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Falicov-Kimball model and its relation to the Hubbard model: Studies on clusters
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Ground-state properties of the asymmetric Hubbard model are studied on one-dimensional clus-
ters (rings) with N = 6, 6, and 10 sites. The ground-state energy, correlation functions, and phase
diagrams are determined for various sets of model parameters. Computations are performed both
by exact diagonalization (for N = 6) and by an approximate method by which correlation efiect's

can be examined on larger clusters than exact diagonalization allows. In the limiting cases (one
limit corresponds to the spinless Falicov-Kimball model and the other to the Hubbard model) our
results agree quite well with those obtained analytically for in6nite systems.

I. INTRODUCTION

The Falicov-Kimball model (FKM) in its spinless ver-
sion can be regarded as a modification of the one-band
Hubbard model~ z (HM) in which the electrons with one
spin direction possess infinite masses and hence do not
move while those with the other spin direction are free to
move. For this reason the model is also called the static
HM. This seems to be the simplest, nontrivial model of
correlated electron systems (there are also other physical
interpretations 4) where many-body effects are clearly
manifested. The FKM is defined on a lattice of N sites
by the Hamiltonian

HFKM = —) dI d& + U ) dqdkfI fa,
(a, i) Jc

where the hopping term of the moving electrons is
summed over all nearest-neighbor (NN) lattice sites (k, l);
dg(d&) and fg(f&) are, respectively, the annihilation (cre-
ation) operators for the itinerant and localized electrons
at site k (hereafter, the former are called electrons and
the latter, ions); U is the electron-ion on-site Coulomb
interaction. The electron hopping integral is taken to be
the unit of energy. Here we consider the case of a repul-
sive electron-ion interaction U & 0; the case U & 0 can be
treated by using the symmetry of the Hamiltonian (1).4
There are N, = g& d&tdg electrons and N; = P& f&~ ft,
ions in the system. The corresponding densities are
p, = N, IN and p; = N;IN; N, + N, & 2¹

During the last few years, a number of exact ' or
mell-controlled approximate results have been obtained
for this model. Most of these concern ground-state
properties on one-dimensional ' (d = 1) or two-
djmensjonal lattjces. ' ' s In partjcuIar they show that
in the ground state the ions are ordered in a definite
pattern which depends on values of the model param-
eters. The zero-temperature phase diagram within the
canonical ensemble4 (the case of the grand canonical en-
semble was investigated in Refs. 6 and 13) appears to
be separated generally into three distinct regions: (i) the
most homogeneous ionic configurations (in the sense of

Ref. 8) —for U large enough and p, = 1 —p;, (ii) the
so-called segregated configuration where the ious clump
together —for U large enough and p, g 1 —p;, (iii) the
complex (fractal-like) structure where the configuration
of the ions changes point by point at every value of the
electron concentration and p, g 1 —p;.

In this contribution we extend our studies to the gen-
eralized spinless FKM (asymmetric HM) in which both
the electrons and the ious are allowed to jump between
the nn sites. Thus we deal with the Hamiltonian

H = HFKM —t ) f„fi,
(A:,t)

(2)

where t is the ionic hopping integral between the nn sites
(k, &). The model under consideration corresponds to the
situation where Coulomb energies for two particles of the
same sort are too great to allow them to occupy the same
site, whereas the energy remains finite and equal to U for
an electron and an ion on the same site. This model can
be viewed not only as a generalized spinless FKM but
also as a generalized one-band HM. Both these models
can be obtained from Eq. (2) with a special choice of the
model parameters, namely: t = 0 gives the spinless FKM
and t = 1 gives the HM. The results we report here were
obtained on d = 1 clusters (rings) with N = 6, 8, and
10 sites. Even such small finite systems have properties
which re8ect quite well those of corresponding infinite
systems in limiting cases where they are known exactly
(see Sec. III). The purpose of our studies is twofold:
(i) to find out how the ground-state characteristics of
the system change when the localized electrons start to
move, (ii) to introduce and test a method by which one
can study many-body effects at T = 0 for systems larger
than those attainable by exact diagonalization. The idea
of describing the HM starting from the FKM has already
been explored but only for d = oo (mean field) and rather
large U. In our approach a small U is an advantage.
Since the method is not perturbative, it does not give
a quantitative estimate of the limits within which it is
valid. We would point out however that the approxima-
tion used is exact not only for t = 0 but also for U = 0
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when the two subsystems (electronic and ionic) are de-
coupled. Thus the method would be expected to give
reasonable results for small U, as numerical calculations
in fact confirm. We plan to study this point in a later
paper. The ground-state properties of the system are de-
scribed in terms of correlation functions and probabilities
of particular ionic configurations. In the next section, we
define the quantities that we calculate and describe our
method; the results are presented in Sec. III; Sec. IV
contains our conclusions.

