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Charge gap in the one-dimensional dimerized Hubbard model at quarter-filling
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We propose a quantitative estimate of the charge gap that opens in the one-dimensiona1 dimerized
Hubbard model at quarter-filling due to dimerization, which makes the system efFectively half-filled,
and to repulsion, which induces umklapp scattering processes. Our estimate is expected to be
valid for any value of the repulsion and of the parameter describing the dimerization. It is based on
analytical results obtained in various limits (weak coupling, strong coupling, large dimerization) and
on numerical results obtained by exact diagonalization of small clusters. We consider two models
of dimerization: alternating hopping integrals and alternating on-site energies. The former should
be appropriate for the Bechgaard salts, the latter for compounds where the stacks are made of
alternating TMTSF and TMTTF molecules.

I. INTRODUCTION

A large number of compounds exhibit one-dimensional
electronic properties which can be described by a quarter-
filled Hubbard model with some kind of dimerization.
For instance, the Bechgaard salts (TMTSF)2X and
(TMTTF)zX, where X denotes an anion such as C104,
PF6, Br, etc. , can be regarded concerning their elec-
tronic structure as being essentially one-dimensional sys-
tems above a crossover temperature T of the order of
30 K. From stoichiometry it is known that there are
three electrons in the highest occupied molecular orbital
(HOMO) for each pair (TMTSF)2, so that the system
is s-filled in terms of electrons or quarter-filled in terms
of holes. In the following we will always use hole nota-
tion and consider quarter-filled systems. A reasonable
description of these properties should be provided by the
dimerized Hubbard model de6ned by the Hamiltonian

H = Ho+a

W = 2(ti + t2).
To the hopping part of the Hamiltonian we have to add

an interaction part to describe the correlation between
the electrons. For simplicity, we have chosen the form of
the standard Hubbard model

where U is the on-site Coulomb repulsion and n;

~z,a~;,a
This model should also provide a good description of

salts such as (FA)zPFs, where FA stands for fiuoran-
thenyl, which is dimerized at room temperature and un-
dergoes a Peierls transition leading to tetramerization
along the stacks at a temperature of order 186 K.4's

There is another class of materials, however, for which a
modi6ed version of the previous Inodel is more appropri-
ate. These materials are related to the Bechgaard salts,
but the stacks now consist of alternating TMTTF and
TMTSF molecules. 6 A minimal model in this case would

where the kinetic part of the Hamiltonian is (see Fig. 1)

Hp —— ti ) (ct c,+—, + H.c.)
i even, a

t2 t2

t2 ) (c,. c,.+,—+ H.c.) .
i odd, a

(1 2)

The operators ct create particles in the HOMO of
TMTSF or TMTTF with spin e. We have included
two hopping integrals ti and t2 (ti ) tz) to describe
the dimerization along the stacks. ' The dispersion of
this model is given by s(k) = gati + t2 + 2tit2 cos k and
is depicted in Fig. 2. The important parameters are
the dimerization gap AD = 2(ti —tz) which opens at
the Brillouin zone boundary and the total bandwidth

72so

FIG. 1. Schematic representation of the model with (a)
alternating hopping amplitudes tq and ts and (b) alternating
on-site energies with energy splitting 2eo .
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FIG. 2. Band structure of the model with U = 0.

i even, cr

(l.4)

be a Hubbard model with alternating atomic on-site en-

ergies, with a kinetic part of the form

Hp —— t ) (c—J c;+, + H.c.)

In this paper, we propose a quantitative estimate of the
gap in the case of the dimerized models described above
that should be valid in the whole range of parameters.
This estimate is based on approximations which provide
analytical expressions in various limits, and on numer-
ical calculations using I anczos diagonalization of small
clusters. As we think that the results might be useful to
readers who do not want to go through the details of the
calculation, we start in Sec. II with a detailed account of
the results, including analytical expressions, tables, and
curves, which can be used independently of the rest of
the paper. Then, in Sec. III we explain how and for
which values of the parameters numerical estimates can
be obtained on the basis of exact diagonalization of small
clusters. The following sections are devoted to the ap-
proximate expressions that can be obtained analytically
in various limits: Sec. IV summarizes exact results in a
few trivial limits, Sec. V deals with the large dimerization
case, where the dimerization gap is larger than both the
repulsion and the Fermi velocity, and Secs. VI and VII
deal with the case of weak and strong coupling, respec-
tively. The summary can be found in Sec. II. Throughout
the paper, subsections A will deal with the model with
alternating hopping amplitudes and subsections B with
the model with alternating on-site energies.

II. SUMMARY OF RESULTS

where 2eo is the energy splitting between the HOMO
of the TMTSF and TMTTF. The dispersion relation is

given by s(k) = ge'o+2t2+2t2cosk. It has the same
form as in the previous case. The dimerization gap is
now given by WD = gso2 + 4t2 and the bandwidth by

2sp. However, although the dispersion relations
are the same, the two models are different because the
interaction part will not be the same when expressed in
terms of the operators that diagonalize the kinetic part of
the Hamiltonian. Let us also note that a similar model
has been recently proposed by Sudb@ et al. as a one-
dimensional analog of the copper oxide layers in the high
temperature superconductors. A model where dimeriza-
tion is induced via alternating on-site repulsions has also
been studied.

It is clear from Fig. 2 that, due to dimerization, the
system is effectively half-filled. In this case, it is known
&om the general theory of one-dimensional models '

with umklapp scattering that an on-site repulsion of ar-
bitrary size will open a gap in the charge sector. This
has been shown explicitly in the case of the Hubbard
model for which exact results are available kom the Bethe
ansatz solution. In the general case, where no exact so-
lution is known, a quantitative estimate of the gap is not
available so far. This is unfortunate because such an es-
timate is necessary to interpret the activated behavior of
the resistivity observed at relatively low temperatures in
several compounds, which in turn provides an estimate of
the magnitude of the Coulomb repulsions. An analysis of
that sort has already been performed for the Bechgaard
salts of the TMTTF family on the basis of a prelimi-
nary determination of the charge gap in the model with
alternating hopping amplitudes.

In Fig. 3 we have illustrated the different regimes in
which analytical results have been obtained as a func-

II////II

I///////

//////////X
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FIG. 3. Schematic picture of the different regions as a func-
tion of model parameters for the model with (a) alternating
hopping amplitudes and (b) alternating on-site energies.
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tion of the model parameters. In this section, we give a
summary of these results for each model.

ment with analytical approximations in different limits,
as we will show in the subsequent paragraphs.

A. Alternating hopping amplitudes

f. Numer ical estimates

Using exact diagonalization of small clusters, we have
obtained estimates of the charge gap for intermediate val-
ues of repulsion U and for tq & 0.5tq. The limitation
comes from the size of the clusters (maximum 16 sites), so
that only large gaps corresponding to correlation lengths
smaller than 16 sites could be extracted. The numerical
results are shown in Fig. 4(a). They are in good agree-

2. Large dimerisation

t28
2 7r

2s—tg/V sty/—4tg f t )) t )) U

U U2 —2t2
2 16tg

(2 1)

In this limit we have mapped our model onto the ex-
actly solvable Hubbard model at half —Glling and we found
that the gap is given by

1.4 .

