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Electronic states near a square Fermi surface are mapped onto quantum chains. Using boson-
fermion duality on the chains, the bosonic part of the interaction is isolated and diagonalized.
These interactions destroy Fermi-liquid behavior. Nonboson interactions are also generated by this
mapping, and give rise to an alternate perturbation theory about the boson problem. A case with
strong repulsions between parallel faces is studied and solved. This solution discards irrelevant
operators in the new interaction Hamiltonian. There is spin-charge separation and the square Fermi
surface remains square under doping. At half-filling, there is a charge gap and insulating behavior
together with gapless spin excitations. This mapping appears to be a general tool for understanding
the properties of interacting electrons on a square Fermi surface.

I. INTRODUCTION

The problem of interacting electrons in two space di-
mensions is thought to be central to an understanding of
high temperature superconductivity. Ordering in three
dimensions, according to one scenario, arises from the
coupling of highly correlated layers. 2 Attention naturally
focuses on the properties of the layers and the possibility
of unconventional behavior in two dimensions. Of course,
the two-dimensional (2D) problem is of interest in its own
right, and could be helpful for an understanding of lay-
ered superconductors.

A standard model often studied in this context is the
Hubbard model. This begins with electrons which may
tunnel between nearest neighbor sites on a square lat-
tice, with amplitude t, and adds an on-site repulsion of
strength U. In comparison with the corresponding prob-
lem in one dimension, relatively little is known about
this model.

Perturbation theory in U shows very interesting and
complicated behavior. With the starting point of an av-
erage occupation number of one electron per site, serious
divergences are encountered. These have been analyzed
for more general interactions than the Hubbard model
interaction and are worse than the usual logarithmic
type found in other problems. Evidently, there is a need
for alternative techniques to be developed.

The starting point of one electron per site has a square
Fermi surface. This paper discusses a mapping of the
square Fermi surface onto one-dimensional chains. Two
sets of chains arise, one for each axis of the square. Inter-
actions can be decomposed into couplings between paral-
lel faces of the square and adjacent faces. These, in turn,
result in interactions between the chains. Boson-fermion
duality can be used on each chain separately to And the
equivalent boson problem, giving a precise definition of
this duality for the square Fermi surface.

In a natural way, the interactions separate into purely
bosonic terms plus other operators. The bosonic terms
can be diagonalized exactly and produce behavior similar

to the Luttinger model in the sense that there are no
fermion quasiparticles or Fermi-liquid behavior. There
is complete separation of the charge and spin degrees of
freedom, as previously found in purely one-dimensional
models. As a consequence, charge excitations have no
spin and pure spin excitations no charge.

Nonbosonic terms produced by this mapping give rise
to a new starting point for perturbation theory. This be-
gins with the free electron kinetic energy plus the bosonic
terms taken together as the unperturbed Hamiltonian.
The nonboson terms arising in the mapping are then
taken as the perturbation. It is then important to an-

alyze the operators in this perturbation theory, to see if
they are relevant or irrelevant, with respect to the bosonic
starting point. For this purpose, the operator dimensions
are calculated exactly, using the boson Hamiltonian and
boson fermion duality.

This technique of separating interactions into a bosonic
piece plus other operators is familiar from many other
problems, such as the Kondo model, the backward scat-
tering model, or the sine-Gordon problem in 1D. It is

slightly more complicated here due to the mapping of the
square Fermi surface onto chains.

One of the complicating features of the square Fermi
surface concerns the modulation of the Fermi velocity
along the face —in fact it vanishes at the corners. In
this perturbation analysis, it turns out that the operator
causing modulation is irrelevant for any interaction. The
large distance behavior is characterized by a constant
velocity.

It might be argued that doping would destroy these
results, since the Fermi surface should then depart from
a square. That is only correct for nearly free electrons.
For sufBciently large operator dimension, corresponding
to strong interactions, the operator which causes devia-
tions &om the square becomes irrelevant. A square re-
mains a square under doping, only the value of the Fermi
momentum changes.

Generally, it is found that two diferent types of oper-
ators are relevant for repulsive interactions. These corre-
spond to Umklapp terms and an antiferromagnetic spin-
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Hip process. For a restricted case of repulsive interac-
tions between parallel faces, these extra terms can also
be diagonalized. They lead to a gap in the charge excita-
tion spectrum and, therefore, insulating behavior. There
are gapless spin excitations. This range of coupling con-
stants also exhibits spin-charge separation. Construction
of this solution assumes that irrelevant operators may be
omitted, since the renormalized coupling constants in the
perturbation series scale to zero.

There have been studies of coupled 1D chains using
models for the coupling which differ &om that encoun-
tered in this paper. Consequently, the results cannot
be applied here. Other studies of the square Fermi sur-
face problem have concentrated on models with bosonlike
interactions and found non-Fermi-liquid behavior. It
is not clear how to extend these to include the nonbo-
son interactions which are found to be relevant for short
range interactions.

The techniques introduced in this paper are generally
applicable for understanding the relevant degrees of &ee-
dom for interacting electrons on a square Fermi surface.
Although the special case of interactions between parallel
faces is emphasized, it should be easy to generalize these
results to other models, including the Hubbard model.
Future work will doubtlessly explore the fall possibilities
of this mapping. Some interesting directions are indi-
cated in the discussion section.

II. MAPPING THE SQUARE FERMI SURFACE
ONTO CHAINS

Hp —— t) a; az +—p) a; a;
(ij)o XC7

(2.1)

where a; is the Fermi operator of an electron at site i
with spin cr, t is the hopping matrix element, and the sum
over i and j is restricted to nearest neighbors on a square
lattice. After a Fourier transformation, and rotation by
45, this can be written as

Hp —— 4t ) cos(k —s') cos(k„s') a ag
't

A:cr

(2.2)

The general problem of interacting electrons in two
space dimensions, described by the tight-binding approx-
imation on square lattices, simpli6es if attention is fo-
cused on low energy excitations near the Fermi surface.
For the half-611ed band, the Fermi surface is a square, and
the important excitations preserve this symmetry. Intu-
itively, excitations perpendicular to a face of the square
can be thought of as one dimensional in character if the
momentum parallel to the face is zero. For large parallel
momentum, this picture is not obvious since the Fermi
velocity can vary with position along the face. In addi-
tion, low energy excitations between different faces can
also exist, confusing a separation into excitations of each
separate face.

