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We have exploited a variety of techniques to study the universality and stability of the scaling

properties of Harper s equation, the equation for a particle moving on a tight-binding square lattice
in the presence of a gauge Geld, when coupling to next-nearest sites is added. We 6nd, from

numerical and analytical studies, that the scaling behavior of the total width of the spectrum and
the multifractal nature of the spectrum are unchanged, provided the next-nearest-neighbor coupling
terms are below a certain threshold value. The full square symmetry of the Hamiltonian is not
required for criticality, but the square diagonals should remain as re6ection lines. A bicritical line

is found at the boundary between the region in which the nearest-neighbor terms dominate and the
region in which the next-nearest-neighbor terms dominate. On the bicritical line a difFerent critical
exponent for the width of the spectrum and different multifractal behavior are found. In the region
in which the next-nearest-neighbor terms dominate, the behavior is still critical if the Hamiltonian
is invariant under reflection in the directions parallel to the sides of the square, but a new length
scale enters, and the behavior is no longer universal but shows strongly oscillatory behavior. For a
aux per unit cell equal to 1/q the measure of the spectrum is proportional to 1/q in this region, but
if it is a ratio of Fibonacci numbers the measure decreases with a rather higher inverse power of the
denominator.

I. INTRODUCTION

Harper's equation can be derived as the equation for
an electron in a strong two-dimensional periodic poten-
tial and a weak magnetic field, or for an electron in a
strong magnetic field and a weak periodic potential. The
Hamiltonian can be written in the form

where

H(p, z) = 2t cos p + 2ts cos z,

p = -2nigd/dz (1 2)

L = 1 I/n(t it/) for ts & t,

is the variable conjugate to z. Azbel showed that in
the case t = ts, which corresponds to a periodic poten-
tial with square symmetry, the spectrum forms a "devil' s
staircase" for irrational values of P, and Hofstadter2 gen-
erated computer drawings of the spectrum for rational
values of 4, and discussed the self-similarity and scaling
of the spectru~. Work by Aubry and Andres exploited
the syxxunetry of the problem under canonical transfor-
mations that interchange x and p, and showed that, for
irrational values of P, there is a localization length in the
z direction, independent of energy,

which diverges at this symmetry point t = ts. Also the
sum of the widths of all the energy bands, the measure
of the spectrum, has the form

(1.4)

which vanishes at the same point. These properties have
suggested that this point is like a critical point of the
system, that ~1 —t /ts~ represents the distance from the
critical point, and that, where P = p/q is a rational, the
denominator q acts as a finite size in finite size scaling
theory. 4

Various methods have been used to study the Harper
equation. There are some rigorous analytical results on
the Lyapunov exponent (reciprocal of the localization
length), 5 and on the measure of the spectrum (sum of the
bandwidths). ii Aubry duality gives information about
the localization length.

If H(p, z) defined in Eq. (1.1) is treated as a clas-
sical Hamiltonian there is an obvious interpretation of
the critical point, since for t & ti, the energy contours
surrounding the minima of H are separated &oxn the con-
tours surrounding the xnaxima of H by a region of orbits
open in the x direction, while for t ( t~ there are orbits
open in the p direction. For the symxnetric case t = tb
there is a single energy E = 0 separating the two types
of closed orbits. A more subtle semiclassical analysis,
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based on scaling theory, must be introduced to explain
why the behavior is not just singular at the energy of this
separatrix, but is singular at all energies in the spectrum.

Much of the information we have about this problem
comes Rom numerical studies of the spectrum for ratio-
nal values of P similar to the one carried out by Hofs-
tadter. The vanishing of the measure of the spectrum at
the critical point gives a one-parameter indicator of the
critical point. Numerical studies on the Harper equation
indicate that this measure is given by Eq. (1.4) for all ir-
rational values of P, and that for rational values P = p/q
the measure scales as

(1.5)

where the scaling function g(s) behaves as 9.3299/s when
its argument is small, and tends to +4 for large ~s~.

