
PHYSICAL REVIEW B VOLUME 50, NUMBER 16 15 OCTOBER 1994-II

Dielectric response in insulators: A wave-vector- and frequency-dependent model
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We have calculated a random-phase-approximation-type expression for the dielectric-response
function of several large-band-gap insulators using a development of the model suggested by Fry.
This model should be good for systems with well-localized valence-electron functions and Bat valence-
electron bands. We show that in this model it is a minor approximation to use spherically symmetric
bands in the integration over reciprocal space. This allows simple and fast evaluations of our
expressions, thus avoiding Brillouin-zone integrations and summations over band indices. The results
of our calculations are compared with ab initio data on static dielectric matrices from Baldereschi
and Tosatti, with model calculations on the static dielectric function from Rezvani and Friauf, and
with electron-energy-loss spectra for LiF from Fields et al. , using only one fit parameter. In addition,
the Johnson f-sum rule is tested for this model. We also verify that our approximation gives the
correct singular behavior of the (0, K) matrix elements.

I. INTRODUCTION

In this paper we present a model for the wave-vector-
and &equency-dependent dielectric function applicable to
insulators such as NaC1, MgO, and LiF. They are all
characterized by relatively flat valence bands and a con-
duction band which is more free-electron-like. We shall
show that a dielectric function using a simple model of
this electronic structure can reproduce quite successfully
the response of the system to perturbations with varying
wave vector and &equency, including local field effects.
Calculations of the dielectric function (usually within the
random-phase approximation) based on ab initio elec-
tronic structure calculations require a large computa-
tional effort and for this reason model dielectric functions
are useful. This is particularly so when the dielectric
function is used to calculate the screened interaction be-
tween electrons in self-energy calculations. 2 4 Moreover,
model calculations can bring out the physical aspects of
the dielectric response.

Most of these calculations give an analytically
tractable function for describing the dynamical response.
In particular, in self-energy calculations these dielec-
tric functions lead to simple expressions for the self-

energy operator. 4 Usually, these models involve a one-
oscillator approximation in which the valence and con-
duction bands are assumed to be completely flat and
the oscillator strength is determined by sum rules.
For some applications, such as self-energy calculations,
or simulation of electron-energy-loss spectra (EELS), a

more detailed description of dynamical response may be
required. Also, it is not clear &om these simple models
how the spatial extent of the wave functions affects the di-
electric response and subsequently the self-energy correc-
tions. Other existing models, such as those of Hanke and
Sham, 7 and Inkson and Turner, s can meet these require-
ments but they involve considerable computation when
the dielectric function has to be evaluated at various fre-
quencies and wave vectors including local fields. These
models present the dielectric function in the Wannier rep-
resentation and involve a band-structure interpolation.
Concluding, there is clearly room for improvement in the
choice of model dielectric functions for large-band-gap in-
sulators in which the dispersive conduction band makes
the one-oscillator model inapplicable, particularly if we

wish to avoid the involved calculations of the second class
of models.

The model described in this paper is a development
of the model suggested by Fry. s This represents the va-
lence states by tight-binding Bloch states and the con-
duction states by plane waves orthogonalized to the va-
lence states; the band structure of the unoccupied states
is modeled by free-electron-like (parabolic) bands. The
dielectric function calculated in this way has been ap-
plied by Rezvani and Friauf to several large-band-gap
insulators. We extend the model dielectric function by
including the conduction band density of states from a
self-consistent band-structure calculation and local field
eA'ects, and derive analytic simplifications. This model
provides both an accurate and simple expression for the
dielectric function of a wide class of compounds contain-
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ing only the spatial extent of the valence states as a
parameter. In Sec. II we evaluate the model dielectric
function, keeping in mind the analytic requirements of
such a function. Details of this evaluation are moved
to the appendices. In Sec. III the model results will be
presented and tested by comparing them to the zero-
&equency model and C,b initio results for a number of
systems (MgO, KC1, Ar, NaC1), to experimental results
(wave-vector- and &equency-dependent EELS spectra of
LiF) and by checking f-sum rule conditions. These re-
sults will be discussed and related to the particular choice
of the model formulation. Concluding remarks are then
given in Sec. IV. We will use atomic units throughout,
with e = 5 = m = 1, and the unit of energy is the
Hartree =27.2 eV.