These different excitations are contained in the kinetic
energy operator of the tight-binding model,

where s' = s/~2. The fermion field operator is de-
%' R'

fined before rotation as N i g&, a&, e'" ', for a lat-

tice of N sites, area I, lattice constant "8", and
k' = 2vrL (n&, n„'). The sum is the over the Brillouin
zone, and the chemical potential p, in Eq. (2.1) is chosen
such that the energy of Eq. (2.2) vanishes for k or k&

equal to + kz, with k~ = z(~2s) . This defines the
square Fermi surface.

Consider now that face for k near k~. The energy can
be linearized to 6nd

Ei(k ) = v~(k„) (k~ —k~), (2.3)

where v~(k„) = (2itt2ts) cos(k„s') and the "1" subscript
refers to the particular face with k = kp, —k~ ( k„&
k~, and positive (or zero) Fermi velocity. There is a
similar linearization for the other three faces, labeled by
' 2)" with k~ = —k~ 3' with ky = kg, and ' 4" with
k„= —kg, in all cases with positive (or zero) Fermi ve-
locity.

For a given spin, the Fermi operator describing the "1"
face is given, after rotation, by

1
4i(* y) = —).

Ic„,k
(2 4)

The k momenta are 45' rotations of the k', k„runs &om
—k~ to k~, x and y are rotated coordinates. With B' =
s(m, n), these are given by R = (z, y) with ~2z = s(m+
n) and ~2y = s(n —m). The equal time correlation
function (pit(z, y)Q', ) is given by

ICF

Hi'(z y)K) ="
27K

dk —iIC Z —a)k~ —aF (

2

(2ir(z+io, )) ' (2.5)

0i(z, y) =
2N

) g(l —l')gii (z),k~
(2.6)

where the prime denotes the operator for the square
Fermi surface, the operator on the right of Eq. (2.6) de-
scribes fermions on independent chains, and ~2y = sl.
The integer / runs &om 1 to 2N, since I = n —m with m
and n running &om 1 to N.

The expectation value for independent chains

where g(l) = 2 ihip+ (wl) i sin(vrl2 i), with l = n —m
representing a discrete "y" coordinate, and a is a cutoff
of order k+ for states far away &om the Fermi surface.
In these formula the sums over k have been replaced by
integrals, using the invariance of dk dk„under rotation.

This result is a product of a function of the y variable
times a purely 1D expectation value. It suggests that the
Fermi operator describing excitations near the "1" face
can be written in the form



11 448 A. LUTHER 50

(g~t, (x)@g(,) with normalization

(2.7)

which gives Eq. (2.5) when g& g(l —lq)g(lq —l') = g(l —l')
is used with Eq. (2.6).

It is also interesting to consider the mapping of Eq.
(2.6) in the language of Fourier transforms. For 2N in-

dependent chains, the transformed operator is

2N

E=1

(2.8)

with p„= 2xn„(2N) ~ and n„ in the interval
to +N. This corresponds to the interval in k„ from
—2k~ to +2k~, since 2k~y = xl. The discretization
of this interval is consistent with the spacing of lines
of equal k&, which is 2vrI 2 2, and the phase factor

key = n„(2+I ~2 2)y = p„l. The point with k„= k~
has n„= 2, and the square Fermi surface thus corre-
sponds to 2N independent 1D chains with the Fourier
transform momentum restricted to the half-interval.

An obvious question with this mapping onto indepen-
dent chains concerns the continuum limit used in the nor-
malization of Eq. (2.7), contrasted to that of Eq. (2.4).
They differ by ~s, which is to be expected for a purely 1D
system. For the discrete lattice system in 1D, the &ee

fermion expectation value (Q~~(m)gq(o)) behaves as m

for large m, while (Q~(x)Qq(o)) for the continuum model
behaves as x . Since x ~ ms, the operators must differ

by the multiplicative factor of +s. With the convention
used in Eq. (2.7), the correlation functions are correctly
reproduced by Eq (2.6), .and that is used in this paper.

This continuum limit cannot be applied to the other di-

mension, since the Fermi surface degeneracy occurs over
a Bnite range in momentum space. The continuum limit
can only be taken for states perpendicular to the Fermi
surface, while the other direction remains discrete.

Similar considerations apply to the construction of the
Fermi operator for k near —ky, the "2" states. The
corresponding expectation value is found to be

2N

Q~„„(x)= (2N) & ) Qu(x)e '~"' —N & nv & N .

(2.11)

(2.12)

Since the sum in this equation is restricted to the half-
interval, the Qq operators are equal to the unprimed op-
erators, and the inverse Fourier transform of Eq. (2.4)
can be used to find

(2.1S)

where

2

= (2N) ' )
NA Q

„~(p )e~s v(~ —&')

In the following section, it is shown that the off-'

diagonal elements of tl l are irrelevant operators when
interactions are included. The diagonal element repre-
sents an asymptotic Fermi velocity, vo, of magnitude

Vo = (its) (2.14)

It is seen that the Fermi surface operator is just the chain
operator restricted to half the transverse Brillouin zone.
This mapping is useful because interactions between the
various faces of the Fermi surface have simple representa-
tions when expressed in terms of the chain picture. This
is discussed in the following section.

Coupling between the chains could arise kom the de-
pendence of the Fermi velocity on the momentum along
the face. This coupling is contained in the k„Fourier
transform of Eqs. (2.2) and (2.3),

and the Q2 field is represented by

)~ikFz
(2.9) and tl, l' ~ vo~E, E' ~

Keeping only the diagonal element, the kinetic energy
is a sum of independent chains. Each chain can be sepa-

rately bosonized, giving the result

@2(x,y) = (2.1O)

where $2~(x) is the operator for the "2" fermion on chain

2N

Hr = moo ) f dz pg(z)pres(x),
E=1 0

(2.15)

The operator content of this mapping is clear. With
the Fourier transform operator on the Fermi surface de-
fined by

where pq~(x) = Q~&(x)gq~(x), and the product is normal
ordered. The Fourier transforms of pq((x) are
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2N

pg(n) = ) dz e'"~'+'"** pg)(x),

pg) (z) = (2NL) ) e '"* '~&'
pq (n) .

YLp YL sI

(2.16)

With these relations, the kinetic energy for face "1"can
be written as

This construction therefore gives the correct asymptotic
behavior of these correlation functions and the dynamics
near the Fermi surface I.t is particularly useful when in-
teractions between the diferent faces are included as de-
scribed in the following section. It should be emphasized
that no approximation has been made beyond lineariza-
tion of the free electron spectrum at the Fermi surface
and the assumption that tll is diagonal, as discussed in
Sec. IV.

Hg = ) pg(n) pg(-n), (2.17)

where n~ runs from —N to N and the sums over n~ are
to be cutoK as is the 1D case.