Only the corrections to scaling seem to be sensitive to
the value of p.s i The distribution of bandwidths within
this spectrum gives a more detailed picture of the spec-
trum, but this is sensitive to the value of P. The simplest
forms might be expected if P is an irrational solution of
a quadratic equation, so that its continued fraction ex-
pansion repeats itself, or if it is a rational approximant
obtained by truncating such a repeating continued &ac-
tion. The golden mean, which is the limit of the ratios
of successive Fibonacci numbers, is the simplest case of
this sort. In this case the spectrum has a multifractal
structure that is self-similar at the critical point. 2 is rs

Another method that has been used to get a number of
important results takes its simplest form when P is small,
so that Eq. (1.1) can be treated semiclassically. It is then
a second order difference equation with a slowly varying
central term, for which the WKB equation can be used.
For ts —t only those bands close to E = 0 have ap-
preciable bandwidth, and the others all have widths that
vanish exponentially as 1/P gets large, since the widths
are determined by tn»cling between successive minima
or maxima of 2ts cos x. The case P = 1/q is particularly
simple, and this has been used to derive an analytic form
for the function g(s) of Eq. (1.5).s s 9

The critical properties of the Harper equation have
been explored in great detail by various combinations
of these methods. However, it is not clear to what ex-
tent the elegant properties of the Harper equation are
special properties of that equation, and to what extent
they are robust, and survive perturbations of the model.
On the basis of the small P behavior, Suslov has ar-
gued that modifications of the x dependence of Eq. (1.1)
which maintain the periodicity will lead to an energy de-
pendence of the critical value of tb. This behavior is
supported by numerical calculations. On the other
hand, HeHFer and Sjostrand have argued that vari-
ants of Eq. (1.1) which preserve the invariance under the
canonical transformation p m —x, x ~ p are critical at
all energies. It is the purpose of this work to take these
questions further by exploring in some detail a simple
generalization of the Harper equation.

The equation we explore is the generalization of Eq.
(1.1) which takes the form

H(p, x) = 2t cos p + 2tq cos x + 2t ~ cos(p —x)
+2t q cos(p + x) . (] .6)

This could represent a tight-binding model in which elec-
trons can tunnel to next-nearest neighbors as well as
to nearest neighbors on a rectangular lattice, and, for
t b ——0, t = tb ——t b, it can represent an electron on a
triangular lattice. This form of the Hamiltonian is very
convenient for numerical work, as it remains in the form
of a three-term difference equation, and there have been a
number of earlier studies of it.4 '2~ It has enough param-
eters that we can study the effects of different features of
the Hamiltonian such as the breaking of the symmetry,
and the change in the nature of the constant energy con-
tours. For t = ts and t s ——t s the system has square
syrrirnetry, but there are two quite difFerent regimes with
this symmetry, according to whether t or t q is domi-
nant. We show that there is actually an interesting bi-
critical point that separates the two different regimes.

In this paper, we have exploited most of the techniques
mentioned above. In Sec. II, we discuss the main features
of the energy contours of Eq. (1.6) and discuss the sym-
metries of the system. In Sec. III, we discuss the form of
the characteristic equation whose roots give the eigenval-
ues, repeat some earlier results which were obtained by
the use of Aubry duality, discuss the extension of finite
size scaling arguments to this case, and extend the sum
rule of Last and Wilkinsonio to this case. In Sec. IV, we
present an analysis in terms of multifractals for the case
that P is a ratio of neighboring Fibonacci numbers. In
Sec. V, we give the results of calculations of the measure
of the spectrum when P is the ratio of Fibonacci numbers
and also when it is a fraction such as 1/q or p/(p + 1)
that represents a slow modulation of the diagonal term
of the difference equation. These two cases complement
one another, since for the ratio of Fibonacci numbers the
spectrum is spread over a large number of bands, even
close to the critical point, whereas for small values of P
the only bands with significant measure are close to zero
energy. We find that the behavior is relatively simple in
the region in which t = tq is dominant, but there is a bi-
critical region not only at t = tb ——2t b

——2t b, but also
for t = 2t i, = 2t s ) tb For t

&
——t . t, dominant the sit-

uation appears to be much more complicated, with some
important oscillatory terms which confuse the analysis of
numerical results.

In Sec. VI, we do what we can to explain the results
we have from numerical analysis in terms of WKB the-
ory and scaling theory. In some cases our understanding
is reasonably complete, but in other cases we can do lit-
tle more than explain why the problem is complicated.
There is a concluding discussion in Sec. VII.