II. THEORY

The longitudinal dielectric function e relates in linear
response the induced potential to the total change in po-

tential. In a plane wave representation we have

8P;„~(q,K,~) = ) GK K (q, ~)hg, ,(q, K', ~), (&)
K'

where

GK,K'(q, ~) = ~K,K' &K,K'(q, ~) (2)

and K and K' are reciprocal lattice vectors.
bP«t(q, K', u) is a frequency- (cu) and wave-vector- (q+
K') dependent potential, which consists of a slowly vary-
ing contribution due to the external charge perturbation
plus the induced potential. In the random-phase approx-
imation the function GK K.(q, ld) is evaluated starting
from one-electron wave functions and energies obtained
from a density functional band-structure calculation, and
perturbation theory then gives~~

2 x 4lr fO(@k+gl') , f (0@k,l)
&K,K' (q & — K,K'

)q+ K( 0;Ek+q l
—Ek l

—cu —i0+
'7

x(k, l[e ' ~+ 'fk+ q, t')(k+ q, l'[e' ~+ '[k, t},

where the matrix elements are taken between single-
particle Bloch states of wave vectors k, k+ q and band
indices l, I'.

In this section we shall derive a computationally con-
venient form for e based on (8) for the class of insulators
with a relatively fiat valence band and a much more dis-
persive conduction band. This class includes ionic solids
like LiF, MgO, NaC1, and the noble gas solids. Figure
1 shows the band structure of LiF, for example. l2 This
form of band structure makes a one-oscillator form for
e, such as suggested in the work of Johnson5 and Or-
tuna and Inkson, unsuitable. The one-oscillator model
assumes that the dielectric reponse is dominated by one
particular transition and that the contributions from the
other part of the excitation spectrum can be neglected.
For the class of compounds we consider here this is not
the case.

We therefore require a form of dielectric function in
which the model wave functions and energy bands re-
Bect the properties of these compounds. For the valence
states, which are very localized and have predominantly p
character, we choose tight-binding Bloch states using 2p
atomic orbitals as localized wave functions on the anion
sites:

lk~}= ) p~(r —R')e*" '1
(4)

where the form of the atomic functions is taken &om
Ref. 13:

1
p„(r) = —) c„A„'re """4„(P,8).

The angular function represents the angular part of the
2p, 2p» and 2p, functions [p = z, y, or z; the particular
choice of the atomic orbitals is related to the particular
type of lattice being considered here (face-centered cu-
bic) j. The choice of this type of function agrees with the
pseudopotential picture~4 of large-band-gap insulators in
which valence wave functions have mainly p character
without radial nodes in the atomic region. %laming to
the unoccupied states we represent the wave functions
as plane waves which are orthogonalized to the valence
states:

(k, l) = ak l (PWk, l) —) (k&(PWk, l}(k„}
~

t'

v

(6)

where

~PW )
i(k+C}()-r1

~n (7)

ak l is the normalization factor, and Ql is the recipro-
cal lattice vector which translates the &ee-electron band
back into band l within the first Brillouin zone. This rep-
resentation of valence and conduction band states, which
was suggested by Fry, will lead to an analytic expres-
sion for e. As we shall see, this expression will have the
correct analytical behaviour at q m 0, which is required
for elements of the dielectric matrix.

When we neglect the dispersion of the valence states
and set their energy equal to a constant E„—this is a
good approximation for large-band-gap insulators —we
arrive at
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1m'„„(q,~)

) f d'ao, '((E„(~)—E. —~)
q+ K 20om

x F„(~,q, K)F„*(~,q, K'), (8)

where

d3&p2 (r)e
—i(q+K) r

x d rp„r e'"'. (9)

This is the expression at positive frequency ~. The real
part can be evaluated &om (8) by a Kramers-Kronig prin-
cipal value integral. In the above expression we ignore the
overlap of p functions on separate atoms, which actually

corresponds to having no dispersion, and contributions
&om integrals like J' dsrp„(r)p„(r)e '(++ )', which is a
good approximation for systems with localized valence
functions. For these systems the normalization constant
a„ is close to unity and slowly varying with tc,—this has
been tested in numerical calculations where deviations
&om unity were generally smaller than 2%—and there-
fore we put a„= 1.0 in the following expressions. The
integrals of p and p functions in (9) are evaluated in Ap-
pendix A. The integration with respect to m in (8) is over
all of reciprocal space. Oo is the volume of the primitive
unit cell. The summation over p indicates the contribu-
tion to eK K (q, ur) of the 2p, 2p„, and 2p, functions.