1,2.

In Fig. 5 we have compared our estimate with numeri-
cal results (curve a) for t2 ——0.1, where we can see the
crossover from the exponential regime (curve d) to the
linear one (curves b and c, b is without the quadratic
term U /16t~) for U/t~ 0.5

0.8
O

0.6

0.4

0.2 .

8. Weak coupling limit

In the weak coupling limit (U « tq, t2), using the
renormalization-group (RG) method and results from the
large dimerization limit, we found that the gap is expo-
nentially small [see Eq. (6.24)]:

U/t )
6, =atg bt~ 5

exp /— (2.2)

0.4

0.3

where the parameters a and 6 can be found in Table I for
difFerent values of t2/tq.

In Fig. 6 we compare the numerical values of the gap
for t2 ——0.3 and t2 ——0.4 with the weak coupling approx-
imation Eq. (2.2). We can see that up to U/tq ——4 the
weak coupling formula gives very good results.

0.1

0.6 ~

2.5 5 7.5 10 12.5 15 17.5 20
U/11

FIG. 4. (a) Approximation for the charge gap for
t2/tz —— 0.1—0.9 in increments of 0.1 from the top to
the bottom. The diamonds are the numerical data for
t2/t~ =0.1—0.5. (b) Approximation for the gap, but now only
far t2/tq ——0.6—0.9 in increments of 0.1 fram the top ta the
bottom.

0
0 0.5 1.5 2

0/t)
2.5 3.5

FIG. 5. Numerical estimates of the gap (diamonds) for
t2 ——0.1 compared with the analytical results.
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0.8 TABLE II. The parameters Uo, aI, b~, and b2.

0.7—

0.6—

0.5-

0.4-

0.3—

0.2-

t2/tq
0.2
0.3
0.4
0.5
0.6
Q.?
0.8
0.9

Up/tg
1.30
2.03
2.87
3.86
4
4
4
4

GI

0.45312
-0.13375
-0.97220
-1.91825
-1.84743
-1.50580
-1.09045
-0.60222

bI

1.5438
1.6173
1.5540
1.4287
2.6357
5.3353

11.5364
33.3189

b2

13.0786
13.5738
10.7001
3.3094
0.0736

-2.2707
-7.4996

-34.0969

0.1

0
0 2 3

U/tq
Uo/ty = 4 for t2/tq & 0.5) and Pade approximants of the
form

FIG. 6. Weak coupling expression compared to numerical
estimates for t2 = 0.3 (upper curve) and t, = 0.4 (lower
curve .

agU+ A~U
62+ bgU+ U2 (2.4)

Strong coupling limit

When the on-site repulsion is large enough (U
tq, t2, 4t~/t2), the effective Hamiltonian of our model is a
(t —J)-like Hamiltonian. Applying degenerate perturba-
tion theory, we found that the charge gap is equal to the
dimerization gap with a 1/U correction [see Eq. (7.20)]:

(2.3)

where the parameters A~/tq and c can be found for dif-
ferent values of t2/tq in Table I.

5. Interim, ediate mgion

On the basis of the previous results, we can propose
an estimate of the gap for any value of the parameters.
This can be achieved by using Pade approximants to con-
nect the exact results we have obtained for U small and
U large, respectively. For t2 & 0.2, we have used the
weak coupling expression up to Up, where Up is not too
large (actually we choose Uo/t~ = b for t2/tq & 0.5 and

for U ) Up. The coeKcients are chosen in such a way
that, for U ~ +oo, the Pade approximant gives the cor-
rect large U behavior given by Eq. (2.3) and that, at
U = Up, the resulting curve and its derivative be con-
tinuous. The curves depend weakly on the value of Up.
Changing the value of Uo by 50'%%uo affects the value of the
gap by less then 10'%%uo. In Table II we give the values of
the coefficients and of Uo for different values of t2/tq.

For t2 ——0.ltd we have also used a Pade approximant,
but now the limiting behaviors were determined by the
second equation in (2.1), which is valid for the intermedi-
ate values of U for t2 small and by Eq. (2.3) in the large U
limit. At the crossing point of the weak coupling expres-
sion and the Pade approximant, we have eliminated the
kink (see Fig. 5) by a linear interpolation. The resulting
curves for t2/tq ranging from 0.1 to 0.9 are presented in
Fig. 4.

B. Alternating on-site energies

1. Lax ye dimes isation

In this limit we have mapped our model to the exactly
solvable Hubbard model at half-6lling and we found that
the gap is given by

TABLE I. The parameters of the gap equations for the
weak coupling and strong coupling limits for the model with
alternating hoppings. 2t2

ifep)) U)) t.

8 U 2t exp—(—7rt /Uso) if Eo » t » U
2E'p

(2.5)

t2/tq
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

a
0.36887
0.46782
0.49990
0.48604
0.43672
0.36100
0.26867
0.17046
0.07709

b

0.6336
1.2990
2.0304
2.8669
3.8588
5.0790
6.6518
8.8399

12.4449

+D/tl
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

C

1.6816
2.0167
2.3984
2.8368
3.3474
3.9555
4.7075
5.7054
7.2658

E'p

2. Weak cotcp/ing livnit

In the weak coupling limit (U « so, t), on the basis of
renormalization-group analysis and results from the large
dimerization limit, the gap is exponentially small and is
given by [see also Eq. (6.38)]
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TABLE III. The parameters of the gap equations for the
weak coupling and strong coupling limits for the model with
alternating on-site energies.

1.4

1.2-

so/t
0.2
0.4
0.6
0.8
1
2

3
4
5

a
0.60292
0.78553
0.90155
0.97686
1.02292
1.03186
0.93780
0.84788
0.77446

b

8.82123
6.00854
4.53739
3.61670
2.98899
1.56009
1.04544
0.78494
0.62816

A~/t
0.4
0.8
1.2
1.6
2

4
6
8

10

C

5.63087
4.41422
3.71014
3.21882
2.84615
1.78537
1.28117
0.99167
0.80616

z 0.8-
0

0.6-

0.4-

0.2-

t2/t ) =0.1
0.2
0.3
0.4
0.5
0.?

0.05
I

0.1
I

0.15
1/L

0.2 0.25 0.3

A, =at t
exp

/

b- (2 6)

FIG. 7. Numerical values of the gap b (L) for L = 4, 8,
12, and 16 as a function of 1/L for U/tq ——5. Note that b, (L)
cpnverges very weH for small values of tz/tq.

The parameters a and b are given in Table III for some
values of so/t.