II. CLASSICAL ORBITS AND SYMMETRY

In this discussion we assume all the coefBcients t, tb,
t b, and t b are positive. For the case t = tb, t b

——t b

the spectrum of the Hamiltonian given by Eq. (1.6) is in-

variant under the eight operations of the symmetry group
of the square. The four proper rotations are generated
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by p -+ —z, z -+ p, while the time reversal operation

p m —p generates the improper rotations. The Hamil-
tonian is also invariant under the group of translations in
phase space corresponding to a square lattice. The clas-
sical Hamiltonian has a maximum at p = 0 = z, where
its value is 4(t + t q), and at equivalent lattice points.
For t & 2t q it has a minimum at p = ~ = z, where its
value is —4(t —t q). There are two saddle points in each
unit cell, at p = 0, z = vr, and at p = 7r, z = 0, where
its value is 4t—b At. this value of the energy there is a
contour given by

2t., + t.cosx
cosp~ =—

t + 2t ~cosz (2 1)

which threads the system, separating contours that sur-
round minima from those that surround maxima. For
t & 2t s the maximum is unchanged, but the points at
p = x = z become subsidiary maxima, while the points
at p =0, z=x, and at p =x, z =Obecome minima.
Four more saddle points appear at cosp = —t /2t („
cos z = t /2t s—, where the energy is —t~/t z. The con-
tour joining the saddle points and separating contours
surrounding minima from those surrounding maxima is
now

cosp = —t /2t q or cosz = —t /2t q. (2 2)

In this paper, we pay particular attention to the bicritical
point t = t~ ——2t I ——2t g, where all contours surround
maxima except for the lines where the energy has its
minimum value 2t . At t—he points p = s' = z the
lowest nonvanishing partial derivatives of the energy are
the fourth derivatives.

For the case t = ts, t (, & t (, the symmetry operation
p ++ z, a reflection symmetry in phase space, remains,
as well as rotation by qr. There is still a maximum at
p = 0 = z, where the energy is 4t + 2t s+ 2t r„and at
equivalent lattice points. For t & t (, there is a minimum
at p = s = z, where its value is 4t +2t I, +2—t (,. For
t2 & 4t St q there are two saddle points in each unit cell,
atp =O, z=qrandatp =n, z=

O, whereit sval ue

x t + /t2 —4t qt g , (2.3)

which threads the system, provided t & t z+ t &. For
t & t z+ t s there is a range of energies in the neigh-
borhood of —2(t &+ t q), with cos[2(p —z)] near +1,
for which there are no values of (p, + z) that satisfy Eq.
(2.3). In this case there are open orbits in the direction
of constant (p —z).

A special case of this sort is t = tg = t („ t (, = 0,
which has triangular symmetry, and is equivalent to the
case worked out numerically by Claro and Wa~~(er. 2~

For t g tq, t z
——t q the Hamiltonian is invariant

under p ~ —p . For t s ——t q ) ts & t there are
maximaatp =O=zandatp =x=z, wherethe
energy has the values 4t (, + (t + t(,), and minima at
p = 0, z = vr and at p = m, z = 0, where the energies
are —4t z 6 (t —tz). There are saddle points given by

cosp~ = tg/2t~—g, cos z = —t~/2t~g ) (2.4)

and the energy has the value —t t(,/t q on the lines on
which either of these conditions is satisfied. For tg &
2t &

——2t & ) t the four saddle points given by Eq.
(2.4) disappear, and the new saddle points are at p, =
x, z = 0 and at p = s = z, where the energies are
—t k(2t q

—t~). There are orbits open in the p direction
between these energies.

III. CHARACTERISTIC EQUATION AND
AUBRY DUALITY

From Eq. (1.2) it can be seen that the operator 2 cos p
is a displacement operator that displaces the coordinate
by 2m/. The eigenvalue problem for the Hamiltonian
(1.6) takes the form of a set of finite difference problems

is —2(t I, + t &). At this value of the energy there is a
contour given by

2t icos[-,'(p + z)] = —cos[-,'(p —z)]

(t + t se ~*4'(" ~)+'"'+ t (,e
'~" ~ '"')a„q+ 2tscos(2s'~+ k2)a„

+(t + t e
—2 *'P( +~)—~km + t e2 4( +~)+ &s)a —@a (3 1)

with the variable parameter k2 determined by the initial
value of z. When (t = p/q is rational this equation is
periodic with period q, and solutions of the Floquet form

( 1)q
—1 ikzq

q —1

a„=c e''", (3.2)

with c„periodic, can be found. This then yields a fi-
nite matrix problem, with the matrix tridiagonal apart
&om the top right and bottom left corners, for which the
characteristic polynomial has as its only kz dependent
term

+t.,e'""("+-')+*"')+ c.c. (S.3)

This product can be expressed in terms of a Chebyshev
polynomial Tq (see Appendix A), and this gives
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(—1)~ '4t~ cos(qk&)T~
i

—
~(2t

+ (
—1)~2(t' cos[q(k, —k, )]