The commutator of Qz&(x), from Eq. (2.6), with the
kinetic energy is

III. DENSITY OPERATORS POR THE SQUARE
FERMI SURFACE

The interactions between electrons are often described
by the Hubbard model,

[Wii(x), Hi] = ~vp 4u(z) (2.18) H = Hp+ U) n;pn, (3.1)

using either Eqs. (2.12) or (2.15) for Hq, as a result of
boson fermion for the 1D system on chain l.

These steps can be repeated for the other faces of the
Fermi surface, including spin, giving the total kinetic op-
erator (under the assumption that t~ ~ ~ vpb'~

~ ) as

Hp = ) pp (n)pp (-n),
2NL

(2.19)

where the products are normal ordered, o. = +1 is a spin
index, and P=l—4 corresponding to the four faces.

The commutation relations are given by

[p~- (n')»-(n)] = —[p.-(n') p.-(n)l
=2Nn b„- „-b

(2.2O)

[ps- (n') ps-(n)] = —[p4- (n') «-(n)l
= 2Nnvh„-, „- b

With all other commutations vanishing. Fermi operators
for the various faces are

2N

&p,.(»y) =
k ). g(l —l')&~,u, (*)
F l/1

21V

@p,.(z y) = ). g(k - k')0~,o;(y),
k'=1

(2.21)

where 0 is the spin index, P = 1, 2 the face index, l is the
discrete coordinate corresponding to y, ~2y = sl, and x
the continuum variable on chain l'. The other two faces
are rotated versions of the above, with P' = 3, 4 the face
index, k the discrete u coordinate, and y the continuum
variable on chain A.".

The necessity to construct fermion operators unsym-
metrically in x and y follows &om the degeneracies over
finite regions in momentum space, the Sat pieces of the
Fermi surface. The mapping onto independent chains
gives the correct multiple point fermion expectation val-
ues, since it preserves the correct operator structure.

where Hp is given by Eq. (2.1), U is the on-site repulsion
between electrons of opposite spins, and n; the number
operator at site i with spin 0. The previous section pre-
sented a mapping of Hp onto independent chains, and it
is natural to understand the interaction term in this rep-
resentation. Basic to this construction is the assumption
that states near the Fermi surface are important, since
these are correctly reproduced by that mapping.

In principle, the procedure to follow is straightforward.
An electron operator is just the sum of the four operators,
1P —1P] + I/2 + 1IP3 + Q4 from the four faces. Each can
be mapped into independent chains, with two orthogonal
sets of chains for the two axes of the square. Since n, + ——

Q+ Q+, there are 256 terms, but there are also great
simplifications due to symmetry and operator dimension.

The first simplification occurs in the density operators
themselves. Consider the contribution to the spin (+1)
density from face "1," using the mapping of Eq. (2.6)

&i'+(» y) &i+(» y)

= ~4').g(i —i~)g(l —
i2)@&&,+(z)&~~,+(x) (3 2)

pi+(»y) = ~4').g'(l —li) p~~, +(x) (3.3)

and has the Fourier transform, with conventions from Eq.
(2.16), given by eke p~+(n), with

pg+(n) = f(ns)pi+(n) . (3 4)

In this equation, f(n„) is the Fourier transform of g (l),

2N

f(n ) = ) e'""'g'(I) = —
I

1—
2E Ny 2g

The terms with /q ——l2 give a purely bosonic contribu-
tion, since Qz& +(z)gq~, ~(x) = pq~, +(x) is of the form
discussed in Eq. (2.16). Defining this boson piece by
pI+(x, y), results in
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for ~n„~ & N, (~p„~ & 1r). Using the commutation rela-
tions of the p (n) operators on the right hand side of
Eq. (3.4), given in Eq. (2.20), the operator algebra for
the boson part of the Fermi surface density operator can
be found.

It is interesting to study the equal-time density-density
correlation function, for free particles, and determine how
much is contained in the purely bosonic piece of Eq. (3.4).
The correlation function is found using Eq. (2.6),

(41 (&, V)01(» u)el 01)= (41 (~ &)~l)(~l(* (I)&1 )
2

*+' )
(3.5)

where o. is the face index. These operators satisfy

[o- (n') o-(n)] = [p- (n') p-(n)]
=b ~b„- „- 2N(e . n),

where ri ——x, e2 ———x, ~3 ——+y, and ~4 ———y, and all
other commutators vanish. An interaction term of the
form in Eq. (3.7) can be rewritten, using

2 ) f p(n)p +(n)p(s (
—n)

= ):f-p(n)[p-(n)pp(-n) —o-(n)op(-n)]

while the boson part of the density operator contributes

(Pl(* ~)P1)
2

ll

(3.6)

= —1(2)t;~2 ) f'(n„)p, +(n)p, (-n) .

The sum over l' gives (27r212) + (4) 81 p, with g (l)
from Eq. (2.5). The difference arises from the restriction
to equal chains contained in pl(z, y). In general, contri-
butions forming unequal chains must be examined, and if
relevant, they should be retained. Nonetheless, a purely
bosonic piece can always be extracted &om a density op-
erator. The unequal chain terms are analyzed in the next
section.

The boson contribution to the Hubbard model interac-
tion of Eq. (3.1) can be extracted using this procedure.
After the notation used in Eq. (2.4), the contribution
from the "1" face is given by

U ) D;+D; M U f —) pit+(Z)pit —( )

l

provided f p is even in n and symmetric under inter-
change of n and P, which is the case here.

The most general interaction allowed by this construc-
tion is then

H~ = ) p' (n)A pp&(
—n) —o' (n)B )so&(—n)

with A = Vi and B = Ui representing scattering
on the same face; A~2 ——A2i ——A34 —A43 —V2 and
Bi2 ——B2i ——B34 —B43 —U2 for opposite faces, while all
other elements of A p ——V3 and B p ——U3, representing
scattering &om adjacent faces, are equal. In a similar
fashion, the boson form of the kinetic energy, Eq. (2.19),
can be separated into spin and charge operators, using
Eq. (3.8). The result is

=
N~ ).f (nv)pl+(n)pl-( —n).(») Hp —— ) [p (n)p (—n) + o' (n)o' (—n)] (3.11)

v 2P (n) = P +(n) + P (n)—
A~. (n) = p.+(n) —p--(n)

(3 8)

(3.7)

Note that the combination Us enters here, and this de-

fines the coupling constant for the continuum limit, U8.
In the solutions discussed below, only the ratio Us/vp ap-
pears, and from Eq. (2.14), the lattice constant cancels,
as in the 1D Hubbard model continuum limit. An inter-
action which exists only at one site can be generalized
to have diferent interaction strengths between diferent
faces. By symmetry, one expects three diferent inter-
actions, equal faces, opposite faces, and adjacent faces.
There is also a complete separation of charge and spin de-
grees of freedom in these interactions, giving six coupling
constants in all.