8. Strong coupling limit

mates of the gap when 4, is not too small, i.e., when U
and b,~ are not too small. The gap can then be extracted
by use of the Shanks transformation given by

When the on-site repulsion is large enough (U
ep t 4t /ep), the effective Hamiltonian of our model is
again a (t —J)-like Hamiltonian and we found that the
charge gap is [see also Eq. (7.36)j

h, =by)/1 —c—
/

.
U)

(2 7)

The parameters AD and c are given in Table III for some
values of sp/t

III. NUMERICAL SIMULATIONS

lim A, (N),N-++oo

h, (N) = E(N + 1;2N) + E(N —1;2N)

2E(N; 2N), — (3.1)

We have done intensive numerical simulations based on
Lanczos diagonalization of small clusters for the model
with alternating hopping integrals. Our numerical esti-
mation for the gap was based on the usual formula

A(Ng) b, (Ns) —b.(N2)
A(Ng) + E(Ns) —2b, (N2)

(3.2)

This procedure has been shown to work very well in the
case of the Haldane gap of spin-1 chains. Applying it
for (Nq, N2, Ns) = (4, 8, 12) and (8, 12, 16), respectively
gave similar results. The results quoted throughout this
paper are those obtained for (8, 12, 16) because they are
a priori better.

Another limitation comes from the size of the repul-
sion. When U is very large, the convergence of the
Lanczos algorithm becomes very slow and it is no longer
possible to get good values of the energy. So, in sum-
mary, good estimates have been obtained for AD & tq
and 1 & U/tq & 60. This does not cover the range of pa-
rameters for actual compounds, for which one often has
A~/tq, or U/tq && 1, and analytical methods are clearly
needed to complement these numerical results. In fact,
the analytical methods developed in the rest of the paper
provide an estimate of the gap for any value of the pa-
rameters and the numerical simulations have been only
used to check the analytical results.

where E(M; L) is the ground state energy for M parti-
cles on I. sites. We have obtained results for systems of
4, 8, 12, and 16 sites. Periodic (antiperiodic) boundary
conditions have been used for L = 8 and 16 (L = 4 and
12) to have open-shell systems. Typical results are shown
in Fig. 7, where we have plotted b„(N) as a function of
1/N Good estimates . can be obtained only when the ex-
ponential regime b,,(N) —b„exp( A/N), where A is-
a constant, has been reached for N = 16. But the ex-
ponential regime is obtained when v, /N & A, that is,
N ) v, /4, . So we can only obtain good numerical esti-

IV. EXACT RESULTS

A schematic picture of the regions of interest as a func-
tion of the model parameters are given in Fig. 3 for each
model. Exact, although trivial, results can be deduced on
the boundaries and they are summarized in this section.

A. Alternating hopping amplitudes

(i) tq ——t2. This is a quarter-filled Hubbard model and
we know &om the Bethe ansatz solution that there is no
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gap in the spectrum.
(ii) t2 ——0. The Hamiltonian describes a set of in-

dependent systems, each system consisting of two sites.
At 4-filling there is one electron for each pair of sites
in the ground state. The gap is then given by 4, =
Ep(0) + Ep(2) —2Ep(l), where Ep(n) is the ground
state energy of n electron on a pair of sites. These
energies are Ep(0) = 0, Ep(1) = —2ti, and Ep(2)
(U —QU2 + 16t2i)/2 and the charge gap is

clearly 4, = U.
(iii) U = 0. The Fermi energy is in the middle of the

band, and 6, = 0.
(iv) U = +oo. The dimerization gap 2sp and the

charge gap coincide, like in the case of alternating hop-
pings.

(v) In the atomic limit (t = 0) the charge gap is given
by 6, = min(U, 2ep).

U6, = 2ti+ ——
2

U2
+4t', = &

4

U2
if t») U

2 16t~

4ti
2t, — ' if t, && U.

(4.1)

(iii) U = 0. The band structure is given in Fig. 2.
The Fermi energy is in the middle of the lower band, and
6, =0.

(iv) U = +oo. The energies that enter Eq. (3.1) are the
same as for free spinless fermions at half-filling, because
the energy is independent of the spin when U = +oo for
open boundary conditions (or for periodic one in the limit
N ~ +oo). So the charge gap is actually the same as
for a system of spinless fermions described by the kinetic
part of the Hamiltonian at half-filling, which is nothing
but the dimerization gap (see Fig. 2). So 6, = AD.

V. THE LIMIT OF LARGE DIMERIZATION

In this section, we consider the limit of large dimeriza-
tion, which is the limit where the dimerization gap A~
is much larger than both the width of each subband and
the repulsion U. This limit corresponds to ti » t2, U for
the model with alternating hoppings and to co » t, U for
the model with alternating on-site energies. It is partic-
ularly interesting because in both cases the model can be
mapped onto the half-ulled Hubbard model, so that we
can use the exact result provided by the Bethe ansatz for
the charge gap.

A. Alternating hopping amplitudes

To diagonalize the part of the Hamiltonian correspond-
ing to the hopping terms tq, we introduce bonding and
antibonding operators defined by

B. Alternating on-site energies

(i) sp = 0. This is a quarter-filled Hubbard model and
there is no gap.

(ii) sp ——+oo. The odd sites are outside the Hilbert
space. The ground state has one particle per even site
and the Grst excited state has a doubly occupied site. So

1
62~~

1
2,o'

Cjo +Cj+io

j,o j+1,o (5 1)

where j is now even. In terms of these operators, the
Hamiltonian becomes

H = t& ) (—bi 6, —a~ a, )
g even, o

t2 ) bz ~b~+z ~ + b~+z b~ + b~ a~+2 ~ + a~+2 ~b~

g even, o

jo j+2 o j+2o ja jar j+2 o' j+2o jo

even
( ~,,r+ t,,~)( d,,-i+~f,i)+ b „a,+a..rb „b ~a. „+a. .b. (5.2)

even, o.

U+—) ng~ 'my g + O(l/ti), .(5.3)
even

The bonding and the antibonding bands are separated
by a large energy 2ti. The occupation of the upper band
is thus negligible and to zeroth order in 1/ti we get

I

which is nothing but the regular Hubbard model with
a repulsion U = U/2 and a hopping integral t = t2/2.
Here the Hamiltonin acts on a Hilbert space e'here the
antibonding states are all empty. The value of the gap in
the half-ulled Hubbard model is known exactly from the
Bethe ansatz solution. For small interaction (U &( t), it

is given by 4, = (8t/vr) U/t exp( —27rt/U), which, with

our notations, reads
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t28
C

2 7r

—2~t& /Ue
8 U )' x—t )—t exp/
7c 2ap ( Uap )

(5.8)

For large interaction (U » t2 but still U « tq), the exact
expression becomes 4, = U/2 —2t2.

To compare with other limits, it is useful to go to next
order in 1/tq. Using a Schrieffer-Wolff transformation,
we can determine the 1/tq corrections to the zeroth order
efFective Hamiltonian by including scattering processes to
the antibonding band and we get

In the intermediate coupling limit, where U is larger
than the efFective hopping, but smaller than the en-
ergy splitting of the two bands ep, the gap is given by
4, = U —2t2/ap.