II. METHOD OF CALCULATION

The Hamiltonian (2) is considered in a basis of local-
ized states, i.e., states which are eigenstates of the oc-
cupation number operators of the electrons n&

——d~&d~

and the ions n& ——f&~fi, We n.ote that the total numbers
of the electrons N, and the ious N; are good quantum
numbers, so the Hamiltonian (2) can be diagonalized in
subspaces with fixed values of N, and N;. For a given N
site cluster containingN, electrons and N; ious there are

(& ) electronic and (& ) ionic states, hence the dimension

of the matrix for diagonalization is equal to (~ ) (~ ).
We define the electron-electron (L„),the ion-ion (L,, )

and the electron-ion (L,,) correlation functions by

trix [of rank (~ )] which we subsequently diagonalize. At

the first stage we divide the full Hilbert space into (~ )
subspaces [each of dimension (~ )] and we find the exact

C

ground state within each of the subspaces. These many-
body ground states form a new basis for a matrix whose
rank is only (~ ) and which approximately describes the
properties of the initial system.

A physical justification of the method arises naturally
&om the fact that we deal with two difFerent sorts of
fermionic particles: slow ones (ions) and fast ones (elec-
trons). A crucial point consists in the assumption that
between every ion jump the system attains its lowest en-

ergy state adequate for a given temporary configuration
of the ions. In fact, our procedure is similar to the Born-
Oppenheimer or adiabatic approximation used in molec-
ular physics and chemistry. "

Such an approximation which is exact for t = 0—
is expected to be reasonable if the kinetic energy of the
ions is small compared to that of the electrons, i.e., for
t (( 1. Surprisingly however, it works quite well even for
t = 1 (HM case) if U & 1. Indeed, all the ground-state
characteristics of the systems calculated by an exact di-

agonalization are reproduced by the approximate method
not only qualitatively but also —within a small relative
error ——quantitatively for the whole range of values of t,
i.e. , for 0 & t & 1, if U ( 1.

L s(z) = —0 ) ni, ni 0

[a—s/=*

where
~

0) is the ground state of the system and z denotes
the distance between the sites. Suffixes a, b indicate the
electron and the ion, respectively.

Any ionic phase of the system represents a class of
those configurations of the ions which are related by clus-
ter symmetries. As a result, the probability P(n, }of a
given ionic phase is calculated by summing the proba-
bilities of all those states of the system which belong to
a relevant class. The number of states represented by a
given phase depends on many factors such as the size and
geometry of the cluster, the numbers of ions and electrons
present in the system as well as the type of arrangement
of the ions. For example for d = 1 with periodic bound-
ary conditions there are N (~ ) states corresponding

to the segregated phase, i.e. , there are (~ ) electronic
states for each of the N ionic configurations related by
translation. We have calculated L s(x), P(n, }and the
ground-state energy Eo (see Sec. III).

Usually calculations on clusters are performed by ex-
act diagonalization. The task becomes very difficult be-
cause the number of states increases very rapidly with the
number of sites involved. To overcome this we propose
an approximate method relevant at zero and possibly also
at very low temperatures. Our method consists of two
steps. (1) We find the lowest-energy state for every per-
missible ionic configuration (as in the pure spinless FKM
case). To do this we must diagonalize matrices of rank

(~ ), which correspond to particular ionic configurations.

(2) We take the states thus found as a basis of a new ma-

III. RESULTS

A. Phase diagrams

Since we are interested in the stability of the ionic or-

dering with respect to the kinetic energy term of the
ions, we have calculated the probabilities of particular
ionic configurations. The probability of an ionic phase
at the temperature T = 0 is calculated by a projection
of the ground-state wave function onto the subspace of
ionic states within a given equivalence class. We per-
formed the calculations for a large set of model parame-
ters U, t, N;, N„(N & 10) and we constructed phase dia-

grams in the variables (U, t) The phases .presented in the
phase diagrams are those with the highest probabilities
for given values of U and t. Examples of such diagrams
for N = 8 and for some typical values of N;(= N, ) are
displayed in Figs. 1 and 2.

A general feature which can be noticed in these pic-
tures is that the arrangement of the ions is stable with
respect to their kinetic energy, but only for a rather small
interval of values of t.