+ t'~ cos[q(kg + k2)]}, (3.4)

where

abtab (3.5)

P(E) = Po(E) —
(
—1)~4t~ cos(qkq)T~

i

—
i

f&

(2t)

+ cos(qk, )r,
i

—
i

(~b& 1

2t)
)

Since the whole spectrum is, from Eq. (1.6), clearly in-
variant under the interchange of p, z and t, t~, there
must also be a similar k2 dependent term in the charac-
teristic polynomial, so the characteristic polynomial can
be written in the form

( tg 5
cos qarccos

i i
and cos qarccos

i(2~as) (2t g)

(3.9)

so the bandwidths should display nearly periodic behav-
ior in q. In fact we found such behavior in the numerical
studies reported in this paper before we had realized that
they ought to be found.

In an earlier work4 it was shown how the argument
of Aubry and Andre can be adapted to this situation.
There are three parts to this argument. First, they
state that the element of the Green function connecting
the two ends of a tridiagonal matrix can be expressed
as the product of the next-to-diagonal matrix elements
divided by the characteristic polynomial. The product
of off-diagonal matrix elements is just the coefBcient of
cos p in Eq. (3.6). Second, they compare this expression
with the expression for the dual problem obtained by
interchanging p and z. The characteristic polynomial
is unchanged, and the ratio of the products of next-to-
diagonal elements can be used to generate an expression
for the difference between the Lyapunov exponents in the
z and p directions, in the form

+(—1)"2{&~-cos[q(k —k )]

+t'~ cos[q(k& + k2)]}, (3.6)
4t'I&. (h) I

+ 2t'.;+ 26~- q 4t iT, ('„)i+ 2t', + 2t'.,
where Po(E) is independent of kq, k2. The energy bands
are determined by the variation of the solutions of the
characteristic equation as kz, k2 are varied.

Some simple analysis can show which of the terms in
this expression will dominate in the limit of large q. For
z ) 1 we have 2tg+ 2 '~ —4t2

(3.11)

Thisiszerofort &+t b) tq &t Fortq) .t &t &+t z

it gives

[T,(z)]'« = z+ gz' —1, (3.7)

and so, for t~ & to, t 5 & t b, the dominant term in Eq.
(3.6) is of order

(3.8)

and for t~ & t & + t ~ & t, t &
) t~g it gives

(3.12)

The third part of the argument, which we 6nd to be
rather more subtle, says that if A is positive then A„
must be zero, so Eqs. (3.11) and (3.12) are actually equa-
tions for A rather than for A —A„. Eigenstates for the
Hamiltonian (1.6) in p space can be found from eigen-
states in z space by Fourier transformation. These eigen-
states in x space have their support on a lattice of points,
so their Fourier transforms are periodic. If' they are lo-
calized in space their Fourier transforms are smooth pe-
riodic functions. Functions of this sort corresponding to
the same value of the energy cannot be superposed to
give localization in p space as well as localization in x
space.

These results show that states are localized in x space,
independent of energy, for generic irrational P provided tz
is greater than both t and t b+t b. This condition, now
independent of energy, is the same as the condition for
the existence of open orbits extended in the p direction
given in the discussion of Eq. (2.4).

for t~ ) t ~+t q, and is oforder t
&

for t~ ( t &+t q This.
transition from a regime where tKe bandwidths are dom-
inated by the term depending on k2 to a regime where
the bandwidths are dominated by a term depending on
kq —k2 occurs at the same values of the parameters as
the changes in the nature of the classical orbits which we
discussed in connection with Eqs. (2.3) and (2.4). Under
these conditions only one term in Eq. (3.6) is relevant for
large q, or two terms if t = tb. Since this expression is
independent of the value of the energy, one should ex-
pect the critical values of the parameters to be energy
independent, whereas the classical orbits only give infor-
mation about the behavior at the singular value of the
energy.

For 2t b
——2t b ) tb ) t the situation is very difFer-

ent, since the Chebyshev polynomials are now of order
unity, and all four terms in Eq. (3.6) would seem to be
marginal for large q. In particular one should expect the
bandwidths to depend on
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The finite size scaling argument that leads to Eq. (1.5)
can be generalized to deal with the critical properties of
Eq. (1.6). For tt, & t & t &+ t i, the width for irrational
P is still given by Eq. (1.4), but the scaling length is
now given by Eq. (3.11) so that we have

and each band centered on E has a width approximately
equal to this range divided by IPO(E ) I, so that the sum
rule for the derivatives of P at the points of the inter-
section spectrum at the critical point t = t~ & t & + t q

W (tq —t )g qln

=(ti, —t )g q (3.13)

1 1

~=, IP'(E-)
I

t -'T'(-')

For q large and t~ ——t & t i, + t i, this gives

(3.18)

In particular, this results in the prediction that the mea-
sure of the spectrum should scale as

9.3299
{3.i4)

~4tq T
('l T (

—(—1)&2(P, + t'.,) . (3.i6)

As t~ approaches t this range approaches zero as

for t = ti, & t i, + t i, A.special case of this is the
triangular lattice with t = ti, ——t q, t i, = 0, where the
measure of the spectrum is the same as it is for the square
lattice.