Charge-spin separation follows &om choosing linear
combination in the form

and together with Eq. (3.10), provides a complete de-

scription of the bosonic degree of freedom for the square
Fermi surface. This provides a starting point from which
the relevant (or irrelevant) operators are to be deter-
mined.

For the Hubbard model, all of the six coupling con-
stants are equal, with magnitude 2Us. This equality is
not obviously useful for they may renormalize in differ-
ent ways when relevant operators, coming from nonboson
terms in the interaction, are included. Although the bo-
son Hamiltonian Hp+H~ from Eqs. (3.10) and (3.11) can
be diagonalized, the problem is simplified somewhat if
coupling between adjacent faces is omitted, V3 ——U3 ——0,
the procedure followed below.

The parameters describing boson interactions between
parallel faces can be more intuitively understood by in-
verting the spin-charge separation. In this way, H~ for
parallel face interactions can also be written in the form
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Ha =
2N~ ). f'(nv)p. .(n) [(Vi —Ui)b. ..+(Vi+Ui)b. .-.] p..(;)

nao cr'

+N~ ) f (n„)pi~(n)[(V2 —U2)b~~ + (V2+ U2)b~ ~ ]p2~ (—n) + (3 —4 terms),
ncaa, o'

(3.12)

where o. = 1,2. The contribution from the "3" and "4"
faces is found by replacing f(n„) by f(n ), pi by ps, and

p, by p, .
All of these are forward scattering processes. The first

term has small momentum transfer on the same face,
while the second describes small momentum transfer on
opposite faces. Although this representation makes a
physical interpretation more evident, solutions are more
conveniently found using the separation into spin and
charge operators.

It should also be recognized that the generalized model
with six coupling constants is not the most general, even
for the boson degrees of freedom. In order to have these
unequal, it is necessary to have a momentum dependent
interaction, rather than the on-site interaction of the
Hubbard model. As a result, the momentum dependence
along the square faces would also appear, which changes
the momentum dependence contained in the f(n) factor
appearing in Eq. (3.4). The model which retains only
Vq, V2, Uq, and U2, discussed in the following section,
not only provides insight into the more general problem,
but perhaps can serve as a phenomenological description
as well.

IV. RELEYANT OPERATORS AND THE BOSON
PROBLEM

The preceding section discussed the construction of bo-
son operators which are contained in the fermion density
operators, and showed how to extract products of boson
operators from the Hubbard interaction. In this section,
the boson problem is diagonalized, and the remaining
terms contained in the interaction, are isolated and dis-
cussed.

Central issues concern the role of the single electron
states and the possible breakdown of Fermi-liquid the-
ory. The conditions for spin-charge separation need to be
analyzed, along with the nature of the excitation spec-
trum. Further questions involve the consequences of the
modulation of the Fermi velocity along the face and the
stability of the square Fermi surface to doping away from
half 611ing. These problems can all be studied using the
boson Hamiltonian, from the proceeding section.

The starting point for the boson problem is Hp + H~,
given by Eqs. (3.10) and (3.11), which can be written as

Ho+ H~ = ) ~

1+ Vi
~ p (n)p (—n)+

~

1 —Ui
~

o (n)o (n)+ f'(n„)pi(n)p2( —n)
zvo . f f'(n)) ( f'(n) l „2V2

2NLr ( irvp ) ( 7cvp p 7I'vp

2U2 2 ~ 2V2 2U2f (n„)oi(n)o2(-n) + fs(n )ps(n)ps(-n) — f (n )o4(n)o4(-n)
7i Vp 7l Vp irvp

J

(4.1)

Here, the sum over n is de6ned &om —N to N for momen-
tnm parallel to the face in question, with an exponential
cutoff perpendicular to the face, as in the 1D problem.
The function f (n) equals f(n&) for a = 1,2 and f(n )
for a = 3, 4. Note that the coupling constant enters as
the ratio Vi jvo etc. , and the lattice constant contained
in these objects cancels. Terms containing a zero in the
denominator are to be omitted. They correspond to zero
modes, containing no space-time dependence, and must
be treated separately.

Separation into spin and charge operators is explicit,
and each sector can be diagonalized separately, using
canonical transformations such as

pi(n) = cosh g(nv) pi(n) —sinh g(ns) p2(n),

2N~ ) .[&-(n)p-(n) p-(-n)
n, a

+b (n)o. (n)o. (-n)], (4.3)

generated by pi(n) = es'pi(n)e ' with Si
(2N) p„n iI(n„)pi(n) p2( —n). A similar transforma-
tion diagonalizes the spin degrees of freedom for the 1-2
faces, with S2 ——(2N ) P„n p(n„)oi(n)o2( —n). The
transformation for the 3-4 faces are found by interchang-
ing n and n&, with 1-+3 and 2~4 for the boson sub-
scripts.

Applying these transformations to Eq. (4.1) leads to
the diagonal form

p2(n) = coshiI(nv)pg(n) —sinhg(nv)pi(n),
(4.2) where o. = 1,2, 3, 4. The charge velocity renormalizations

are given by
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7C'Up ) ( 7( Vp )
(4.4)

(+ ( „-„)P(~„)
Vg+Vg 2

(4.5)

and g(n ) is Eq. (4.5), replacing n„by n . For the spin
degrees of freedom, p(n„) is given by Eq. (4.5) with Vj
and V2, replaced by —Uq and —U2, respectively, while
(L(,(n ) replaces n„by n

This completes the diagonalization of the boson prob-
lem. It is seen that the spectrum is linear in momentum
perpendicular to each face, and each will contribute a
term linear in temperature to the specific heat. Inter-
actions renormalize this linear term, as in the Luttinger
model.

These transformations can be used to calculate the
fermion correlation function, and determine the relevant
operators. It is helpful to use the boson-fermion duality
on each chain separately, representing for example the
fermion operator of Eq. (2.6) by

( ) z p, (~(z)+laFz—

z (*)—'
(4.6)

with ps(n) = p4(n) found from Eq. (4.4) by replacing n„
by n . The spin velocities, b' (n), are given by p (n) with
the replacements Vq —+ —Uq and V2 ~ —U2. In general,
the spin and charge velocities are different, but preserve
the x-y symmetry.

The parameters used in these diagonalization transfor-
mations S~ to S4 are given by

spin operators has been used. A renormalization con-
stant Z~ has been introduced, which contains the con-
tributions from zero modes corresponding to the n = 0
term in Eq. (4.7). For the purely 1D case, Z = (2mc(. )
but for chains, this can also contain a phase factor
exp (i(t( (l)) corresponding to a uniform fermion phase
on different chains.