The a integration can be greatly simplified because of
the rather slow variation of F„with ~tc~. The b' function in

(8) picks out a constant energy surface, which as far as F„
is concerned can be replaced by a spherical surface of the
same area. The radial integration in (8) gives a density of
states factor, which appears outside the angular integral.
The final expression for the dielectric function is then

erg(E„+ (u)
ImeK K (q, ur) = "

2 ) d&„sin8„d(t)„[F„(~,q, K)F'(~, q, K')]„2—2 ( )(@ + ),q+ K 20o

where g(E„+u) is the total density of unoccupied states
per unit volume and where the constraint condition
K2 = 2m'(tc)(E„+ ur) arises &om the radial integration.
This condition, in which m'(e) is the effective mass cor-

responding to the spherical energy surface, can be ap-
proximated by a simpler one in which m* is a constant.
This is also due to the rather slow variation of E„with
It@~ The. angular integration is a measure of the oscil-

lator strength, and determines the analytical properties
of eK K((q, u). The analytic evaluation of this integral is

very involved and we have moved details of the calcula-

tion to Appendix B.
In the following we will first consider the required an-

alytical properties for the elements of the dielectric ma-

trix in (3). In particular the head and body of the di-

electric matrix, which contain, respectively, the elements

to p(q, (d) and eK K (q, u) (K, K' are nonzero vectors) are
analytic functions for q + 0, while the remaining ele-

ments (which build the "wings" of the matrix) are nonan-

alytic under these conditions. These requirements have

been discussed in earlier papers for the dielectric matrix
elements in (3), but it is not immediately obvious that
the model being discussed here fulflls these conditions.

For K, K' nonzero, e is indeed an analytic function.
However, when K or K' equals 0 and g —+ 0 the situation
is different. Then

F„(a,q, o) = —q. '()q f d rp„(r)e + +o(q')',

and for q ~ 0 we have F„(m, q, 0) = F(m, —q, ()). —
Consequently, for the symmetrical dielectric matrix,

which is defined as

eK,K (q, ~) = eK, K (q, ~),/q+ K/

q+ K' (12)

the relation eK p(q, (d) = —cK p( —q, w) follows. However,
the function does not vanish as q ~ 0 which by defini-

tion means the function is nonanalytic at q = 0. In
this case a separate prescription is needed and this can
be provided by gauge invariance which requires no elec-
tronic response to a constant potential. Therefore the
matrix elements of the wings are equal to zero at q = 0.
When both vectors K and K' are equal to zero these
problems do not occur. The prefactor 1/~q+ K~ in (10)
is cancelled by the product of I'„ functions in the angular
integration and this results in a finite value for E'o o(q, ~)
which is independent of the direction of g when q ~ 0.
Therefore the head of the matrix is an analytic function.
This completes the arguments that the model dielectric
function has the desired analytic properties. We have

already mentioned that the orthogonalization of conduc-
tion band states to the valence states is necessary for the
required analytic behavior. This can be understood from
a consideration of F„ in (9) and (11) with which the an-

alytic properties of the matrix elements were explained.
The function F„has two contributions which cancel one
another as q ~ 0, as shown in (9) and (11), where the
first contribution is due to the plane wave term in (6)
and the second one comes from the mixing of the plane
wave with the valence wave function of equivalent crystal
momentum.

