Voo =P, [co,(Sb)—co,(oa)],
where co, (Sb) and co, (oa) are the s-orbital atomic energies
for the antisite atom Sb and host atom Ga, respectively.
Following Ref. 14, and for the same reason, P, =1 is used
here.

The off-diagonal matrix elements are written as

Voi = V,o= W[(d) —(do) ], (12)

where 8'is a proportionality constant, which can be ob-
tained from the parameters of Harrison, ' and d and do
are the bond lengths of the antisite- (impurity-) contain-
ing crystal and the perfect crystal, respectively.

It can be imagined that the diagonal matrix elements of
the defect potential at the nearest-neighbor sites, V»,
should be dependent on d/do. Under the condition of
absence of relationship between V» and d /do, the direct
calculation of V» is diScult. However, fortunately, Eq.
(9) can be used to determine the relationship if the energy
level E and lattice relaxation d are fixed.

where G," is the abbreviation of the Green-function ma-

trix elements, i.e., 600 = ( A, ol I 6 I A, ol ),
Goi =

& A iol(6 I
A i 1 1), G,o=( A, 11(GI A iol &, and

6» =( A ill(6(A, 11). The determinantal equation (4)
reduces to

Goo Voo+Goi Vio l Goo Vo&+6» V» =0.
G lo Voo+ 611V10 610Vol 11 11
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C. Local lattice relaxation

In order to determine Vo&( Vo& ), the local bond length
between the antisite atom and its nearest neighbors must
be defined first. An approximate estimation of the
impurity-host relaxation in semiconductors has been sug-
gested by Baranowski. In the notation of Harrison, ' the
gain in the impurity-host bond energy per bond connect-
ed with a distortion bd (b,d )0 outward and b,d (0 in-
ward) can be calculated as

AEb —AEb +EEb, (13a)

where EEb and EEb are, respectively, the changes in the
energy of the bonds caused by distortion in the nearest-
neighbor and second-nearest-neighbor atom positions.
These are given by

bEq = —2[[V2(do+bd)+ V3]' —V2(do+bd )/0 lEI, l

—[Vq(do)+ V3)' + V2(do)/klsi, l I, (13b)

and

2 —C2 / 2

a +P =1.
J J

(16)

The principal values of the hyperfine-interaction tensor
can be pararnetrized as

( A
~~

)~ =a~+2b~,

( A~)~ =a~ b&, — (17)

where the hf-interaction parameters a. represent the iso-
tropic part of the hf interaction, and b gives the purely
axially symmetric part of the hf interaction. They are
given by

the jth atom is represented by

'9. Cs+C~x+C r+C z

and the percentage s and p character of the wave function
by

bE&= —6I[V2 (do+bd')+ V3 ]'

V (do+bd )/k'lap I

—[ Vq (do)+ V3 ]' + V2 (do)/k'lsI, l l,

2 2
a~

=
CXJ Yf~ A~f

2 2"i=~~&J ~f

with

(18)

bd'=[d ——'dobd+(bd) ]' —d (13d)

Within this approximation, the minimum of the total en-

ergy predicts the impurity-host relaxation, i.e., gives the
local bond length d.

D. Hyperfine-interaction tensor

In order to use the symmetric wave function
( A, Rmlg) to calculate the hf-interaction tensor, we

now expand the electronic state lg) in terms of the atom-
ic orbitals

lq&= y[C,,jlS&+Cxljr)+CjrljY)+CzljZ)],

(14)

where jlS ), jlX ), lj Y ), and lj Z ) are the nS and nP
atomic orbitals of the host or antisite at the jth site, re-
spectively Cs =(jSl1.(), C~=(jpxlg), C.r=(jprlg),
and Cjz = (jpz l p) can be evaluated using the calculated
& A, Rmlq&.

As usual, the probability of the unpaired electron on

(13c)

in which Vz (—=gd ), V3, and kle„l refer to the co-
valent and polar bond energies and the average hybrid
energy of the impurity nearest-neighbor bond, respective-
ly; they are dependent on the charge state of the defect.
The terms V2, V3, and k'lK„'] are the covalent and polar
bond energies and average hybrid energy of the host crys-
tal (see Ref. 9 for further details). b,d' is the change in

bond length between the first and second nearest neigh-
bors. If the second nearest neighbors are held fixed, then
the following formula is derived:

A&f =(16m'/3)(p /I )pa lg.s(0)12,

IIjf = ', (p, /I, )pa—(r„p'),
(19)

A =(An +An +An )' (20)

where A&, A2, and A3 are the principa1 values of the hf
tensor A and n „n2, and n 3 are the direction cosines of
the magnetic field direction with respect to the 1, 2, and 3
principal axes of the A tensor.