VI. WEAK COUPLING LIMIT

II,ir = —— ) (bt b +~ + H.c.)
j even, cr

(U U2 )+
I

——
I ). ns, a,tns, a,&

g 2 16t&),j even

t2
2 y bt b + bt b+ ot Z j—2' j+2 tr + j+2~ j —2'oti j even, o

+O(1/t', ) .

The on-site repulsion is reduced by a U2/16tq and a sec-
ond nearest neighbor hopping appears. The formula for
the gap is now modified to

t28
2 7r

—2mtg/U —orts/4ty 'f U ((
(5.6)

U U2 —2t2
2 16ti

if U && t2.

B. Alternating on-site energies

The second formula agrees with Eq. (4.1) when t2 ——O.

The first one will be used in Sec. VI. We have illustrated
the above estimates of the gap in Fig. 5.

In this limit we can first diagonalize the hopping part
of the Hamiltonian and treat the interaction as a pertur-
bation. To do that, we introduce the Fourier transforms
of the electron creation and annihilation operators keep-
ing in mind that there are two sites in the unit cell:

cI,~ = ) i idj /2—

j even

ca,~ = —'k(j —i)/2e cj
j odd

(6.1)

Here L is the number of sites, L/2 is the number of unit
cells, and the length of the unit cell is set to 1.

A. Alternating hopping amplitudes

&p = -):[(t~+t2e '")c'.4.
k,o

+ (tg + t2e'")ct c„]. (6 2)

The Fourier transform of the kinetic part of the Hamil-
tonian (1.2) is

In the limit ep )& U, t the occupation of the energet-
ically lower lying even sites is much larger than that of
the odd sites. Using this, we can again find an efFective
Hamiltonian starting &om t = 0, in which case only the
even sites are occupied. Switching on the hopping, the
electrons can hop to the energetically unfavorable odd
sites, and &om those sites they can hop further. This
second order virtual process produces an efFective hop-
ping of order t2/2sp between the even sites, so that the
efFective Hamiltonian is given by

d„ = [s(k)c„ + a'(k)c„ ],1

1
f„ = [a(k)cs —a'(k)c„ ], (6.3)

where s(k) = expi(o. g/2+ k/4) and o.g is defined by

Let us introduce annihilation operators for the electrons
in the lower (di, ) and upper (fi, ) bands by

t2
II,fr = — ) (ct c,+2 + H.c.)2E'p

t2 —ti
tanoI, —— tan — ——& ag & —

~t2 + tg 2 2
(6.4)

g even, cr

+U ) n~ tn~ g .
j even FIp = —) p(k) (dPp d„—fpP f„) (6.5)

The hopping part of the Hamiltonian is now diagonal:

Here the Hamiltonian acts on a Hilbert space with empty
odd sites. This efFective Hamiltonian describes a half-
filled Hubbard model with a hopping amplitude t
t /2ap and repulsion U = U, so again we can use the
expression of the charge gap for the Hubbard model. In
the weak coupling limit (U « t /e'p), we get

with

p(k) = )(t,*+ tp+ 2tp4ppp&.

The Fermi velocity v~ is given by

(6.6)
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tgt2 1 W
8 g(W2 + 6 )/2

where b, LI = 2(ti —t2) is the dimerization gap and W =
2(ti + t3) is the total bandwidth (see Sec. I).

The Fourier transform of the Hamiltonian (1.3) de-
scribing the interaction is

1
+int U — g ck ~ck ~ck ~ck

kl, k2, ks, k4

-t -t+k fk gk gk (6 8)

where ki + k2 —k3 —k4 ——Q is a vector of the recip-
rocal lattice. Usually Q = 0, but if one of the bands is
half-filled, the umklapp processes with Q = +2m become
important. Using the operators defined by Eq. (6.3), the
interaction can be written as

/'~I. , + ~I, —~I. —~I„Q&
cos

i

' ' ' ' + —
i4)

U 1
H;„, = —— )21

kl, k2, k3, k4

x dk &dk &dk &dk
t t (6.9)

where we have kept only the fermions near the Fermi
energy.

From the interaction part of the Hamiltonian we can
identify the interactions between the electrons near the
Fermi surface, the so-called g couplings of the g-ology.
Usually these couplings are spin dependent. However,
in our model the interaction is isotropic, thus we do not
have to worry about the spin dependence; they read

dg

dlnD
dg3

dlnD

1 -2 1 2

c
g3+

2 2 2gg3 ~

1 gg3+» g g3+g34Vr2V2-vr&c
(6.11)

Reducing the cuto8' D, we scale towards the strong
coupling region, where the RG equations are no longer
valid. This crossover occurs when the cutoE D corre-
sponds to an energy scale that has been identified with
the charge gap. ' ' So integrating the scaling equa-
tions (6.12), we get

f
Do

dDlnD
A, //v,

dg ( g2 Cg 2CI
g(~ ) 7CV& (7I V jl V 7IV&)~ ~ + ~ 2-

—1

xil-
2xv, )

(6.13)

where Dp is the initial cutofF with g(Dp) = g and

g3(Dp) = gs. Keeping only the leading and next to lead-
ing terms of g, and introducing the notation ( = g3/g,
one gets

where v, = VF+g4/2x is the velocity of the charge excita-
tions. There is a scaling invariant C = (g —g3)/(2vrv, —
g) and the system of equations above can be rewritten as
a single differential equation

dg ( g2 Cg 2CI f' g»+dlnD (vr2vz vrzv2 nv, ) ( 2mv, )
(6.12)

U
g& =g2=g4= —

~

2
'

U
g3 ———sin(2o. F )

—=
2

2 U

W 1+ (A~/W)3 2
(6.10) 1

+—+lnt ~, (6.14)

b„- 1 (g (xv, 1) tanh 'gl —(3
ln

' —ln Dp ———ln
v, 2 ~v, ( g 4)

The umklapp scattering amplitude gs vanishes linearly
with ELI for small AD/W, in agreement with the
estimates obtained using perturbational arguments to
get the strength of the umklapp scattering. Clearly, the
model of Eq. (6.10) is not equivalent to the half-filled
Hubbard model, for which all the g couplings are equal
and given by U.

In perturbation theory, the logarithmic corrections to
the vertex generate the difI'erential equations of the RG
approach when one integrates out the degrees of keedom
far from the Fermi level. ' There are four differential
equations altogether, but near half-filling we need only
the equations which describe the charge degrees of &ee-
dom and give rise to the charge gap. As we know &om
Larkin and Sak, to account correctly for the Quctua-
tions which give rise to the v U factor in Eq. (5.4), we
need the RG equations up to third order in the g's. In-
troducing g = 2g2 —gz and denoting by g the renormal-
ized couplings corresponding to momentum cutofF D, the
third order RG equations we need are

(g f n.vp tanh Ql —f3 l= G~DpnF exp
)

1 tanh gl —(3 1 ~

&
4 ~1-&' 4)

(6.15)

Its behavior in the case of small dimerization is given by

4, = C~Dpv~
( ~ g

(~up/g+3/4)
g i/4( (

7rvy (2)
(6.16)

where we have used the fact that tanh gl —(2

where the constant ln C~ contains terms such as 1/g(A, ),
which are small compared to 1/g, as g scales towards
the strong coupling limit. Since in that region the RG
equations are no longer valid, all the possible corrections
are incorporated in that constant. We have separated
1/4 from the constant lnC~ for convenience.