The corresponding operators for the 3-4 faces are de-
fined by

y,„(y) z, v.a-—(w)+ I ~((

z„.-( )-'
(4.8)

(&' (* t)& ) =z'(""'*' e "")
= Z'e-'" * A, (x, t)B,(z, t),

where

and these "phase" fields are found from Eq. (4.7) by the
replacements 1~3, 2~4, and n by n„. For these 3-4
face operators, y is now the continuum valuable, and k
represents the discrete z variable. Thus the plane wave
phase factor k x+p„l in Eq. (4.7) is replaced by k„y+p k,
for the (p A, (y) fields, for n = 3, 4.

In the following, it will be shown that fermion opera-
tor must be paired on equal chains, otherwise the corre-
sponding terms are irrelevant. That simplifies the zero
mode factors, Z, since products of fermion operators on
different chains commute, and potential single fermion
ordering terms drop out.

The calculation of a fermion correlation function in the
boson ground state separates into products of operators
in the spin and charge sectors, as seen by the example

where the "phase" fields are defined by —1
A/(g t) —(e& 2 2 g„- 'Pl ((lR, ()(-

3
x (4.9)

p (.(z) = (2iV) ') n.-'p .(n) e-'"** '""

i) n '
[p (n) + (T(T (n)]

—ilc x —ipyl (4.7)

with o. = 1, 2, 0 = +1, and separation into charge and

with time evolution, and expectation values using the p
part of the Hamiltonian in Eq. (4.3). In identical manner,
the B term replaces pq with oq, and uses the o part of
Eq. (4.3).

Diagonalizing the Hamiltonian mixes pq and p2 accord-
ing to Eq. (4.2), such that A is a product AiA2 involving
the "1"and "2" operators

3 —1 —ill ~ —i l —1N 2 g n cosh'(ny)p1{n, t)e '" * —N 2 g n cosh'(nz)p1(n)
) (4.10)
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with A2(x, t) given by replacing cosh t)(ny) by sinh t)(ny)
and p& by p&.

In this expectation value, the time evolution pi (n, t) =
pi(n)e'" "p~( &)t is to be used. These can be calculated

using the Baker-Hausdorf forxnula to find

N oo

Ail(z, t) = exp —(4N) ) )
n„=—N &x=&

xn cosh t)(ny) e

result is identical. Bosonic portions of the interactions on
a square Fermi surface destroy Fermi-liquid behaviors.

It is now appropriate to check the assuxnption of Eq.
(2.14) concerning the off-diagonal matrix elements of tl l,
using the boson problem of Eq. (4.3) as the starting point.
This is done using perturbation theory in tl l to check
whether this operator is relevant. One of the terms to be
studied is

(4.14)

x(1 iP„t+ik [P:—oPy(n„)t]) 4.11
and in second order perturbation theory would contribute

with A2l{x, t) replacing x by —z and cosh t)(ny) by
sinh tv(ny) . Converting the sum over no to an integral
over k, it is seen that this integral diverges to (—oo) at
k = 0, unless l = 0. Thus, at t = 0,

1+dp
( in

Ail(z, t) = ~t,o
Iqz+ia) (4.i2)

d p+dcr

f 1 ) t' ia l t' n2—sky p;

(2mn) (z+ia) ( z+2n)2

(4.13)

where d is found as in Eq. (4.12) for the spin degrees of
&eedoxn replacing g by p. This is the result of indepen-
dent chains of the Luttinger model with a suitably chosen
coupling constant. The time dependence is more coxnpli-
cated since the boson spectruxn depends on n„, but the
essential physics remains 1D in character.

The occupation number for an electron (nil (k )) on
chain l is an integral over the correlation function of Eq.
(4.13). It is seen that only fermion operators on the same
chain contribute, so the occupation number is indepen-
dent of l. Since the x dependence of Eq. (4.13) is the
same as in the Luttinger xnodel, it can be concluded that
(nil (k )) is continuous at k = kp. For other faces, the

where dp = N j dn„cosh rl(ny). The tixne dePen-
dence is coxnplicated by the dependence of velocity on

ny but as long as it remains positive, Eq. (4.11) provides
a calculation of the operator dimension of Ai, since t
scales as x. Proceeding to the other expectation values,
the results are

~d

ia
A2t(x) = ~t,o

I

g
—x+ia)

1+dtp
in

&it(x) = bi, o I(z + ia)
~d

ia
B2t(z) = ~t, o I

g
—x+in)

and, consequently,

(&it+(z)@io+)

(4.i5)

where time evolution and averaging is with respect to
H0+ Hg.

Using the boson representation for the g l (z) opera-
tor, the expectation value in Eq. (4.14) is calculated to
be proportional to

2 ) d(lg —lp)
2 1

~ - ' -"(R - VI~+ in)4 ~R2 —V~'r2+ n2)'
lg pig

where V' is an average {finite) velocity, instead of doing
the integral over p(ny), R = x—z', r = t t', and d—(li —l2)
is given by

N

d(li —l2) = N dn„[sinh t7(ny)
0

+ sinh p(ny)] [1 —cos py (li —l2)] . (4.16)

For large lq —l2, the cosine term gives a vanishing con-
tribution, and Eq. (4.15) reduces to the expected result
from naive dimensional analysis, using Eq. (4.13), with
d(oo) = dp+d .

Since d(li —l2) ) 0, the integrals over space time in
Eq. (4.15) are convergent at large distance giving a factor
of the two-dimensional volume. The sum over lq and l2
is proportional to N, since tl, l, falls off as (li —l2)
This result means Til, (z) is an irrelevant perturbation,
the usual result in two space-time dimensions, when the
operator dimension is greater than two. The reduction
&om two to one space dimensions is a consequence of the
6nite sum over chains, a result reminiscent of indepen-
dent one dimensional chains.

In a similar fashion, the contributions &om the other
operators can be seen to be irrelevant. Consequently, the
modulation of the Fermi velocity along the face of the
Fermi surface is an irrelevant perturbation about the bo-
son Hamiltonian. 4 This result should be contrasted with
perturbation theory about the fxee fermion Hamiltonian,
which contains (log) 2 singularities resulting from the van-

ishing Fermi velocity at the corners of the square Fermi
surface.

