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We derive the statistical distribution functions for the Hubbard chain with infinite Coulomb
repulsion among particles and for the statistical spin liquid with an arbitrary magnitude of the

local interaction in momentum space.

Haldane’s statistical interaction is derived from an exact

solution for each of the two models. In the case of the Hubbard chain, the charge (holon) and the
spin (spinon) excitations decouple completely and are shown to behave statistically as fermions and
bosons, respectively. In both cases the statistical interaction must contain several components; a

rule for the particles with the internal symmetry.

I. INTRODUCTION

It is well known that in the space of dimension higher
than two the many-particle wave function is either sym-
metric or antisymmetric under a permutation group op-
eration; this property leads to the division into the sys-
tems of bosons and fermions, respectively. As a con-
sequence, the distribution function for the ideal gas is
given either by the Bose-Einstein or by the Fermi-Dirac
functions.! In low-dimensional systems (d = 1 and 2) the
situation changes drastically because, e.g., a proper sym-
metry group in two dimensions for the hard-core particles
is the braid group, the characters of which are complex
numbers.? In such instances the distribution function has
not been determined as yet. On the other hand, the
distribution function can be changed by the interaction
among particles. Such a situation arises, for instance,
at the critical point when the system undergoes a phase
transition. Below the critical temperature (e.g., in the
superconducting phase) the distribution function changes
its form from that in the normal state. So, the statistical
properties of the particles are influenced by both system
dimensionality and by the character of dynamical inter-
action between particles.

In his paper,> Haldane noted that the distribution
function can also differ from the Bose-Einstein or the
Fermi-Dirac form in the normal state. He generalized
the Pauli exclusion principle by introducing the con-
cept of statistical interaction which determines how the
number of accessible orbitals changes when particles are
added to the system. The paper dealt with the many-
particle Hilbert space of finite dimension. The limita-
tion turned out to be irrelevant. Namely, Murthy and
Shankar showed* that the statistical interaction, when
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extended to the Hilbert space of infinite dimension, is
proportional to the second virial coefficient.

Very recently, Wu® solved the problem of the distribu-
tion function for Haldane’s fractional statistics. He found
a general form of the equations for the distribution func-
tion for an arbitrary statistical interaction and discussed
the thermodynamics of such a gas. Furthermore, Bernard
and Wu® found the explicit form of the statistical inter-
action in the case of interacting scalar particles in one
dimension. In the particular case of bosons they showed
that as the amplitude of a local delta-function interaction
changes from zero to infinity, the distribution function
evolves from the Bose-Einstein to the Fermi-Dirac form.

In this paper we introduce the spin degrees of freedom
into the problem and determine the statistical proper-
ties as well as the statistical interaction for particles in
two situations. We consider first the Hubbard model in
the space of one dimension and with an infinite on-site
Coulomb repulsion. In this limit, we show rigorously that
the charge excitations (holons) obey the Fermi-Dirac dis-
tribution, whereas the spin excitations (spinons) obey the
Bose-Einstein distribution. The boson part leads to the
correct entropy (kpIn2 per carrier) in the Mott insulat-
ing limit. As a second example, we express the statistical
spin liquid partition function” with the help of the statis-
tical interaction concept. These two examples represent
nontrivial generalizations of Haldane’s fractional statis-
tics to particles with internal symmetry such as spin. In
both cases an explicit form of the multicomponent statis-
tical interaction is required. We show that the statistical
distributions are changed when the interaction between
the particles diverges. For the spin liquid case the form
of the distribution functions are also presented for in-
termediate values of the dynamical interaction. In both
cases, the nonstandard statistics is due to the interaction
between the particles.
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II. STATISTICAL INTERACTION FOR THE
HUBBARD MODEL IN ONE DIMENSION

A. Thermodynamic limit for the Bethe-ansatz
equations (U — oo)

We consider first the one-dimensional system of parti-
cles with a contact interaction. One of the simplest mod-
els of interacting spin one-half particles was introduced
by Hubbard®. The Hamiltonian in this case is

H=-t Z alaj, + UZn,Tnll, (1)