Replacing v, by v p+ g/2m ( g4
——g in the leading order

in U) and exponentiating, we get



50 CHARGE GAP IN THE ONE-DIMENSIONAL DIMERIZED. . . 11 437

ln(2/() if g -+ 0. This is the same form as that found

by Lutheris for the charge gap if the umklapp scattering
is small compared to the 2g2 —gi, which in our notation
means ( « 1 (see also Ref. 10).

Using the g couplings of Eq. (6.10) in Eq. (6.15) pro-
vides us with the functional dependence of the gap on
the repulsion U. This expression also includes a depen-
dence on t2/ti. It does not give the full dependence on

t2/ti however. The reason is the following: Our esti-
mate of the charge gap accounts neither for the curva-
ture of the band (as the RG equations are based on a
model with linear dispersion relation) nor for the pos-
sible processes involving the empty band. These vir-
tual processes will contribute as higher order correc-
tions in U to the effective interactions near the Fermi
surface. Since in the formula for the charge gap these
efFective couplings appear essentially as exp( —nv~/g),
the U2 correction to the effective coupling will give an
O(l) correction, i.e., if we assume for a moment that
g = U' —pU2 + O(Us), then 1/g = 1/U + p + O(U)
and exp( —nn~/g) = exp( +vga—) exp( n'vg/U—). So the
correction appears as a multiplying factor that depends
on tq/ti in the equation for the gap. Clearly, to get a
quantitative estimate of the gap one has to include these
contributions.

To be fully consistent with our determination of the
U dependence, which relies on RG equations up to third
order in g [see Eq. (6.11)],one should in principle calcu-
late the vertex corrections to the coupling constants to
third order in U. The problem with that program is that
the calculation of the third order is hopelessly cumber-
some. We think, however, that a calculation of the vertex
correction to second order in U is sufBcient. The proce-
dure we have used is the following: First, we calculate
the second order corrections to the effective interactions
near the Fermi surface by integrating out all the electron
states except those which are closer to the Fermi surface
than some small cutoff DQ in the lower band. Then, if

t'a~, + a~, —ah, s
—a~. ) Qi~t cos 1 2 3 4

4)

x dI tdI gdA: gd
t

+fbi tfkg $ k $ k4 td, d,
t t+do i~a g&a gf.a, g+., ")„ (6.17)

where we have written only the terms which are responsi-
ble for the second order corrections in U. To that order,
the effective interactions are given by

U
ai(Do) = ——

2
U

2(DO) = ——

U2

4
(Di + Ds),

U2

4
(Dg+ D2+ Ds), (6.18)

U U
gs(Dp) = —sin(2az) —— (D4 + Dz)

2 4

where we have denoted by Di, . . . , Ds the diagrams con-
tributing to the effective interaction (see Fig. 8). They
are given by

the cutoff Do is small enough, the dispersion relation of
the electrons within this cutoff around the Fermi surface
is essentially linear and we can safely use the RG equa-
tions of Eq. (6.11) to decrease the cutoff further down to
b,,/v, . Now, the cutoff Do can be taken to be very small:
It just has to be larger than 6 /v, and we already know
that this quantity is exponentially small in the weak cou-
pling limit. So this procedure should be valid. Finally,
we will see that for small Ds (W/v, » Do » 4,/v, ) the
result for the gap is independent of the cutoff Do.

To calculate the higher corrections in U, we must take
into account the virtual processes that involve states in
the upper band and consider the full interaction Hamil-
tonian instead of Eq. (6.9):

d 1q
~/2 —DP d 1

Di ——2 — +2 q

i2+D 2~2~~ —2s(q) o 2n 2s(q) —2s~ '

' dq cos [a~ —(n, +a, )/2] + sin'[n p + (a~ +n, )/2]
D2 ———2

Q 2K s(q) —s(~ —q)

dq 1
D3 ——2

2vr 2s~ + 2s(q)

' dq —cos[n~ —(nq + a ~)/2] sin[a~ + (n~ + a ~)/2)D4 ——4
Q 2' 2sp + c(q) + s(vr —q)

dq —cos[a~ —(a~ + n ~)/2] sin[a~ + (a~ + n~ ~)/2]

Q 2' s(q) —s(n. —q)
(6.19)
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For A. (( 1, they read

+kF +kF

)
-kF

D,

03

D3

Io (A) = —~ —+ O(A ),
Ii(A) = A+0(A ),
I, (A) = vr/4+ O(A') .

(6.22)

+kF -kF;:(")
+kF -kF

Dq Dg

FIG. 8. Perturbational corrections to the effective back-
ward scattering g~, forward scattering g~, and umklapp scat-
tering g3 for the model with alternating hoppings shown up
to the second order. The solid (dashed) line represents the
fermions in the lower d (upper f) band.

U
ai(Do) = ——

2

U
a2(Do) = ——

U2 1 2 A+ln + Io+(A) +—O(D())
4 m'vF Dp 2

1 —sin2 2oF
ln

4 vrvF 2 Dp

+—I,+(A) + Io (A)
A. +

—sin (2aF) —Io+(A) —Io (A)

A——sin (2os))~(A) + O(Oo)I,
&U U' 1

gs(Do) = —sin(2o. F)
I

2 4 &vF

(6.20)

x —ln ——Io+(A) —Io (A)
2 A-+

0

A A

4 2
——Ii{A.) + —I2{A) + O(D())

where A = 2tit2/(ti + tz) and I(), Ii, and I2 are nonsin-

gular integrals given by

~/2 1
Io+(A) = dy

p 1+ pl+ Acos(y)
~/2 1

Ii(A) = dphil
o ( /1 —A cos(y)

gl + A cos(y) j
1.(~) = f

(6.21)

( 1
dpi 1+

g1 —A -"( ))
1

2+ Ql + Acos(y) + Ql —Acos((p)

Here nF and sF stand for n(kF) and s(kF), respectively.
The integrals Dq, D2, and D5 contain a logarithmic

singularity ln(2/Do) and, after some algebra, one can
separate these contributions, so that the effective inter-
actions can be written as

If it were only for a single band with linear dispersion
relation these integrals near the ln(2/Do) would not ap-
pear.