For the case ti, & 2t
&

——2t ~ & t the measure of the
spectrum for P irrational is 4ti, —8t b and the scaling
length is given by Eq. (3.12), so the use of the same
argument would lead to a finite size scaling expression of
the form

i/'ti, + 2t g + Qtg —2t i )
tg —2t. G q tg —2t g

2t~g )
(3.i5)

The scaling function G(s) must diverge as a 2 at the
origin, so that at the point tt, ——2t i, ——2t i, the measure
of the spectrum is finite, and goes to zero like q for
large q. However, this argument does not take account
of the second length scale introduced in Eq. (3.9), so
we should expect the function G in Eq. (3.15), and the
coefficient of the limiting q behavior, to depend on t
according to the form given in Eq. (3.9), which is periodic
or nearly periodic in q.

The argument of Last and Wilkinson, i which provides
a lower bound to the spectrum for the critical case, can
be generalized to deal with the situations we consider in
this work. The simplest case is given by tq ) t & t i, +
t i„where the result of Avron, Mouche, and Simon7 that
the intersection spectrum (the intersection over k2 of the
spectra for fixed k2) has measure 4(ti, t ) remain—s valid,
as is shown in Appendix B. The intersection spectrum is
defined, as can be seen from Eq. (3.6), as the set of values
of E for which Po(E) lies in the range

1 jt2 —4t2 2i/t2 —4t2

IP (E )I 2qt Tq(~~) q
I

t + gt2 4t2~I
)
(3.19)

For tg = t = t z + t i, it gives

(3.20)

for all q. For the bicritical case ti, = t = 2t i, ——2t i, it
gives

1 1

~; IP'(E-) I q't'. , ' (3.21)

-(- )"«' al 2 ~

(3 )
ft

and it is shown in Appendix B that the measure of this
spectrum is exactly 4(ti, —t z

—t~i,) The same .argument
that led to Eq. (3.18) leads without approximation to
Eq. (3.20) in the case tq = t ~+t ~ ) t, and to Eq. (3.21)
in the bicritical case ti, = 2t i,

——2t i, & t .
These sum rules can be used both to generate rough es-

timates for the measure of the spectrum (the»»on over
k2 of the spectrum for fixed k2) and to get rigorous lower
and upper bounds, by repeating the arguments used by
Last and Wilkinsonio and Last. ii The rough estimate
of this sum of bandwidths is obtained by multiplying
the range of the constant term in the expression (3.6)
for P(E) by the appropriate expressions for g 1/IP'I in
Eqs. (3.19)—(3.21). For tq = t ) t i, + t i, this gives

For ti, & t i, + t i, & t there is no intersection spec-
trum, since the ranges of the constant in Eq. (3.6) are
nonoverlapping for qk2 ——0 and qkq ——x. However, we
can get an exact expression for the intersection over ki of
the spectra for fixed ki. This would be the intersection
spectrum for the dual problem with t, ti, interchanged.
This spectrum is the set of values of E for which Po(E)
lies in the range

4(t, —t.)t&-'T", i —I, (3.17)
W = 8/t' —4t'/q

For t~ ——t &+ t q ) t it gives

(3.23)
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while for tb ——2t b ——2t b & t it gives

(3.24)
(3.34)

W = 8tg/q2 . (3.25)

The argument given by Lastii for the upper bound
needs no modifications for the case we are considering.
The result he obtained is that if the spectrum is defined
as the set of values of E for which

This is an example of the importance of the second rele-
vant length scale mentioned in connection with Eq. (3.9).