A second observation is that in each diagram the
largest part belongs to that phase that is the most prob-
able one for t = 1 (HM). One can conclude that the ions
show evidence of ordering where t is small enough and U
large. In the case of ¹

= N, = 4 an efFective repulsion
between the ions persists for all values of U, provided t is
suKciently small. On the other hand, for N; = N ( 4,
the region in which the most probable distribution of the
ions differs from that found in the limit t = 1 (HM), may
begin at a certain U = U ) 0.
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0.4

0.3—

segregated

rameters (U ) U„t « 1,N; = N, j N/2) an effective
attraction between the ions exist. It is interesting that
in a pure electronic system (without phonons) and with
only a single-site Coulomb repulsion between ions and
electrons in the initial Hamiltonian, an effective attrac-
tion between the ions is produced. This property arises
strictly kom correlation effects present in the system.

0.1 B. The double occupancy

2 4 U 6 8 10

FIG. 1. The T = 0 phase diagram as a function of U and
t for N = 8, N, = N, = 4. U: electron-ion on-site Coulomb
interaction; t: ionic hopping integral between NN sites. U
and t are in units of the electron hopping integral. "Most ho-

mogeneous" and "segregated" phases refer to the ionic con-
6gurations described in Sec. I. The most homogeneous con-
figuration is [o ~ o ~ o ~ oo] and the segregated configuration
is [~ ~ ~ ~ o o oo]. (Empty sites are represented by o, occupied
sites by ~.)

Our calculations also indicate the possibility of the ap-
pearance of a few intermediate phases (see Fig. 2) related
to a gradual rearrangement of the ions when t increases
&om t = 0 and U ) U, .

Let us now regard these diagrams from the point of
view of an effective interaction between the ions. Among
various possible phases, i.e., ionic configurations, there
are two special ones: the segregated and the most ho-
mogeneous classes. The former corresponds to an effec-
tive attraction and the latter to an effective repulsion
between the ions. Thus, for a certain set of model pa-

The on-site electron-ion correlation L,;, —= L;,(z = 0)
which is equal to the probability that a given site is occu-
pied by both an ion and an electron (a double occupancy)
is another parameter that characterizes the state of cor-
related electrons. In the HM limit this quantity is re-
lated to the magnitude of the local magnetic moments
So ——(1/N)(0 [ P&(Ss)2 [ 0), where Ss is the spin op-
erator at the kth site and the average is taken in the
ground state. On the other hand, L,, is also related to
the Gutzwiller variational parameter g which governs
the number of double occupied sites.

The behavior of L;, as a function of t for a few values
of U and N; = N, (N = 8) is displayed in Fig. 3. Two
conclusions arise from Fig. 3: (i) L;, decreases when U
increases or when the number N;(= N, ) decreases. (ii)
L;, is almost independent of t for t larger than a certain,
rather small t' which depends on U. Quite unexpectedly,

0.25

U=0. 1

0.2

0.4
ie

U=1.0

0.3—
0.1— U=2.0

0.05—
U=4.0

0.1—
U=10.0

4 U 6 10

0.25 0.75 1.0

FIG. 2. The T = 0 phase diagram as a function of U and t
for N = 8, N, = N = 3. Notation as in Fig. 1. The phase A
is [e ~ o ~ o o oo], the phase B is [~ ~ o o ~ o oo], and the most
homogeneous phase is [i o o ~ o o so]. U, = 2.212 28.

FIG. 3. Ground-state electron-ion correlation function L;,
[Eq. (3)] calculated by the approximate method developed
in the text for the system with N = 8 and N,. = N, = 4.
U: electron-ion on-site Coulomb interaction; t: ionic hopping
integral between NN sites. U and t are in units of the electron
hopping integral.
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L;, remains dependent on t near t = 0. For %,. = %, = 4
and a small V, L; increases with t, but for a large enough
U it decreases with t (see Fig. 3). At present we are
not able to explain this strange behavior, possibly it is
related to the rearrangement of the ions in proximity to
the spinless FKM limit.

C. The correlation functions

1.0- 0.75 i

0.75- 0.25 -I'

0 0.25 t 0.75

0.25—

0.0 '

1.0— 0.75-

0.75-
e

0.25-

0 0.25 1 0.75

For X = 6 we have calculated exactly the electron-
electron L„and the ion-ion L,, correlation functions be-
tween first, second, and third neighbors, and we show
them in Fig. 4. Insets in Fig. 4 represent these functions
calculated by the approximate method.