The analytic evaluation of (10) has been tested by nu-

merical calculations and all summation cutoffs (see Ap-
pendix 8) have been chosen so that the results are con-
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verged to within 1%. In the angular integration in (10)
the number of radial basis functions for the 2JI wave func-
tions is limited to 1, which means there is only one fit
parameter. The value of the band gap is 6xed by the
particular application. For example, in comparisons o
model results with ab initio data the band gap will be
set equal to the band gap &om this ab initio calculation,
and in applications to optical spectra the optical band

In order to illustrate that the model dielectric func-
tion has a reasonable form for its &equency dependence
for systems with a band gap, in Fig. 2 we compare this
model with ab initio data for Si. For the purpose of this
shape comparison the model results were calculated with
the band gap and atomic volume appropriate to Si. We
do not claim perfect agreement in this case, because or
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FIG. 1. Self-consistent band structure of LiF (Ref. ].2) in
the a. = 2/3 exchange model.

CFIG. 2. The dependence of Relic K (0, cu) as a functIon of
cu for a number of combinations of K and K'. The lattice
parameter is 10.26 a u. , and the band gap is taken to be
4.0 eV. The exponential parameters are A=0.72 a.u. dia-
monds) and %=1.00 a.u. (crosses). In the model calculation
a free-electron density of states is used. In (a), (b), and (c)
the combinations of K and K are, respecti y,

I vel 000 000
((111),(111)),and ((111),(200)). For comparison the ab iru
tio results for silicon I'rom Ref. 4 are presented (squares).
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valence wave function, is illustrated. The results are con-
sistent with the physical notion that in a more localized
charge distribution [large A in (5)], where the electrons
are more tightly bound to the ion cores, the dielectric
response to external charge disturbances is reduced.

III. RESULTS AND DISCUSSION

In this section we present data which will show that
the model dielectric function gives an accurate descrip-
tion of dielectric response in large-band-gap insulators.
For this purpose several comparisons of model results
with ab initio data and experimental results have been
made. These involve calculations of dielectric matrices
at w = 0 and q ~ 0 and simulations of electron-energy-
loss spectra. We will start, however, with a compari-
son of our results with model results &om Rezvani and
Friauf, io who apply Fry's model to calculating ep p(q, ~)
for several large-band-gap systems (Ar and KC1). Their
model has a similar representation of the valence and
conduction band states, which are, respectively, tight-
binding wave functions and plane waves orthogonalized
to the valence states, but it treats the band structure in
a difFerent manner from ours. The valence states have
some dispersion, and the conduction bands are repre-
sented by a small number of parabolic bands in the re-
duced zone scheme. Another difFerence in Rezvani and
Friauf's model is the numerical evaluation of the sum
in (3), using the spherical zone approximation, whereas
we treat this analytically in (10). We can expect to ob-
tain very similar results, however, by using a free-electron
density of states with the same efFective mass as in their
calculations. This is indeed the case. For Ar they ob-
tained tpp(0, 0) = 1.70 for A = 1.18 a.u. i. We find

happ(0,

0) = 1.70 for A = 1.16 a.u. . For KC1 there is
also excellent agreement: they obtained tp p(0, 0) = 2.13
for A = 0.84 a.u. ', while our calculations show that
ep, p(0, 0) = 2.13 for A = 0.89 a.u. . The small differ-
ences are probably due to the fact that in Rezvani and
Friauf's calculation only two parabolic bands were taken
into account, whereas in our model calculation the &ee-
electron band structure up to 60 eV above the bottom of
the conduction band was considered.

Additional support for our model dielectric function
comes &om the comparison of the symmetric dielectric
matrices with the ab initio results of Baldereschi and
Tosatti for the particular case of ~ = 0 and q m 0
[qi](100)]. In the model calculations the matrices are
obtained for a particular value of A in (5) which is ob-
tained by fitting the (0, 0) element of EK K (q, 0) to the
ab initio value. In Tables I and II the results of two of
these calculations, for MgO and NaCl, are given with
the free-electron density of states as input. The radial
function exponents A are, respectively, 1.10 a.u. and
0.91 a.u. . In order to achieve better agreement in the
case of NaCl we also introduce the density of unoccupied
states &om a band. -structure calculation, using the I S%'
(localized spherical wave) approach. is These results are
given in Table III and the agreement between model and
ab initio results is excellent except at larger reciprocal

TABLE I. Matrix elements of the symmetric dielectric ma-
trix ~ for MgO, q~~(100) arid q ~ 0. The ab initio results
are from Baldereschi aud Tosatti (Ref. 15). The free-electron
density of states is used as input.