Any nonzero interaction will lead to the irrelevancy
of the Fermi velocity modulation, but a much more re-
strictive condition results for the stability of the square
Fermi surface itself, away &om half-filling. The appropri-
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ate perturbation is the number operator which is given
for the "1"face by

AgN, = Eg(zkz') f dz ) g(l —l, )g(l —I, )

L, L1L2

x Q~t, (x)g, (, (z), (4.17)

where Ap is the change in chemical potential from half-
filling. The corresponding correlation function to second
order is proportional to

L, L1,L2

( ~2 ) d(lg L2)—
x

/(R' —V"7-'+ o.')
since the two derivative operators are absent. For this to
be irrelevant, d(lq —lq) ) 2 for all lq —l2, as discussed
above. This requires a sufficiently strong interaction to
be present. Under this circumstance, the only contribu-
tion is the diagonal term, lq ——l2, given by

N) (z) = ) pgi (z),2k'
L1

(4.18)

where the factor of 1/2 comes from gt g (l —l)). The
presence of this term simply shifts the Fermi momentum
uniformly, the square Fermi surface remains a square.

Strong interactions tend to localize single electrons to
a chain, at least in lowest order. In higher orders, or
when interactions between adjacent faces are included,
it is possible that the situation might change. It seems
intuitively plausible that a crossover Rom a square to a
rounded Fermi surface should occur, but it is not yet clear
which terms are responsible for this. Intrafacial hopping

terms, such as Q&~ps, etc. , would lead to rounding. These
do not appear in lowest order, but could enter in con-
nection with some of the relevant operators discussed in

the following section. This problem requires further at-
tention. It is nonetheless very interesting that the square
Fermi surface is stable at this level.

) z~z; -+) f dz 4,~(z)gt~(z)g', (z)@i (z),
L

(5.1)

with the 4~ (x) = gz& (x) + Qz& (x), and these primed
operators are, in turn, sums over independent chains
given by Eq. (2.6). There are similar terms for the "3"
and "4" faces, and cross terms containing interactions
between adjacent faces. Cross terms are not considered
here. The task now is to extract the purely boson interac-
tion terms in the sum, giving H~ of the previous sections,
and find the remaining operators. These operators then
provide the desired perturbation expansion.

A conclusion of the previous section is that the sum
over independent chain Fermi operators must have chain
indices paired. If a single unpaired index appears, that
operator will contribute an operator dimension greater
than 1/2, as in Eq. (4.13), and the remaining three
greater than 3/2, giving an overall dimension greater
than 2. In the second order correlation function using
Eq. (5.1), the overall dimension will be greater than 4,
and hence is an irrelevant term. This is another mani-
festation of the irrelevance of single particle hopping for
the square Fermi surface.

Consider first the terms which occur when fermion op-
erators with the same spin are paired on the same chain.
If they have the same face index, there are boson oper-
ators already included in H~. Otherwise, there are two

types of terms

HBs ——Ux kF dx G l q
—l2

L1L2

" &ii, +(x)&2i,+(x)&2i, (z)4ii. -(z) + H'
(5.2)

H~ ——Uvr k~ dx G lg —l2

L1L2

+( )(/dz, +(z))(/d„(x)$2i (z) + H.c.

(5 3)

V. RELEVANT INTERACTIONS
where

Interactions between chains are generated through the

mapping of the fermion operators for the four faces onto
independent chains. As described in the previous section,
it is possible to extract a purely bosonic interaction, and
use this to define an alternative starting point for per-
turbation theory. Other interactions remain, and it is

necessary to construct a "new" interaction Hamiltonian,
and attempt to solve this problem. This situation is sim-

ilar to the Kondo problem or the backward scattering
model, where a similar reconstruction of the interactions
is possible, leading to an alternative expansion.

Consider the interactions involving parallel faces, the
"1" and "2" operators. The lattice term U) n;+n;

would contain

G(lg —l2) = ) g (l —l))g (l —l2)
L

= (12) 'h(, (, + 2 'vr (l, —l, )

Physically, HBs describes backward scattering on same
or difFerent chains, while HU is an Umklapp process.

In a 1D system, it is known that HU is relevant and

HBs is irrelevant for repulsive interactions, while these
roles are reversed for attractive interactions. The situa-
tion is similar here, as can be shown using the fermion-

boson duality principle Rom the previous section.
The Umklapp term for lq ——l,2 in the boson represen-

tation is given by
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Ide = —UG(0)(2kefe) ) f de
l

~
—~ [v., (*)+v,l(*)]+H c (5.4)

freedom do not cancel in the exponent when the fermion
operators are bosoiuzed and contribute to the exponent
of the power law. The result for the operator scaling
dimension is found to be

where the (pi~i operators are defined in Eq. (4.7). HBs
is the same with the pq~~ operators replaced by pq ~

operators, and the e ~ phase factor is absent. The
minus sign results from ordering Eq. (5.3) into the
form (—)Qifi+$2i @ifl $2l+. It can then be confirmed
that the matrix element of this operator between the
states (Qzi (z2)gll ~(z2)~ and ~Qzi +(zi)Qil, (zi)) is

the same as the boson equivalent in Eq. (5.4), sandwiched
between the boson equivalents of these two states.

Diagonalizing Ho + H~ as in Sec. IV with Sq, will
transform the exponent in Eq. (5.4) according to

e '(2N) ) n [pi(n) + p2(n)] e ' '"& e

=(») ') .' "'""'[p ( )

+p2(n)l e '"" '""' (5.5)

from which the scaling dimension of the Umklapp oper-
ator, d~ is seen to be

N

d/ = ) (2e
2N E )n„—N

(5.6)

N

) - (ke-ee(-. ))
n„=—N

(5.7)

and Eq. (4.5) shows dBs ) 2 for repulsive interactions.
For attractive interactions, the roles are reversed, dU & 2
and dBS & 2.

When li j l2 in Eq. (5.3), the scaling dimension is
changed, becoming dependent on (li —l2) through the
k& dependence in H~. In addition, the spin degrees of

as discussed in the previous section. This means the cor-
relation function appearing in second order using Eq.
(5.3) falls off as (distance) 2a~. The zero interaction
case, q = 0, has 2dU ——4 and for repulsive interactions
d& ( 2 from Eq. (4.5). This term is then relevant and
must be retained.

The phase factor e4'"~" for half-filling is evaluated to
find 4k~z = 4(vr2 i~2 a i)(a 2 i) 2)(m+n) = 0 (mod 2z)
and makes no contribution. Notice that for strong in-
teractions, such that the Fermi surface remains square
as discussed in the previous section kF shifts away
from z'a i2 ~ under doping and the Umklapp term
describes a (quantum) commensurate-incommensurate
transition. This transition will dier somewhat from
the one-dimensional problem due to the parallel momen-
tum dependence contained in H~.