(i,3)e

where ¢ is the hopping integral between the nearest neigh-
boring pairs (7, ;) of lattice sites, and U is the on-site
Coulomb repulsion when the two particles with spin up
and down meet on the same lattice site. We set ¢t = 1.
This model was solved in one dimension by Lieb and
Wu.? The solution is given by the set of the Bethe-ansatz
equations determining the rapidities {k;}, {Aa}; L.e.,
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where N is the total number of particles in the system,
M is the number of particles with spin down, L is the
length of the chain, j =1,..,N,and a=1,..,M. [; is
an integer (half-odd integer) for M even (odd), and J, is
an integer (half-odd integer) for N — M odd (even). The
phase shift function ©(p) is defined by

O(p) = —2tan"? (—25) . (3)

The second set of Eqgs. (2) was written in the form bet-
ter suited to our purposes. The basis in the Hilbert
space which diagonalizes the Hamiltonian (1) is called
the holon-spinon representation.

The Bethe-ansatz equations can be rewritten in such a
way that all dynamical interactions are transmuted into
the statistical interaction.® We determine explicitly the
statistical interaction in the case of the Hubbard model.
Our method is a straightforward generalization of the
Bernard and Wu result® and is valid in the case of infi-
nite interaction only. In this limit, the charge and the
spin excitations decouple and there are no bound states
in the system.'® In other words, all bound states in the
upper Hubbard subband are pushed out from the physi-
cal many-particle Hilbert space.

In the large U limit the Bethe-ansatz equations read!?
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We rewrite these equations in the thermodynamic limit,
ie., for N = oo, L — 00, and N/L = const. We divide
the range of the momentum k and A into the intervals
with an equal size Ak and AA, as well as label each in-
terval by its midpoints k; and A, respectively. We treat
the particles with the momenta in the ith or the ath
interval as belonging to the ith or the ath group. As
usual, the number of available bare single-particle states
are G? = LAk/2r and G% = LAA/2m. These num-
bers follow from the decomposition of the Bethe-ansatz
wave function in the U — oo limit.!° Next, we intro-
duce the distribution functions (the densities of states)
for the roots k; and A, of the Bethe-ansatz equations
(4). Namely, we define Lp(k;)Ak = Nf as the number
of k values in the interval [k; — Ak/2,k; + Ak/2], and
Lo(Ag)AA = Nj as the number of A values in the inter-
val [Ag — AA/2,Ag + AA/2]. Hence, the two quantities
2np(k;) = NEJ/G? = n§ and 2n0(Ag) =
are, respectively, the occupation-number distributions for
the holon and the spinon excitations in the Hubbard
chain. In effect, the Bethe-ansatz equations in the in-
tervals Ak and AA take the form

2 (k) = s + Eﬁ: O(2A4)(Ag)AA,

(5)

2m al Ao — Ag)a(Ag)AA

TJ(Aa) = Ao = TO(2Aa) + ; o

‘_LZAﬁ{SAQ,AﬁU(AB)AA~
B

The function p(k) does not appear explicitly in the large
U limit.

The numbers of accessible states in each of the ith and
the ath groups are

Di({N:},{N5}) = I(ki + Ak/2) — I(k; — Dk/2), (6)

= J(Aa + AA/2) — J(Aa — AA/2).

(7)
Using the continuous form (5) of the Bethe-ansatz
equations we find that Df = Lp§(k;)Ak and D} =
Lp3(As)AA, where in the thermodynamic limit (Ak
— 0, AA — 0) we have, respectively, the total densi-
ties of states for charge and spin excitations

Dz ({N5}, {Ng})

pik) = o, ®)
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and!?
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Substituting the form (3) for ©(p) to the derivative
0©/0A one can easily find that in the U — oo limit

pEA) = o +(A). (10)

To derive (10) we utilized the fact that o(A) is a flat func-
tion of A in the large U limit.'® We see that the numbers
of accessible states for the holons and the spinons in the
U — oo limit are independent of each other. This result,
as we show in the following, leads to the decomposition
of the partition function into the holon and the spinon
parts.

B. Statistical interaction for the Hubbard
chain

We define the statistical interaction and the total num-
ber of states for spin one-half particles. For that pur-
pose we work in the basis in which the Hamiltonian is
diagonal, i.e., we choose the holon-spinon representa-
tion and observe that the dimensions D and D? of the
one-particle Hilbert spaces for the particle in the ith or
the ath groups are functionals of both {Nf} and {N:},
ie., Df = D({N¢}, {Nj}), and D2, = D5,({N¢}, {N3}).
Namely, starting from the Haldane definition® of the
change of the number of the accessible states and adopt-
ing it to the present situation we obtain

AD§ = — Z 955 AN — Zg“AN’ (11)

AD?, = — Zg”ANC Zg S ANg, (12)

where the four g parameters are called the statistical
interactions. These difference equations can be trans-
formed to the following differential forms:

_18-D": —18D1?