(000)
(111)
(111)
(111)
(111)
(1I1)
(200)
(200)
(200)
(200)
(200)
(020)

K'

(000)
(000)
(111)
(111)
(111)
(111)
(200)
(I»)
(111)
(000)
(200)
(200)

~K,K'(q ~ = 0)
ab initio

3.180
-0.325
1.430
0.081
-0.041
-0.131
1.298
0.029
-0.107
0.342
-0.055
0.002

~KK (q, ~ =o)
model
3.180
-0.293
1.179
0.030
-0.004
-0.014
1.399
0.044
-0.075
0.328
0.381
-0.170

TABLE II. Matrix elements of the symmetric dielectric
matrix e for NaCl, q~~(100) and q ~ 0. The ab initio results
are from Baldereschi and Tosatti (Ref. 15). The free-electron
density of states is used as input.

(000)
(ill)
(111)
(111)
(111)
(111)
(200)
(200)
(200)
(200)
(200)
(020)

K'

(000)
(000)
(111)
(111)
(111)
(111)
(200)
(111)
(111)
(000)
(200)
(2oo)

~KK (q, ~ = o)
ab initio

2.514
-0.330
1.470
0.091
-0.052
-0.182
1.347
0.062
-0.143
0.407
-0.090
0.005

~K,K'(q & = 0)
model
2.517
-0.182
1 ~ 207
0.000
0.000
0.000
1.397
-0.036
-0.069
0.001
-0.357
0.004

K

(000)
(111)
(111)
(111)
(111)
(111)
(200)
(200)
(200)
(200)
(200)
(020)

K'

(ooo)
(000)
(111)
(111)
(111)
(111)
(200)
(111)
(111)
(000)
(200)
(200)

~K,K' (q, ~ = 0)
ab initio

2.514
-0.330
1.470
0.091
-0.052
-0.182
1.347
0.062
-0.143
0.407
-0.090
0.005

~K,K'(q, ~ = 0)
model
2.511
-0.336
1.420
0.096
-0.031
-0.082
1.782
0.039
-0.143
0.422
0.475
-0.237

TABLE III. Matrix elements of the symmetric dielectric
matrix i for NaCl, q~~(100) aud q m 0. The ab initio results
are from Baldereschi and Tosatti (Ref. 15). The calculated
density of states is used as input. See text.
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lattice vectors. Here A = 1.255 a.u. and the efFective
mass parameter m' = 1.31.

A further test for the model dielectric function is pro-
vided by the f-sum rule due to Johnson, which is appli-
cable to the RPA dielectric function:

f ~~ImcK K (q, ~)
0

2vru—„f(K —K')e(q+ K) e(q+ K'). (l3)

e is a unit vector which has the direction of its argu-
ment and f(K) represents the Fourier transform of the
charge density. It provides a good test of our approach
for including the effects of band structure and oscillator
strength in the dielectric function. We have checked the
sum rule equation for the model dielectric function, us-

ing the NaC1 parameters and the calculated density of
unoccupied states. The results, which are given in Table
IV give a very convincing statement of the accuracy of
the model dielectric function.

Another demonstration is provided by a simulation of
the electron-energy-loss spectra for LiF.i7 These spec-
tra are measurements of the partial differential cross sec-

tion &zzz, which gives the fraction of incident electrons
with primary energy Ep scattered into solid angle dQ
and energy between Ei and Ei + dE when traversing
the solid. i This quantity is proportional to Imep p(q, ~),
where q is the momentum transfer and ur is the energy
loss (Ep —Ei). We compare in Fig. 3 the experimen-
tal electron-energy-loss spectra as a function of energy,
and for several directions and magnitudes of the mo-
mentum transfer, with corresponding model results for
Iml/Ep, p(q, QJ) in which local field effects have been ne-
glected for the moment. In our calculations we include
the unoccupied density of states of LiF, which was calcu-
lated up to approximately 60 eV above the Fermi energy,
using the LSW approachis with an extended basis set.