Using the diagonalizing transformation for the spin de-
grees of freedom contained in Eq. (5.2), the operator di-
mension for equal chain backward scattering is given by

N

d (l —l)= ) e """ (1+e'"" ")1

2N n„=—N

—2)k(ny} (1 iPy(lk —lm}) (5.8)

For repulsive interactions, g ) 0 and p & 0, and the
value of d(li —l2) is not necessarily small. The result for

dBs(li —l2) is found from Eq. (5.7) by interchanging ll
and p.

At this stage of the analysis, it is helpful to re8ect
on the significance of the transformations which change
the operator dimensions, as determined by g and JM, . For
general repulsive interactions, g ) 0 and p & 0, from
Eq. (4.5). For these signs, and sufficiently large magni-
tudes, dBs(li —l2) ) 2 for all li —l2, and dil(li —l2) ) 2
for li g l2. These terms are irrelevant. The surviving
relevant operator from this pairing is given by chain di-
agonal Umklapp processes, with dimension dU & 2 from
Eq. (5.6).

With the coupling constants chosen to lie in this range,
it is possible to anticipate the existence of a solution.
This will be constructed by dropping the irrelevant oper-
ators, and expanding the relevant operators in the small
parameters, e " or e ".There is a similarity here to the
1D massive Thirring model, where expanding the mass
term when the analogous parameter is small, leads to the
Klein-Gordon equation.

It is necessary to examine other pairings of Eq. (5.1)
to extract further relevant operators. Pairings which in-
volve the first and third terms (with second and fourth
also paired) contain terms like ziti +$2tl $2i Qil +,
~llk+~2lk —~lip —~2lg+~ ~ilk+~ilk —~2lg —~2lg+'
bosonizing these, it is found that they are all irrelevant.
The first two give the operator dimension of Eq. (5.8),
but with g ~ —g and p ~ —p, , and these are larger than
two in the coupling constant region of interest. The third
resembles single particle hopping with an extra i)) 2 in the
exponent after bosonization, and is irrelevant.

Cross terms which leave a factor of e2'"~* after
bosonization can be neglected since they have a momen-
tum transfer of 2k~. This would require a large energy
transfer and the intermediate states wouM lie far away
from the Fermi surface.

The remaining pairing, with the first and fourth
terms on the same chain together with the second and
third, contains relevant operators. These are given

t t and — '
~llk+@2lk —@ill—(l 2lg+ ~llk+~2ik —~2lg —tl ll2+ '

plus the (1 e+ 2) interchange. Terms such as

gii +@ii vPzi $2i + are irrelevant, and those involving

e ' ~ after bosonization can be discarded as previously
discussed.

Both relevant operators involve products of 2k~ spin-
fiip excitations on difFerent chains. (The li ——l2 terms has
already been counted in the first pairing, characterized
by dil, diis and a boson term. ) After bosonizing, these
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terms give, respectively,

Hav = —U(2kpa) f da ) G(ll —ll)

ek Plk( )+V'P22 ( )+Va!2 (&)—2 22(&) + (1 ~ 2) )

(5.9)

HDB = —U(2kPD) ' j dk ) G(l, —l, )

1
dDv(liz) = )

n„=—N

2dk(22„) (1 eip„l22)
)

e
—2n(~H) (1+eip, (22)

(5.11)

N

dDn(llz) = ) e "( " (1 —e'p& ")
2N

2)k(2222) (1 ip„l22
) (5.12)

Both are relevant (dimension less than two) for )PI ) () and

p ( 0, the repulsive case of interest. There is a region of
parameter space where all three relevant operators have
a small dimension. In this case, the exponents contained
in Eqs. (5.4), (5.9), and (5.10) can be expanded.

Scattering between parallel faces results in an equiva-
lence to interacting fermions on separate chains. In this
section, the interaction terms have been extracted and
their scaling dimensions calculated. There is a strong
coupling region, characterized by three operators with
small dimension, dU, dBU, and dDB, which must be in-

cluded. The following section presents the construction
of the solution.

ev'p&] ( ) v'p&g( )+v' &1( ) & &g( ) + 1

(5.10)

Here, 2d 2(ppi(z) = (pl pl(z) + (p2.pl and ~2(pal
(pqG((z) —(p2Gl(z) with fields (pqGi(z), etc. , defined in Eq.
(4.7). Et should be noted that (ppi(z) involves the combi-

nation [pq(n) + p2(n)] which is multiplied by e "( ~) un-

der diagonalization, as in Eq. (5.5). Similarly, the lp l (z)
involves [(rq(n) —(Yz(n)] which is multiplied by e"( ~) un-

der diagonalization, from Eq. (5.5). Both multiplicative
factors should be small for the corresponding operator to
be relevant. Note that the fermion (1 ++ 2) interchange
requires p~~ to change sign, since there is a sign differ-
ence in the boson representation of )I[)z and $22 wlnle (pG(

does not change sign. Under Hermitian conjugation both
change sign.

It is appropriate to label the first of these terms as
"different chain Umklapp, "

Hr)U, while the second is a
"different chain backward scattering, " HDB. Their scal-
ing dimensions, after diagonalizing H~, are given by

VI. GAP GENERATION
AND THE INSULATINC PHASE

H = HD+H;„, ,

H2„1 = —2U(2kB a) j da ) G(ll —le)e [2222, (a)

+~',i. (*)+ (~-l, —(P-l, )'le '
where Hr) is Eq. (4.3) and S = Sl + S2 Rom Eq. (4.2).
Not only do the first order terms cancel, but the cross
terms between spin and charge operators cancel as well.
To this order, the Hamiltonian separates into indepen-
dent spin and charge sectors.

After Fourier transforming, the Hamiltonian can be
written in terms of the density operators as H = Hp+H,
where:

2Hk) ('l(B )[Pl(D)P1( B)+P2(B)P2( B)]

+M (n„)k [pq(n) + p2( —n)]

X [Pl(—B) i P, (—D)]},
(6 2)

H-=
2Hk ) (d(ae)[al(B)ae( —B) + al(B)al( —B)]

+M (Be)k [al(a) + 22('B)][a'1( B) + 2'2( ll)]}
(6 3)

with velocity renormalizations given by Eq. (4.4), and

&( H) e
—2 ( „)f2(0)

(n )
( 9) 2)B( ) Iy2 (()) y2 ( )Iy

(6.4)

This section begins with the boson problem of Sec. III,
adding the terms with relevant operators from the pre-
vious section. It would be interesting to find a solution
for this problem, however, this has not been found for
general coupling constants. But there is a limit where
a solution is possible for particular choices of coupling
constants. This choice corresponds to the parameters
e "("&) and e "("&) small, such that the exponents of
Eqs. (5.4), (5.9), and (5.10) can be expanded. Physically,
this is a strong repulsion regime, with some restrictions
on the spin dependent interactions, Uq and U2 of Sec. III.