Using the couplings of Eq. (6.20) in Eq. (6.15), we get

2U 2,]4 f2+'vF tanh 'A)

( 1tanh 'A li
x exp! —— + —

! e & 1[1+ O(Do)],
4 A 4)

= 2C~vF

(6.23)

where, to first order, Dp disappeared &om the expres-
sion of the gap. This expression now describes the full
functional dependence of 6, on U/ti and t2/ti. The only
thing that remains is to determine the prefactor C~. This
can be done as follows: From the Bethe ansatz solution
of the Hubbard model, we know the value of the gap ex-
actly in the limit of large dimerization [see Eq. (5.4)]. It
is easily checked that in the limit t2 m 0 the functional
dependence of Eq. (6.23) is the same as in Eq. (5.4). So
we can use the result of Eq. (5.4) to determine the pref-

actor and this gives C~ = 2/2/m. Our final expression
for the gap in the weak coupling limit is thus

4vF U 2 i(4 f 2xvF tanh 'A)—1 —A exp

( 1 tailh A 1) ~(~lx exp + — e
4 A 4)

(6.24)

where A = 2tit2/(ti + t2) and C(A) is given by

C(A) = 2(1 —A )Io (A) +2A Io+(A)

—(1 —2A )Ii(A) —2I2(A)

—2I, (A) + (1 —A')Ii{A)

+2(l —A )I2(A)j (6.25)

B. Alternating on-site energies

The Fourier transform of the kinetic Hamiltonian (1.4)
using the Fourier transforms of the operators defined in
Eq. (6.1) is

It is interesting to compare this approach with that of
Larkin and Sak, who used slightly different arguments
when they calculated the gap in the negative U Hubbard
model in the small U limit. It can be shown very easily
that our method is equivalent to theirs and gives the same
result for the attractive Hubbard model.
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Ho = —co ) (cc cc —cc cc )
—2t coo(k) 2)

k, cr

(6.26) with

Ho = —) c(k) (dtc d, —ft f, ), (6.29)

It can be diagonalized in terms of new creation and an-

nihilation operators de6ned by

dq ——cq cosPs + e '"~
cq sinPf, ,

(6.27)

c(k) = kfcco+ 2tc + 2tc cock . (6.30)

The dimerization gap opening at the Brillouin zone
boundary is AD = 28p, the "total" bandwidth is W =
2/s~z+ 4t~, and the Fermi velocity is

f„=c„sin pg —e '"f c„cosps,

where P~ is given by

g2
Vp = (6.31)

2t k
tan 2Pf, = —cos—

0 2

& —x

g 4
&p~& —i.

4y

The kinetic part of the Hamiltonian reads

(6.28) Replacing the new operators defined in Eq. (6.27) for
the lower and upper band into the interaction Hamilto-
nian (6.8) we get

H;„k ——U — ) (cos Pgk cos Pf,2 cos Pg, cos Pg, 6 sin Pf„sin Pf„sinPs, sin Pg, ) d~& td&~

A:g, A:g,ks, k4

+ (sin p~, cos p~, cos pg, cos pf„p cos pf„sin pf, 2 sin pf„sin pg, )

x fc tdc td„ tdc t + fc tdc tdc td„ t+ dc tdc tdt t fc t + dc tdc tdc t f„ t)
t t t t t t t

+ (cos ps, cos pg, sin pf„sin ps, 6 cos pf„cos p), 2 sin pg, sin pg, )

x
~ fc tfc td„ tdc t+ dc td„ tfc tfc t) +. . . (6.32)

with the constraint kq+kq —ks —k4 ——Q and the upper (lower) signs stand for the normal Q = 0 (umklapp Q = +2qr)
scattering, respectively. There are altogether 16 terms, but we have kept only the terms which we need to calculate
the g's near the Fermi surface up to second order in U.

Like in the case of alternating hopping amplitudes, to determine the effective couplings g, we erst integrate out the
high energy processes up to some cutoff Do..

gl(Dp) = U(cos pz + sin pF) —U (Dg + 2Ds + Ds + 2D4)

gs(Dp) = U(cos P~ + sin Pp ) —U (Dq + 2Dq + Ds + Ds + 2Ds),
g3 (Dp) = U(cos pit —sin p~) —U (2D7 + Ds + Dg + 2Dyp)

(6.33)

where we have denoted by Dq, . . . , Dqp the diagrams contributing to the effective interactions (see Fig. 9), which are
given by

dq (cos~ p& cos pq + sin pz sin pq)
Dg ——2

~/2+D

~ ~

2s~ —2e(q)

' dq (cos Py cos Pq+ sin Pepsin Pq)

~ ~

~

0 27K 2s(q) —2ss

dq (cos Py cos Pq sin Pq —sin P~ sinPq cos Pq)
Dp ——2

~

~

~

~ ~

~/g 271 2E'p

dq (cos PP sin Pq + sin PP cos Pq)D3 = 2
0 27K

~

~

~

~

2sp + 2s(q)

dq (cos P~ sin Pq cos Pq —sin P~ sin Pq cos Pq)D4 ———2
~ ~ ~

0 2' 2s(q)
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' dq 2cos Pecos Pecos P v + 2sin Pepsin Pepsin P
5 2~ r(q) —s(7r —q)

dq 2 cos4 Pz cos Pz sin P p + 2 sin PF sin Pp cos P q6 2~ s(q) + s(~ —q)

dq cos P~ cos Pp sin P p
—sin P~ sin Pq cos P q7=

/2 27r 2c~ —s(q) + s(7r —q)

dq cos Pz sin Pq sin P p
—sin P~ cos Pq cos2 P q

8
p 2K 2s~ + e(q) + s(x —q)

'
dq cos4 P~ cos2 Pq cos2 P ~

—sin PF sin P~ sin P
9

p 2m. s(q) —s(~ —q)

dq cos4 P~ cos2 P~ sin P ~
—sin Py sin P~ cos2 P

lp
p 27t s(q) + s(~ —q)

(6.34)

g(Dp) =
2 2U—

zp2+ 2t2

g2(Dp) =
2 2U—z2+ 2t2

qs(Dp) =
s2 + 2t2

ln + Ig
7rvy i,so+ 2t ) Dp

U' rl t4
»in +I, /,

7rvy i, 2 (e'p+ 2t ) Dp )
(6.35)

U2 s(psp+t ) 2

(s + 2t2)s/z
ln + I3

Again, like for the case of alternating hoppings, we

separate the logarithmic divergencies Rom integrals D1,
D5, and D9 and we write the effective couplings as

32+ l3 t'
O(~6

48+3m t (s/ s)
~6

48+ 5vr t
( s/ s)

~6

t4
I2 ——

44ep

I3 —
44gp

(6.36)

The expressions for the I's are rather complicated and,
for brevity, we will give here only their value in the limit
of large dimerization (the compounds which can be de-
scribed by this model presumably have parameters which
lie in this limit):

+kF -kF

(')
-kF +kF

+kF +kF

( 92)
-kF -kF

D3

D,

+ 2x

D,

+ 2x

D4

+ 2x

D2

D2

g2 + g2

'+ 2t
(6.37)

Replacing the effective interactions into Eq. (6.l 5), we

get

We have calculated numerically the I's for a few values
of sp/t and they are presented in Table IV.