The effective mass parameter in (10) is set equal to 1.0
and this is in agreement with the dispersion of the low-
est conduction band in the band structure. In order to
determine A in (5), Iml/ep p(q, u) is fitted to the exper-
imental spectrum for q = 0.23 a.u. i and qII(100). This
gives A = 1.80 a.u. i and with this parameter also the
other Qml/Ep p(q, ur) curves as a function of energy u
have been obtained. In all cases the agreement between
experimental and calculated spectral shape is excellent,
except for the region just above the band gap, up to
10 eV above the band gap. This energy range is domi-
nated by an exciton structure, which cannot be treated
within a density functional band-structure calculation.
At larger values of the momentum transfer the exciton
structure decreases [see, for example, Fig. 3(c) and 3(f)]
and the agreement between experimental and theoretical
spectra is therefore improved. This may indicate a rela-
tion between momentum transfer and the strength of the
electron-hole interaction. Finally we note the splitting
in the experimental plasmon peak at 25 eV for larger q,
which is not reproduced in the calculated spectra. This is
possibly related to our assumption of a flat valence band,
whereas in the case of LiF the valence bandwidth is 3.5
eV, consistent with the plasmon peak splitting.

Up to this point we have not included local field correc-
tions in the macroscopic dielectric response. These local
fields are rapidly varying charge fluctuations of wave vec-
tor q+ K produced by an external perturbation of wave
vector q, where q is generally much smaller than the
shortest reciprocal lattice vector K. In order to include
these local fields into a description of dielectric response
a matrix representation for the dielectric function, e.g. ,

(3), is required, in which the off-diagonal terms repre-
sent the local fields. The effect of these local fields on
macroscopically important phenomena, such as the en-

ergy loss of fast electrons and the absorption of radiation
in solids, can be understood from the relation between

TABLE IV. Test of the sum rule condition in (13) for our model dielectric function. This is
done for a number of g, K, K' combinations, using the NaC1 parameters and calculated density of
states. The magnitude of wave vector q is given in a.u.

K' Ihs of (13) rhs of (13)

(000)
(000)
(000)

(000)
(000)
(000)

0.10, II (1«)
0.30, II (100)
1.1S, II (1«)

-0.259
-0.279
-0.241

-0.249
-0.249
-0.249

lhs of (13) rhs of (13)

(000)
(000)
(000)

(000)
(000)
(000)

0.10, II (111)
0.30, II (111)
0.50, II (111)

-0.255
-0.241
-0.218

-0.249
-0.249
-0.249

K' lhs of (13) rhs of (13)

(200)
(111)
(111)

0.00
0.00
0.00

-0.047
-0.026
0.024

-0.065
-0.029
0.011
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TABLE V. Effect of local fields on the macroscopic dielectric function for NaCl for various
wave vectors. Local fields are included by using sets B and C of reciprocal lattice vectors in the
calculation. See also text. The magnitude of wave vector g is given in a.u.

0.100 II (100)
1.070, II (111)
0964

II (101)
1.920, II (011)
2.255, II (11I)
2.455, II (111)

st ((d = 0)
no local fields

2.501
1.591
1.294
1.029
1.019
1.006

spy(~ = 0)
with local fields B

2.400
1.481
1.281
1.022
1.012
1.006

s~(cd = 0)
with local fields C

2.389

introduction of local fields reduces the value of eM(q, u)
and for low values of q this reduction is significantly larger

(2—10%%up). For q ) 2 a.u. 1 the contribution of the local
fields to eM(q, ~) can be neglected. Similar results have
been obtained by Hybertsen and Louier in their calcu-
lation of the macroscopic dielectric function for various
semiconductors.

Although these results indicate that local fields are im-

portant in a quantitative treatment of dielectric response,
the number of off-diagonal elements that need to be taken
into account can be rather small. Table V shows that for

q = 0.10 a.u. 1 set B, which has 27 reciprocal lattice
vectors, includes most of the local field effects. Using the
larger set C (125 reciprocal lattice vectors) only produces
a small improvement of the dielectric constant (0.5').
Finally we will consider the contribution of local fields in

(14) to the energy-loss spectra of LiF. Some information
on this can already be inferred &om the experimental
spectra, which are not very sensitive to changes in q ori-
entation in the energy range of 0—40 eV. Therefore we

expect that the local fields have their main contribution
in changing the spectral intensity and not in changing the
peak positions, as has already been shown in the case of
Si. ' Our model calculations, in which set B of recip-
rocal lattice vectors is used, confirm this, as can be seen
in Fig. 4 where both spectra (local fields included/not
included) are given.