III. RESULTS AND DISCUSSION

A group-V atom on a group-III site in a III-V com-
pound, i.e., an anion antisite defect, should act as a dou-
ble donor. A double donor can exist in three charge

in which pz is the Bohr magneton, and p and I are the
nuclear magneton and nuclear spin of the jth atom, re-
spectively. l ttj„s (0) l J. and ( r„~ )J are the probability den-

sity of the ns orbital of the jth atom at its nucleus site and
the expectation value of r weighted over the np orbital
of the jth atom, respectively. For As, the natural abun-
dance is 100%, I=—23, p = l.439 nm,

lg4s(0)l =93.9X10 cm, and (r~z ) =49.4X10
cm . Antimony has two isotopes Sb and Sb with
natural abundances of 57% and 43%, respectively. The
nuclear spin~ are I&2, = —,

' and I,23 2
and the nuclear

magnetons are p&2&=3. 3593 nm and p/23 2.5465 nm,
respectively.

l $5s(0) l

= 148. 1 X 10 cm and

(r~~ ) =82.3X10 cm are the same for ' 'Sb and
Sb. These values are taken from Ref. 16.
The relationship of the efFective value of the hf interac-

tion constant A,z with the direction of the externally ap-
plied magnetic field is given by
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states, D, D+, and D +, and may consequently intro-
duce two energy levels in the gap. The energy levels of
the AsG, homoantisite defect are located at Ec —0.74 eV
(0/+) and Ez+0.52 eU (+/2+). ' The energy-level
structure of the Sbz, heteroantisite defect in GaAs was
found to be consistent with that of a double donor with
the (0/+) energy level located at Ec—0.5 eV and the
(+/2+) energy level located at Ec—0.7 eV. It is in-

teresting to note that the energy difFerence between the
6rst and the second ionization levels is very similar for
Aso, and Sb« in GaAs. Only the one-electron state D+
is paramagnetic, and the unpaired defect electron of Aso,
in GaAs occupies the (+/2+) energy level, so the un-
paired defect electron of Sbo, in GaAs occupies the
(+/2+) energy level, i.e., E=Ec—0.7eV.

Equations (13a)—(13d) allow us to calculate the local
relaxation around various impurities in all semiconduc-
tors using the periodic table with values of the atomic
terms ss and ez. ' The results for the lattice relaxation in

GaAs:Sbo, obtained at the minima of total energy are
shown in Fig. 1. The outward relaxations of nearest-
neighbor atoms for D,D+ charge states are determined
to be 7.0% and 17.3% of the bond length (do=2. 45 A,
b,d =0.17 and 0.42 A), respectively. Our results are com-
parable to the DFT result for the neutral heteroantisite
Sbo, in GaAs, b,d =0.27 A, obtained by Caldas et al. '0

Using the experimental value of the defect energy level E
( =Ec—0.7 eV) and the theoretical value of the lattice re-
laxation d/do (=1.173), the combination of Eqs. (11)
and (12}with Eq. (9) gives the V» (=—2.567 eV}.

In order to investigate the efFect of lattice relaxation on
defect energy level, we assume that V„will vary as a
function of lattice relaxation and V» =0 when d =do.
The simplest assumption is that V»=k(d/do —1).'

According to the obtained values of d/do (=1.173) and

V» (= —2. 567 eU), the parameter k (= —14.8) is ob-
tained. Then the trends of defect energy level, electronic
wave functions, and hf-interaction constants with relative
lattice relaxation d /do can be explored.

%.8 0.9 1.0 1.1 1.2 1.3

FIG. 2. The dependence of the deep energy level of the SbG,
heteroantisite in GaAs on lattice relaxation. The dot indicates
E=E&—0.70 eV (Ref. 4) and d/dp=1. 173. The black square
indicates E=EV+0.95 eV and d =do+0.27 A (Ref. 10), i.e.,
d /do =1.10. The line is the theoretical curve.

The trend of the A
&

level vs the lattice relaxation ob-
tained from Eq. (9) is shown in Fig. 2. This curve indi-
cates that the energy level moves closer to the
conduction-band edge for inward relaxation from the
center, while it moves deeper into the band gap for out-
ward relaxation. We note that a similar trend has been
predicted for various Ga-site and P-site impurities in
GaP and S, Se, and Te in Si by Li and Myles, for N in
GaP by Shen, Ren, and Dow' and for PG„AsG„and
SbG, in GaAs by Caldas et al. ' It is clear from Fig. 2
that, when d /do =1.07, the energy level is located at
Ez+1.07 eV, i.e., E=E&—0.44 eV; these are approxi-
mately equal to the experimental values of 0.48 (Refs. 2,5)
and 0.50 eV (Ref. 4) below the conduction-band edge for
the 0/+ energy level. When d/ds= 1.1, i.e., hd =0.27
A, the energy level is located at Ez+1.0 eV, which ap-
proximately equals Ez+0.95 eV obtained by Caldas
et al. ' for the neutral defect Sbo, in GaAs. So the above
assumption V»=k(d/do 1) is no—t too crude to de-
scribe the relationship between defect energy level and
lattice relaxation.