For g4, it is sufBcient to take the value without the U
corrections:

D3 Dq

+ 2x

D6 TAB&K IV. The I's for some values of rp/t

+kF —kF

( )
+kF —kF

+ 2x

D7 Ds

D9

+ 2x

Dio

FIG. 9. Perturbational corrections to the effective back-
w'ard scattering gq, forward scattering g2, and umklapp scat-
tering g3 for the model with alternating hoppings shown up
to the second order. The solid (dashed) line represents the
fermions in the lower d (upper I) band.

ep/t
0

0.2
0.4
0.6
0.8
1
2
3
4
5

Ig
—,
' ln2
0.0832216
0.0739705
0.0613605
0.0480877
0.0360938
0.0066400
0.0013135
0.0003309
0.0001034

I2
0

0.0007691
0.0026394
0.0046787
0.0061374
0.0067624
0.0038914
0.0015298
0.0006442
0.0003044

I3
0

0.0020951
0.0039468
0.0053306
0.0061143
0.0063123
0.0035338
0.0014380
0.0006189
0.0002961
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8 Usp

x 2(s2 + 2t2)

vr
x exp

l

—— szo+ 2titanh
U so+ f2'

t2 + ~2 t2
'tanh ' e

4t e +t
1

x exp
4

(6.38)

where the constant has been fixed so that for large dimer-
ization (se » t) we get Eq. (5.8). Here C is given by

VII. LARGE U LIMIT

In the large U limit a canonical transformation can be
applied to obtain an effective Hamiltonian analog to the
t —J Hamiltonian of the nondimerized Hubbard model.
We know already that if there are two alternating hop-

pings, a dimerization gap AD opens at the Brillouin zone
boundary and in the limit U -+ +oo this gap becomes the
charge gap. This will be modi6ed by the spin interaction,
which will give corrections of order 1/U.

(2&'+s', )' t'+ ',
C = (2I2 —Iq) 1 — tanh

t4 t2 e2+ t2 A. Alternating hoppings

sez(2tz + szs) , t2
tanh

t4 +t

If U » tq, tq, and since we have two different hopping
amplitudes, the effective model will be a t Jmod—el with
alternating tq and t2 hoppings and alternating Jq and Jz
exchange interactions:

Htg = tg ) —'P(c,. c,+, + H.c.)'P —t2 ) 'P(c,. c,~, + H c )'P. .
i even, a odd~cT

+Jq ) (S;S;+g —-n;n;+y) + J2 ) (S;S,+g —-n;n;+g)
i even i odd

+—) P(c, ~capt —~c,+z ~c,+2 ~
—c, ~c;+c ~c;+z ~c,+2~+ H.c.)P+0(t /U ) .

l~& =
I f) l~) (7.2)

Here l4'} is the spin part of the wave function, while

laf), the wave function of the N spinless fermions, is the
ground state of the kinetic Hamiltonian. Following stan-

Here the projector 'P = g, [1—n; tn; ~] ensures that there
are no doubly occupied sites n; = n; t +n; g and the gen-
erated exchange couplings are Jq ——4tz/U, J2 ——4tz/U,
and J = 4&gt2/U.

To go further, let us follow the scheme developed by
Shiba and Ogata in their study of the correlation func-
tions for the large U Hubbard model. ~s The basic idea
is to treat the exchange part as a perturbation. This
is possible if the exchange integrals are smaller than the
hopping integrals, which reduces to the condition Jq (( t2
(remember that t2 & tq and thus that J, J2 & Jq) or, in
terms of the original parameters, U » 4tz/t2. In this
limit, the part describing essentially hopping of spinless
fermions can be solved exactly and the exchange part is
then treated as a perturbation. This can be achieved
by assuming that the wave function is the product of a
charge and a spin wave function, where the spin wave
function is de6ned in a Hilbert space of dimension 2N,
1.e., every charge has the additional &eedom of having its
spin up or down:

dard perturbation technique for the case of a degenerate
ground state, we will have to diagonalize the following
2+ x 2 Hamiltonian to lift the degeneracy of lC) and
get the 1/U energy corrections:

(+&&&'/I' = t&(coca)' t2(cfc2)'

(Jg, J2+ —(npng)
' + —(ngn2&'

2 2

—J(cocy cy c2)t t

N
1 w 1x —) (S,.S;+g —-),

j=1

where the (A}' denotes the expectation value of the
operator A in the Fermi sea of spinless fermions, i.e.,
(&}'= (sfl&lsf)

Before we continue with the calculation of the gap, we
need to know the expectation values of electron operators
in the Fermi sea of spinless fermions, where ky SF ——2A:y.
Using the translational symmetry of the system, it is
enough to calculate the following basic expectation val-
ues:
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(coc, )' = —) e'"' (c„c„)',
k

(7.4)

I 1
(c,c )' = [(ti —tg)F(yo, q) + (ti+ t2)E(&po, q)],2' tl

(7.12)

I 1
(cic2) = [(t2 ti)F(V'o q)+(ti+t )E(po, q)],

2mt2

where we have introduced the notation

where j is even everywhere. More complicated expres-
sions can be calculated by using Wick's theorem, i.e., by
constructing all possible pairings. For example:

2i/tit2
tl + t2

(7.13)

nlnj —clcl cjCj — clcj cjcl
= n —(c!c,)'

CpCl Cl C2 —n Cp C2 cpcl cl C2
t

(7.5)

and where the elliptic integrals E(yp, q) and F(pp, q) are
de6ned by

Fo

F(Vo, q) =
o gl —q2sinp2

'

In the following, the sums above will be replaced by
integrals

2 1—) + — dk.I 2~
(7.6)

The free fermion Hamiltonian (6.2) has been solved in
Sec. VI. Using the diagonal electron operators d and f
defined in Eq. (6.3), we get

V'o

E(&pp, q) =

dphil

—q2 sin p2 .
0

(7.14)

Now, let us turn back to the effective Hamiltonian
(7.3). For the spin degrees of freedom, we are left with
an ¹ ite Heisenberg Hamiltonian with an effective ex-
change interaction J,~, which we can read from Eq. (7.3):

(c!")'= (c!c.)' = —2(&~,~ + "~,~)

s'2(k)
(c„c„)'= (ng ), —nf i, ),

(7.7)

J,p = —(npn, ) + —(nin2) —J(cpc, c,c2)

=2 22 2 sin 2'(trn= —n (t, + t, )
—nt, t,

('i —'2) F'(q o, q) (7.15)
where np p

——d&d&, similarly for nf I„and the spin index
of the fermion operators has been dropped. For j even,
this gives

(cctc,.)' = (c(c,c,)' = —f dkc "'~' —(ccc c+

chic)

sin 7rjn
7rj

(7.8)

This is the same expression as for a nondimerized model.
For (ctc,)', we get

c,~ —~SF —J,ff ln 2, (7.16)

where ssF = —ti(cicp)' —t2(cicz)' is the kinetic energy
of the spinless fermions per site. From Eq. (7.12), we get

where we have used Eqs. (7.5) and (7.12)
In the ground state of the AF Heisenberg model the

expectation value (4~(SoSi —4) ~O) is —ln 2 in zero mag-
netic Geld, as shown by GrifFiths. 2 The energy per site
(4'[Hgg~@)/L is then

2+o
(ctc, )' = — dk cos[k(j —1)/2 —op], (7.9)

0

tl + t2
ssF(n) = — E(pp, q), (7.17)

where ny is defined in Eq. (6.4) and

7rT), if n & 1/2

After some algebra, we get

1 ~' ti cos pj + t2cos p(j —2)
( i;)'=-

() Qti + t2 + 2tit2 cos 2p

For j = 0 and j = 2, this can be written

(7.10)

which in the nondimerized case (q = 1) gives the correct
energy (2t/m) sin an For n = 1/2, we .get

2 tl + t2
eff' —

U 4
(ti —t2)'~2(

) (7.18)

where K(q) = F(m/2, q) is the complete elliptic integral
defined in Eq. (7.14).