A striking property is a negligible dependence of the
L„ function on t whereas L,, changes significantly with
t. This means that slower ions have almost no inHuence
on the movement of the electrons. The correlations L„
are modified only, and even then only slightly, if U is
large enough and t is small. This is in opposition to the
case of the slow ions (t « 1) whose motion is strongly
perturbed by the presence of fast electrons. In the limit
t = 1 (HM) and for X, = %, the ion-ion and the electron-
electron correlation functions are equal to each other, i.e. ,

I„(x) = L„(x)as it should be by the symmetry between
electrons and ions. This property is reproduced by the
approximate method we used.

-10 '

0.25 0.75

FIG. 5. Ground-state energy Eo as a function of t calcu-
lated by the approximate method. N = 8, N, = N, = 3.
Notation as in Fig. 3.

D. Ground-state energy

To check our results we calculated the total energy per
site of the system. The ground-state energy as a function
of t for three representative values of U (0.001, 1.0, 10.0)
is shown in Fig. 5. A characteristic feature of this func-
tion is its linearity for a great part of the interval of t
values. Departure &om the linearity is observed only for
small t and large U. This is probably connected with
the regrouping of the ions which tend to set up their
appropriate positions to achieve the ground-state confi-
guratio.

In the limiting cases of t = 1 and t = 0 we compare
our exact and approximate ground-state energies for fi-

nite systems with those obtained for infinite HM and
spinless2 FKM, respectively (see Table I and Table II).
The method we use is not variational thus it is not sur-

prising that the energy calculated approximately is lower
than the exact value. Actually, the lower bound for the
ground-state energies of the HM have already been ob-
tained by other methods.

We noticed that the energy per site calculated by the
approximative method for t = 1 is close to the energy
obtained both from exact diagonalization studies on finite
systems and from the exact d = 1 infinite system

0.25—

o.ol I

0.25
I

0.75 1.0
TABLE I. Ground state energy (per site) of the HM

(t = I). N, = K, = X/2.

FIG. 4. First-neighbor (solid line), second-neighbor
(dashed line), and third-neighbor (dash-dotted line) elec-
tron-electron (I„) and ion-ion (L,, ) ground-state correla-
tion functions [see Eq. (3)] calculated exactly for N = 6,
¹

= N = 2 and U = 1. Notation as in Fig. 3. Insets show

these functions calculated by the approximate method.

0.1
1.0
10.0 '

Exact
N=6

-1.30850
-1.10019
-0.27739

Reference 19.

Approximate method
N=6 N=10

-1.30868 -1.26978
-1.11770 -1.08013
-0.73823 -0.71753

Analytical
N=oo
-1 ~ 27074
-1.04037
-0.26716
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TABLE II. Ground state energy (per site) of the FKM
(t = 0). N' = N = NI2.

U
0.1
1.0
10.0

Exact and approximate method
N=6 N =10

-0.64219 -0.62283
-0.46627 -0.45385
-0.09720 -0.09718

Analytical
N = oo
-0.61273
-0.45142
-0.09718

Reference 7.

IV. CONCLUSIONS

for U ( 1. However, the differences between energies
calculated by the exact and by the approximate methods
increase with U. From this observation we conclude that
our approximate approach seems to work well for small
values of U, at least when the HM limit is investigated
(if t is smaller, then the approximation works well even
for larger U).

state energies per site for finite systems are found to be
very close to those for the d = 1 infinite spinless FKM
(t = 0) and, surprisingly, even to those for the d = 1 HM
(t = 1), although only if U ( 1. Thus we think that the
ground-state properties of clusters are in many respects
typical of infinite systems, and that our studies give reli-
able insight into the nature of certain correlated electron
systems. Our findings may be summarized as follows. (i)
Properties of the spinless FKM change smoothly when
the ions start to move. (ii) Correlation functions between
the electrons are almost independent of the kinetic energy
of the ions; they only change a little in the region of large
U and small t values. (iii) Correlation functions between
the ions are strongly dependent on t for all values of U,
especially for small values of t.

Consequently, we can say that the motion of the slow
particles is strongly inHuenced by the fast ones, but the
converse statement is not true: the fast particles are al-
most unaffected by the presence of the slow ones.

We have studied the asymmetric Hubbard model on
one-dimensional clusters (rings) by an exact diagonaliza-
tion and an approximate method. The method we used
(see Sec. II) takes into account essential features of the
correlated electron state and enables us to study larger
clusters than the exact diagonalization method does. In
particular, ground-state energies, correlation functions,
and probabilities of ionic configurations obtained by the
exact diagonalization method are very close to each other
for small values of t or U. What is more, the ground-
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