The obtained defect electronic wave functions and the
hf-interaction constants are shown in Table I, and com-
pared with the experimental data. From Table I, it can
be seen that the probabihty of an unpaired electron on

f~oo3 [1143 [0143

$.0 1.2

FIG. 1. Calculated lattice distortion in GaAs:Sbo, based on
bond-orbital model. The total (h,E=hEI +LLE2) bond-energy
variation is plotted against hd /do for a single heteroantisite de-
fect. The minimum of the total energy predicts the relaxation of
the nearest-neighbor lattice. The outward relaxations of
nearest-neighbor atoms for DO, D+ charge states are determined
to be 7.0% and 17.3% of the bond length.

~so' '
N 30

8 I
Q

FIG. 3. Angular dependence for the hf-interaction tensors
As4 of the SbG, heteroantisite in GaAs. The magnetic field is
rotated in the (011)plane.
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TABLE L The probabilities g of the unpaired electron, the s-character percentage a and p-
character percentage P of the wave functions on the antisite antimony, and the nearest-neighbor arsen-
ic atom in GaAs, and the principal values of hf interactions, i.e., A

~~

and A~, the isotropic part a, and
the anisotropic b (in 10 cm '). The corresponding experimental results are taken from Refs. 1 and 3.

a'(%) P'(%) q'(%) Reference

12lSb

»3Sb

As4 84.2
126.1

2203
2200
2259
1215
1200
1200
1223
658
43.4
90.7

57.0
102.5

0
0
0
0
0
0
0
0

13.6
11.8

100
100
100
100
100
100
100
100

9.8
18.3

0
0
0
0
0
0
0
0

90.2
81.7

28.7
15.5

28.7
15.5
15.3
14.6

Ref. 1

Ref. 3
This work'
This work
Ref. 1

Ref. 3
This work'
This work
This work'
This work

'The outward relaxation of the nearest neighbor is 17.3% of the bond-length, and the deep energy level
is located at E&—0.7 eV .
'The unrelaxed case where the deep energy level is located at E~+ 1.21 eV.

the antisite antimony in the relaxed case is larger than in
the unrelaxed case. This means that the probability for
outward relaxation increases. The probabilities of the un-
paired electron on the nearest-neighbor atoms in the re-
laxed and unrelaxed cases are approximately equal to
each other, i.e., the probabilities of the unpaired electron
on the four nearest-neighbor arsenic atoms are almost in-
dependent of its relaxation. Therefore an increase in the
bond length causes an increase in localization of its wave
function, which is identical with the result of the
density-functional theory calculations for P, As, and Sb
in GaAs and InP by Caldas et al. ' The s-character per-
centage of the wave function on the antisite atom does
not change with the bond length variation; however, the
s-character percentage of the wave function on the
nearest neighbors decreases for outward relaxation.

The calculated hf-interaction constant at the central
antimony atom in the unrelaxed case is much smaller
than the experimental data, but in the relaxed case it is in
goo' agreement with the EPR data. ' So the effect of the
nearest-neighbor lattice relaxation is very important; it
must be taken into account for correct quantitative
description of the SbG, heteroantisite defect in GaAs.

It is seen from Table I that the probability of the defect
wave function on Sb is 28.7% in the relaxed case. This is
approximately equal to the paramagnetic electron density
[about 26% (Ref. 21)] at the central atom of the intrinsic
anion antisites in GaP, InP, and GaAs. The total proba-
bility of the defect electronic wave function on the four
nearest-neighbor As atoms is about 61%%uo, this also ap-
proximately equals that of the homoantisite in GaP, InP,

and GaAs. That is to say, the wave functions of the
anion heteroantisite and homoantisite defects in GaP,
InP, and GaAs become more similar after the lattice re-
laxes in the breathing mode.

The calculated results of the hf-interaction constants
with the nearest-neighbor As atoms are also listed in
Table I. The angular dependence of the effective A

values, A,s, for rotation of the magnetic field in the (011)
plane has been predicted, and is shown in Fig. 3. It re-
veals the characteristic four-line (two of them are coin-
cident) spectrum of the four As4 units, each with a
different [111]axis of symmetry. The results may be use-
ful for future interpretation of electronic structure detect-
ed in experiments.

IV. SUMMARY

The theory of the EPR spectrum of deep impurity
states combined with the bond-orbital model are used to
investigate the electronic structure of the heteroantisite
defect Sbo, in GaAs. Using the bond-orbital model, the
outward relaxation of the nearest-neighbor lattice is
determined. The result shows that the relaxation must be
taken into account for the quantitative description of the
SbG, heteroantisite defect in GaAs. The calculated defect
electronic wave functions show that the wave function of
the anion heteroantisite and homoantisite defect in GaP,
InP, and GaAs become more similar after the lattice re-
laxes in the breathing mode, and the calculated hf-
interaction constants are in good agreement with the
EPR data.
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