The energy Eqg/I has a cusp as a function of filling at
n = 1/2 and this nonanaliticity comes &om the pp [see
Eq. (7.10)]. Therefore the first derivative of Etg/I has a
jump at quarter 6Bing, which is nothing but the charge
gap
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Bsig

n=1/2+0

In our case this gives

Brig

n=l/2 —0
(7.19) 1.8

1.6

1.4

I

tp/t)%. 1 o

41n2 t, + 4 (2/t, telb„=2 ti —tz 1—
U qt, +t, p

where we have used the following identities:

(7.20)

1.2

0.8

0.6

04

B+(V o, q)

n=1/2+0

BIl ((pp, q)
|9A

0.2

0
0 0.05 0.1 0.15 0.2

ti/U
0.25 0.3 0.35

BE(yp, q)

n=1/2+0

BE(V o, q)

n=1/2 —0

= —2~/1 —q'

FIG. 10. Numerical estimates of the gap in the large U
limit (diamonds) together with the analytical approximation.
The results presented are for tq ——0.1, 0.2, 0.3, 0.4, 0.5, and
0.7 from the top to the bottom.

Using the limiting behavior of the elliptic function

K(q) = in(4/gl —qs), the gap in the small dimeriza-
tion limit is

or

21n2 W 4W
1 — ln

W

(7.23)

In Fig. 10 we have compared the analytical results pre-
sented above with the numerical data. The agreement is
already very good at U/ti ——10 for tz/ti between 0.3
and 0.5. To get such a good agreeinnt for tz/ti ——0.1,
one has to go to larger values of U, so that the condition
U )) 4ti/tz 40 is satisfied. For large values of tz, the
gap is small and the numerical estimate is not accurate.

As tz ~ 0, Eq. (7.20) gives b,, = 2ti —(4ln2)t~i/U,
in apparent contradiction with the second of equations
(4.1), which gives 6, = 2ti —4tzi/U for tq ——0. The
origin of the discrepancy is that Eq. (7.20) holds if U ))
ti/tz, while the second of equations (4.1) requires that
tz « tz/U. These conditions are clearly incompatible.
Actually the crossover between these two regimes can be
observed on Fig. 1G, where the points below the solid
line (ti/U 0.1) gives 6, 2ti —4ti/U, while for larger
values of U we get the correct 41n 2 slope.

B. Alternating on-site energies

Like in the previous case, a canonical transformation
can be applied in the limit U )& t, eo to obtain a (t —J)-
like effective Hamiltonian

IIij = t ) 'P(c, c +i—+ H c.)'P —so
SiCT

+ 7 ~ +( i,e i+i,—cr i+i,e i+2,—n4

) (c~ ~ci ~
—c~+i deci+i ~) + J) (SiSi+i 4'%%+1)

even, cr

—c,. c,+, c,.+, , c,+z + H.c.)'P+ O(t /U ), (7.24)

where the projector P = P,.[1 —n; tn; ~) ensures that
there are no doubly occupied sites and the generated ex-
change coupling is J = 4ts/U. If the additional condition
J « Ep is satisfied (that is, if U » 4t jeo), we can again
follow Ogata and Shiba.

Let us now calculate the expectation values for this
model. The free fermion model is given by Eq. (6.26)
and it has been solved using transformations Eq. (6.27).
So, for the expectation values we get

d, k + f, k ~d, k f, k(ss) = +
2 2

d, k + ~f,k d, k f, k(kk) 2 2
cos 2pk

x-t i I —k/2 d, k f,k
ckckg ——e ' ' sin 2@kp

(
t- )I ii/z~4i ~f, i .

2P
2

(7.25)
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CpC . + g )

sin srjn
' &+'

(7.26)

and after some algebra

Using the results we obtained in Eq. (7.8), for j even we
get

where we have used Wick's theorem, namely,

ApAl = YLpAl — CpCl
I f I2

CpClCyC2 Al p 2 CpCl
t I2

Cl C2C2C3 Ap Cl C3 CpCl
I t I t I2

(rlprii) —— (COCiCiC2) + (CiC2C2C3)
t t

(7.33)

(c,'c, ,)' = (c',c,.)' = '(I, —+ I, ,)

1 1I. ———
22K 2

dke'"~~ cos 2Pi,

where the I~ denote the following integral:

(7.27)
AOA1 (Al (CpC2) + Ap (Cic3) )

t I

2

2 sin 2%A= n —n —Ip(Ip —I2) .
27r

For n = 1/2, we get

(7.34)

cos(kj/2)
gl + (2t/sp) cos (k/2)

(7.28)
26'J.& ——— t' —,K q K q —E ~ 2, q . 7.35

and pp is defined by Eq. (7.10). These are elliptic inte-
grals and, e.g. , Ip and I2 are given by

1 E'p
Io = — F(V o, q),+4t

(7.29)

2 sp Qs'o + 4t
Io —I2 =—,[F(po, q) —E(Fo, q)],

The gap, using Eq. (7.19), is

2 ln 2 gsp2 + 4t26, =2cp 1—
U

where

2t

gso2 + 4t2
(7.30)

x (1+ q )K(q) —E(7r/2, q) (7.36)

The energy of the system is Eq~ = (iI1'IHqgI@) and the
energy per site sty = Etg/L is still given by Eq. (7.16),
but now the kinetic energy of the spinless fermions per
site is

&sF(&) = 2t(coci) ((cpcp) (cici) )
2

Vs2O+ 4t2

and in the small dimerization limit it is given by

41n2 gs2O+ 4t2 4/s2o+ 4t24, =2ep 1— ln
vj U ~p

(7.37)

where we have used Eqs. (7.27) and (7.29). For the ef-
fective exchange coupling we get

If we parametrize the gap in this limit with AD and TV,
we can see that it is identical to Eq. (7.23).

J.e = 1 (~oni) ——
I (cocicic3) + (ci'2'2'3)I & tt I tt

4t 2 sin 2vrnn' —n
U 2'

2

, ;,, F(po, ~) T(yo, a) —s(wo, v)1I, (7.32)
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