The boson part of the problem, Ho + H~ is given by
Eq. (4.1). From the preceding section, the three rele-
vant operators must be added to define an "interaction"
term. Diagonalizing Ho + H~, using the S operators of
Eq. (4.2), transforms the "phase" fields appearing in the
relevant operators, generally decreasing them (for e

and e" both small). Expanding these phase factors to
quadratic order gives the interaction Hamiltonian. For
the 1-2 faces, this is
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Here, q and p are given by Eq. (4.5) and f (n„) under

Eq. (3.4). The combinations in these M are chosen such

that the spectrum of Eqs. (6.2) and (6.3) takes the "rel-
ativistic" form

E'(R) = k'van'(ny) + M'(nv),
(6.5)

E2(n) = k'v02b'(nv) + M2(n„),
as can easily be confirmed by diagonalizing these two.
The contributions &om the 3-4 faces result in an identical
Hamiltonian, with g~ ~ n„.

It is clear that the charge density gap is only weakly de-
pendent on the transverse momentum, through the veloc-
ity renormalization. On the other hand, the spin density
gap squared vanishes at n„= 0, and increases linearly
with momentum. A quadratic dependence on n„would
have been intuitively understandable, since it could be
renormalized to give an isotropic excitation spectrum,
proportional to n2 + n2 Perh. aps the inclusion of inter-

actions between adjacent faces could change ~n„~ to n„,
but that remains unclear at present.

Renormalization of the bare coupling constant U in Eq.
(6.1) is required, if the limit n ~ 0 is to be taken, as in
the purely 1D problem. Alternatively, one can regard the
M2 quantities, as physically observable, setting a length
scale for which the bare parameters are determined.

This completes the present analysis of interacting elec-
trons on a square Fermi surface. It focused on interac-
tions between parallel faces, although the method can
be readily generalized to adjacent face interactions. Per-
haps the most interesting result concerns the mapping
onto chains, and the ability to extract relevant operators
in the chain picture.

It should be possible to study this mapping more sys-
tematically using renormalization group scaling. If each
nonboson operator is assigned a coupling constant, as in
1D systems, these will satisfy scaling equations. Pre-
sumably, some will scale to stronger coupling strengths,
and solutions such as those presented here, could charac-
terize the asymptotic behavior. It will be interesting to
confirm, or disprove, the strong coupling region outlined
here.

Doping away ft.om this point will generate a phase fac-
tor in the Umklapp terms, H~ and HDU, but not in HDB.
This phase factor of exp(4ihk~z), where bk~ is the de-
parture &om the half-filled value, changes the nature of
the problem. The low energy excitations then include
some charge states, and it might be expected that an
alternative type of generalized Luttinger model results.

Spin excitations are more problematic in this solu-
tion. Although the spin excitation energy vanishes when

p&
—+ 0, it does not vanish linearly. At k~ = 0, the spec-

trum is proportional to ~pz~
~ . It is not clear if this is an

artifact of parallel face interactions and will be modified
by adjacent face scattering. Another possibility is con-
tained in the problem of uniform phase ordering in the
chain mapping. As indicated under Eq. (4.7), a uniform
phase on each chain is permitted. Perhaps other configu-
rations can be found with lower ground state energy than
the present result.

VII. DISCUSSION AND CONCLUSION

This paper has presented a mapping of the square
Fermi surface onto two sets of chains, one set for each
axis of the square. It correctly describes electronic exci-
tations near the half-filled band, with the average occu-
pation number near one. Interactions between electrons
separate naturally into boson operators on these chains,
plus additional operators. The kinetic energy plus the
boson operators define a starting point for perturbation
theory, with the additional operators as the perturbation.

This method provides a very powerful tool for ana-
lyzing the properties of the square Fermi surface. The
purely bosonic part of the problem can be diagonalized
exactly, giving behavior similar to the Luttinger model.
It exhibits power low correlations functions and has no
jump in the occupation number at the Fermi level. Mod-
ulation of the Fermi velocity along the face of the square
is irrelevant. Rounding of the square is similarly irrele-
vant for sufficiently strong interaction strengths.

All of these results are derived using the perturba-
tion theory about the boson part of the problem. The
interactions also contain nonboson terms, which have
been analyzed using boson-fermion duality for the chain
representations. There is a region of strong coupling
when the relevant operator generated by interactions
can be solved exactly, in the sense that the sine-Gordon
problem becomes the Klein-Gordon problem for strong
fermion interactions. For half-filling, a gap appears in
the charge spectrum, while the spin excitations remain
gapless. The analysis here assumes that the irrelevant
operators may be safely omitted, since the correspond-
ing renormalized coupling constants scale to zero to all
orders in the perturbation expansion. This result does
not exclude the possibility of nonperturbative contribu-
tions.

While the mapping works for very general interactions,
this paper has concentrated on a special case of parallel
face interactions. For a complete solution, interactions
between adjacent faces and possible momentum depen-
dences need to be included. A convincing solution of the
Hubbard model awaits an analysis of these generaliza-
tions.

When doped away &om half-filling, spinless fermion
states above the charge gap are occupied. This situa-
tion is reminiscent of the commensurate-incommensurate
transition, with additional complications due to the
transverse momentum dependence. Although the spin
degrees of &eedom are unchanged, it will be interesting
to explore the changes in the charge excitations. In this
way, the very interesting issue of superconducting corre-
lations can be resolved.

Lattice degrees of &eedom must also be included, and a
logical procedure would involve diagonalizing the inter-
acting electron problem first. Adding in the electron-
phonon coupling, selecting out the relevant operators,
and solving this problem, would cast light on the prob-
lem of superconductivity in the Cuprate compounds. It
seems these steps are all possible within the mapping
framework.
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It would also seem this problem of interacting fermions
on a square Fermi surface could be addressed in other
ways. The requirement that fermions must be paired on
separate chains could be realized by a gauge symmetry.
Since the single chain problem can be solved by a Bethe
ansatz, perhaps this model of coupled chains has a solu-
tion involving superpositions of these single chain Bethe
ansatz hypothesis wave functions. It might be simpler to

test this on the spinless fermion problem.
Solutions for the problem of interacting electrons on a

square Fermi surface, of the type presented here, repre-
sent a regime with correlation eBects dominant. Much of
the intuition based on Fermi-liquid behavior, is no longer
applicable. If it can be shown that the high temperature
superconductors fall in this regime, this is truly strongly
correlated superconductivity.
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