(_gij) aN]c + (_gia) 8N; = 27 (13)
aD: oD:

_n%c)—1 o 88 1 a

( gaz) ajv;: +( gaﬁ) 3N5 2. (14)

This set of equations establishes the generalization of
Haldane’s equations for the number of accessible orbitals
of the species a in the case of particles without inter-
nal symmetry. As before,? statistical interactions {g} do
not depend on the occupations N2 and N¢, since other-

k3

wise the thermodynamic limit would not be well defined.
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The factors 2 in the right-hand side of (13) and (14) are
irrelevant because they can be incorporated into the g

parameters. Then the solutions of Eqs. (13) and (14)
are
DENE (N3)) = G2 = S aisNs = etz (19

D ({N:},{Ng}) =

ngch Zg

One should note that these solutions are well defined also
in the boson limit, since then the corresponding g pa-
rameter(s) vanish. The relations D$({0},{0}) = G? and
D2 ({0},{0}) = G2 express the boundary conditions for
this problem; the values G4, and G¢ represent the maxi-
mal values of available one-particle states in the situation
when the holon and the spinon bands are empty.

Additionally, the total number of microscopic configu-
rations with the numbers {N5} and {Nj} of holon and
spinon excitations is given by

N3. (16)

(DC+N°—1 +N°— 1)!
D‘-‘—I'H(N‘ —nr

Q= (17)

a1 (A7

In this expression, the two products are in general inter-
connected via the relations (15) and (16). Each of the
factors is defined in the same manner as in Ref. 3. In
the fermionic bookkeeping for I; and J, the same  is
obtained with the number of accessible states in the ith
and ath groups taken to be®

Ds({N¢},{Ng}) = DE({N£}, {Ng}) + Nf — 1

—G0+NC—1—ZQCCNC

I (18)

D:({N?}, {Ng}) = Da({Ng}, {Ng}) + N2 — 1

=GL+Ns -1 gi5N;
J

-3 gssNp. (19)
B

Rewriting these equations for each of the intervals Ak
and AA we easily find that in the Ak — 0 and AA — 0
limits these four types of statistical interactions reduce
to the following form:

g (k, k') = 6(k — k'), (20)

9% (k,A) = g*°(A, k) = g"*(A,A') = 0. (21)

Thus, the vanishing g functions in (21) simplify the ex-
pression (17) for the total number of available configura-
tions, which is then
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G°+N“—1)
a1 Gy -1)!I"

I rarirssy 1
Q= (22)
=1

The statistical weight () factorizes into the holon (Q°)
and the spinon (2*) parts. This, once again, expresses
the fact that the spin and the charge degrees of freedom
decouple in the U — oo limit.!° As a consequence, the
entropy of the system is a sum of the two parts S =
§5¢4+ 8% = kpIn Q€ + kplnQ*, where the corresponding
expressions calculated per particle are

N
Se —kB Z[n Innf + (1 — nf)In(l —nf)], (23)
and
M
:—kB Z niInn! — (14 nf)In(1 +nf)], (24)

where N, is the number of atomic sites.

We recognize immediately that the holon contribu-
tion to the system entropy coincides with that for spin-
less fermions, whereas the spinon contribution reduces
to localized-spin moments (kg In2) in the Mott-insulator
limit and in the spin disordered phase, i.e., when n?, =1
and M = N, /2. In general, one may say that S° provides
the entropy of charge excitations (and vanishes in the
Mott insulating limit n{ = 1), whereas S* represent the
spin part of the excitation spectrum. This demonstrates
again that the holon (charge) excitations are fermions
and the spinon (spin) excitations are bosons. In the
U — oo limit considered here the Heisenberg coupling
constant (J = 4t2/U) vanishes and the spin wave excita-
tions do not interact with each other.!* In other words,
they are dispersionless bosons. Also, the charge exci-
tations are spinless fermions. The total entropy of the
system reduces in the Mott insulating spin-disordered
limit to S = kg In2. This value is different from that for
the Fermi liquid in the high-temperature limit, which is
2kpIn2. This difference confirms on statistical grounds
the inapplicability of the Fermi liquid concept to the
Hubbard model in one dimension.