1.4

1.2

IV. CONCLUDING REMARKS

We have shown that if we make some well-founded
assumptions about the spatial variation of the valence
and conduction band wave functions and the band struc-
ture it is possible to produce a simple and fairly accurate
&equency- and wave-vector-dependent model dielectric
function. The present approach is based on the RPA
formalism. The static dielectric matrices that are cal-
culated within the model can be fitted to ab initio re-
sults, using only one parameter: the extent of the va-
lence wave function. Moreover, the effects of local fields
on the macroscopic dielectric function, which were found
in ab initio calculations, are reproduced and sum rule
requirements are obeyed. In addition, the &equency de-
pendence of (the inverse of) the macroscopic dielectric
function can be obtained &om this model, and for LiF
we have made a comparison between this quantity and
experimental EELS spectra, giving good agreement.
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text. The results of the local Geld calculation are indicated
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The evaluation of integrals of the type J' dsrp„(r)e'&'
and 1' dsrp2(r)e'~' is sketched briefiy in this section.
The input for these integrals is the 2p functions already
given in the theory section [see, for example, (5)]. The
axis system is rotated in order to put Q parallel to the
z axis. The wave functions are transformed to a partic-
ular linear combination of the 2p, 2p„, and 2p, func-
tions [these functions form an irreducible representation
in SO(3)]. The resulting e'~' factor can be expanded
into spherical Bessel functions,
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e'&' = ) (2t + 1)i'ji(Qr)P((cos 8, ) .
I=O

(A1)
Using the orthogonality relation for the Legendre poly-
nomials, it is a straightforward. task to evaluate the inte-
grals. We will give only the result of the calculation:

d rp„(r) e'~' = 32~+i cos 8„) c„(A„)'1' P v A2 + Q2
(A2)

272(A. + A.)[Q'+,",, (A„+ A. )']
[(A. + A )'+ Q']4 (A3)

where 8, = 8(z, Q).

APPENDIX B

The angular integration in (10) can be separated into
four terms and two of these involve nontrivial integra-
tions. The first one is of the form

f

ear

2' 1d8„sin8„dg„r, [~ —(q+ K)],
0 0 a —m cs'

a) m c, (Bl)

1 . (m+2) (~ c)"
(a —r c) )-

g
2 ) a"+

v=0
(B2)

Including this into (Bl) the integral can be reduced to a
standard integral

where c = 2(q+ K).
The integral can be put into a more convenient form

by rotating c parallel to the z axis and the quantization
axis j of the p function into the xz plane. Moreover, it
can be shown that

2'
) ~ ~

d8„dp„K j cos p„cos"8„sin 8„+j, r sin8„cos"+ 8„——sin8„cos"+ 8„

(B3)

The second integral is of the form

f

ear

2' 1
d8„sin 8„dg„[m—(q+ K)],[m —(q+ K')],

0 0 a —v. c 3 b —~.d 3 (B4)

where c = 2(q+ K) and d = 2(q+ K') and where a ) m c and 6 ) r d. Also here the integral can be written in a
more convenient form by rotating the axis system. In this case c is put parallel to the z axis and 1 is put in the xz
plane. In addition both ~,l, and

~& „&l, are expanded as in (B2). This results in the following expansion:

2'

v, q=o 0 0

x(r„. —r~[(q+ K)~ + (q+ K')~] + (q+ K)~(q+ K')~) cos" H„cos~(~, d) . (B5)

From the solution of spherical triangles it is possible to express the cos(m, d) in terms of cos8„, sin8„, and cosP„
functions:

cos(m, d) = cos 8„cos(z,d) + sin 8„cosP„sin(z, d) .

Introducing this into (B5) the integral of (B4) can be expressed in terms of standard integrals.
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