(Dxt + Nict — Nia — 1)! (Dxy + Niep — Niea — 1)! (Diea + Nia — 1)!
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III. STATISTICAL INTERACTION FOR THE
SPIN LIQUID

In this section, we derive the statistical interaction for
the so-called statistical spin liquid. This concept was in-
troduced in Ref. 7 to describe the thermodynamic proper-
ties of strongly interacting electrons. The basic assump-
tion in this approach is to exclude the doubly occupied
configurations of electrons with spin up and down not
only in real space but also in reciprocal space (with given
k). This assumption leads to a different class of univer-
sality for electron liquids. Its thermodynamics in the
normal, magnetic, and superconducting states were ex-
amined in the series of papers.”!® A justification of this
approach has as its origin in the concept of the singular-
ity in the forward scattering amplitude due to interpar-
ticle interactions. Namely, it was noted by Anderson'®
and by Kveshchenko!” that in two spatial dimensions this
amplitude may diverge either due to the Hubbard on-site
repulsion, or due to the long-distance current-current in-
teraction mediated by the transfer gauge fields. With
the assumption that in those situations the wave vector
is still a good quantum number, one can write down the
phenomenological Hamiltonian describing such liquid in
the form

H = kZ(Ek — O'h)Nka + U, ; NkTNki- (25)

In this model, ¢y is the dispersion relation for the parti-
cles with the wave vector k moving in the applied exter-
nal magnetic field h, Ny, is the number of electrons in
the state |ko), and o = %1 is the projected spin direc-
tion. The number of double occupancies in given k state
is Nxg = Nyt Niy. The nonvanishing N4 causes an in-
crease of the system energy by U, > 0 for each doubly
occupied k state. Finally, we will put U, — oo because
this model is to represent the situation with the singular
forward scattering amplitude. It turns out that this ex-
actly solvable model'® belongs to the class of models with
Haldane’s fractional statistics, as shown below. In this
case, the statistical interaction is proportional to dxx in
k space, but is a nondiagonal matrix in the extended spin
space. The results are valid for an arbitrary dimension
of space.

To prove this we define the total size of the Hilbert
space of the many-particle states determined by the num-
ber of physically inequivalent configurations

= H (Mt — Nica)! (Dt — 1)! (N — Nica)(Daey, = 1)! (Niea)!(Diea — 1)

Due to the local nature of the interaction in k space
we must treat separately the singly occupied states as
distinct from those with double occupancy in recipro-
cal space. Then, the statistical weight Q expresses the
possible ways of distributing Ny, — Nyxg quasiparticles
over Dy, states and Nyyq quasiparticles over the Dygy
states. In general, the dimension of the one-particle

[

Hilbert space for the singly (Dk,) and the doubly occu-
pied (Dygq) states is the function of the number of other
quasiparticles {Ny,} and {Nyq} (Refs. 7 and 18), i.e.,

Dya({Nip}) = Gy — Zga,ﬂ(k,k')(Nk'ﬁ — bapbux),
B
(27)
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where a and 3 label the configurations 1, |, d; these states
define the extended spin space. Note that in contrast to
Egs. (15) and (16) we define here the boundary con-
ditions via the relations Dyo({Nkg = Sapdix'}) = G2,
i.e., the maximal dimension of the single-particle Hilbert
space is defined for an occupied configuration in each cat-
egory, not for an empty one. These new conditions are
equivalent to the form appearing in Eqs. (15) and (16),
in the thermodynamic limit. Since the Hamiltonian (25)
does not mix different momenta, we find the general so-
lution for g,g(k,k’) in the form

Q

(GR)!
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9ap (K, k') = e ® gap- (28)

Hence, the statistical interaction is diagonal in k space
for this model. Next, to get the exact solution of the
Hamiltonian (25) we choose

11 -1
gag=101 0|, (29)
00 1

and substitute (29) and (28) into (27) to find that the
total size of the many-particle Hilbert space is given by

This result is exactly the same as that obtained in Ref.
7 (cf. Appendix B). Therefore, we conclude that this
model also belongs to the class of models with Haldane’s
statistics. In this case, the changes in the distribution
functions are not due to the phase shift between differ-
ent momenta but rather due to the mutual (dynamic)
interactions between quasiparticles with the same k but
different spin. The interaction pushes some of the states
upward in energy, leading to the following form of mo-
mentum distribution functions

Nio — Nxa PV ePlex=) cosh(Bh)
G? " 14 eBU.eBlex—k)[eBlex—n) 4 2 cosh(Bh)]
x[1 + o tanh(Bh)], (31)
Nua _ 1 (32)

G_a T 1 + eBUs eBlex—n) [eAlex—#) + 2 cosh(BhR)]’

which are easily obtained by minimizing the ther-
modynamic potential with respect to Ny, and Nyg
separately.'® It is easy to show that those distributions
evolve from the Fermi-Dirac function to the statistical
spin liquid distribution when the U, changes from zero
to infinity.”

The limit U, — oo represents the physical situation
in which Niq = 0. In other words, there are no double
occupancies in k space. All states are singly occupied
by the quasiparticles with either spin up or spin down,
or empty. In this limit, the statistical interaction (28)
reduces to the 2 x 2 matrix form

11
gaa’(k, kl) = ‘Sk,k’ ® 01 . (33)

Then, the statistical weight is”

_ (GR)!
2= M eT — Moo — M)t

(34)

Such a liquid is called the statistical spin liquid. This
class of quantum liquids is similar, in some respects, to

- II-(I (NkT — de)!(NkJ, - de)'(de)'(Ga — NkT - Nk.L + de)! )

(30)

the Bethe-Luttinger liquid discussed above. For exam-
ple, because of the mutual interaction between spin up
and down particles, one half of the total number of states
(2N, ) are pushed out of the physical space in the U, — oo
limit. Therefore, the entropy of the statistical spin liquid
in the high-temperature limit is the same as in the case of
the Hubbard chain with the infinite interaction because
the entropy of the system in this temperature limit is
given in terms of the degeneracy of the state only.?! In
particular, the entropy in the statistical spin liquid for
N = N, equals kg N In 2, which is the correct value for
a Mott insulator. Also, the high-temperature value of a
thermopower is the same for both liquids.?! It was also
shown!® that the magnetization of statistical spin liquid
has the same form as that of the Hubbard chain with
the infinite repulsion, i.e., that for localized moments.!!
However, the direct consequence of the statistical inter-
action is also a breakdown of the Luttinger theorem: the
volume enclosed by the Fermi surface is twice that for the
Fermi liquid. This arises because of the differences in the
microscopic character of the single-particle excitations in
these two liquids.

IV. CONCLUSIONS

In this paper, we considered statistical properties of
the two model system: the Hubbard chain with infinite
repulsion and the statistical spin liquid. We determined
the form of the Haldane statistical interaction in each
case. In the one-dimensional Hubbard model a distribu-
tion function emerges due to the presence of the phase
shift between pairs of states with different rapidities {A,}
and {k;}. In the U — oo limit, when all bound states
are excluded, the charge excitations (holons) behave sta-
tistically as fermions, and the spin excitations (spinons)
behave as bosons. The holons have a simple energy dis-
persion € coinciding with the bare band energy, whereas
the spinons are dispersionless. An equivalent alternative
approach?® is based on the fermionic representation of
both the holon and the spinon degrees of freedom; in that
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approach the spinons and the holons acquire complicated
forms of the effective dispersion relation. The latter ap-
proach allows for a generalization of the treatment of the
Hubbard chain for finite U, the limit unavailable with
our present analysis. Nonetheless, our analysis is also
applicable to other models when the separation into the
charge and the spin degrees of freedom occurs (cf. the
Kondo problem?2).

In the statistical spin liquid case the mutual interac-
tion between quasiparticles with the same k leads to the
exclusion of the double occupied configurations in recip-
rocal space. In that case the statistical interaction is
diagonal in k but has a nondiagonal structure in spin
space. In that case the statistical distribution changes
with growing interaction from the Fermi-Dirac form to
the spin liquid form.”

It is interesting that those two models of particles with
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the internal symmetry can be classified as the models
with the fractional statistics in the Haldane sense. In
contrast to the case of scalar particles,® the distribution
functions in the present situation take the form of either
holon-spinon or the spin liquid distributions. Those pos-
sibilities arise only when the particles have some internal
symmetry (spin,color). One may also say that in those
cases the statistical interactions have a tensorial charac-
ter in space in which the Hamiltonian is diagonal.
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