For the case t = ti, = 2t &
——2t ~ this line of argument

gives us no useful lower bound, since all our lower bounds
reduce to zero. For t i, + t i, & ti, & t we have not suc-
ceeded in finding an exact expression for the intersection
spectrum or some equivalent spectrum.

bi &—Pp(E) & b2, (3.26)

where bi, b2 are positive, with Pp(E) a polynomial whose
zeros E are all real and distinct, and for which the zeros
of the derivative all lie outside the bands, then the sum
of the widths of the bands W satisfies

1
W & e(bi + b2) ) (3.27)

1
~- IPp(E )I

', +4bib2, b2+ b2+4bib2
~

)
(3.28)

The parameters bi, b2 are given by the differences
between the value of the expression in Eq. (3.16) or

Eq. (3.22) that defines the intersection spectrum, and
the two similar expressions that define the band edge.
For tb ——t & t b+ t b we get

b = 8t~T
l

— + 4(t~- + t~q),
2t)

(3.29)

and the second term in this expression becomes negligible
for large enough q. The bounds are, therefore,

8egt' —4t2/q & W & 2(+5+ 1)gt' —4t'/q . (3.30)

For ti, = t ~+ t ~ & t the parameters are

bi2 ——4t q+4t q+8t Tql —
lg,g ab (3.31)

For t i, g t b only one of these terms is relevant in
the large q limit, so that the bounds obtained Rom
Eqs. (3.20), (3.27), (3.28), and (3.31) are

8elt —, —t ~l/q & W & 2(+5+1)lt ~
—t, l/q. (3.32)

For tb ——2t b
——2t b & t the t dependent term in

Eq. (3.31) is also relevant, and Eqs. (3.21), (3.27), (3.28),
and (3.31) give

Setb 2tb
& W &, gl —p[/5+ 3p+ /1 —~], (3.33)

where

The argument for the lower bound needs some modifica-
tion because bi g b2, but a straightforward extension of
Last's argument gives

IV. MVLTIFRACTAL ANALY'SIS

1/q- 6,. ' . (4 1)

If states are localized in the limit of q m oo, the band-
widths 6 decrease exponentially with q, so that a goes
to zero. This corresponds to a point spectrum. If states
are extended, on the other hand, b scales as 1/q, so cr

is 1. This corresponds to an absolutely continuous spec-
trum. In the critical case, n is expected to take values
between 0 and 1. The values of n have a distribution
on the whole spectrum. This situation corresponds to a
singular continuous spectrum.

It is clear &om the analysis of the difference between
the union spectrum and the intersection spectrum given
in Sec. III (Ref. 10) that the value of k2 only plays a cru-
cial role for the discrete spectrum, when the eigenstates
are localized. For the absolutely continuous spectrum
there is only an exponentially small dependence on the
value of k2. For the critical case, since the intersection
spectrum of zero measure divides each subband of the
union spectrum into two halves, it is clear that to take
fixed k2 gives a spectrum whose measure is roughly one
half that of the union spectrum. In the subsequent dis-

cussion we will avoid the region of localized states and
consider the spectrum found by taking the union over all
values of k2.

For a systematic analysis of systems with such complex
scaling behavior, it is convenient to use the multi&actal

In this section, we perform numerical scaling analyses
for the energy spectrum when P = p/q approaches the
quadratic irrational number 1/w—:(~5 —1)/2: the in-

verse of the golden mean. We take p/q to be F„ i/F„,
where F„ is the nth Fibonacci number defined recursively
by F„=F„q + F„2 and Fo ——Fq ——1. Note that
q = F„~"for large n. In order to obtain a spectrum
for a rational approximant, the Bloch theorem is applied
first to Eq. (3.1), which is periodic with period F„. Then
the system becomes electively finite and the spectrum is
obtained by a numerical diagonalization.

To discuss localization of the eigenstates of Eq. (3.1)
we examine its spectrum for fixed k2. When P = p/q,
the spectrum consists of q bands whose widths are de-
noted by b„(i = 1, . . . , q). Since each band has the
same number of states, we assign a probability measure

1/q to each band. With increasing q, each band splits
into many subbands. In order to understand the scaling
of the spectrum, we introduce a scaling index a by
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tec&pique developed by Halsey et aL2s They have intro-
duced the spectrum of singularity f (n) defined by

(4.2)

where O(a)da is a number of bands whose scaling index
a lies between a and a+ da, and (b,) is a representative
value of 6 which was not specified clearly in Ref. 23. We
first explain the multifractal technique as reformulated
by Kohmoto. 24

Usually S(e) is defined on an interval [e~n, ernax] and
there is no scaling behavior corresponding to e which is
outside the interval and S(e) = 0. However, F(P) is
still defined there and &om (4.8) it is given by F(P) =
—e~axP for P )P~n and F(P) = t—~nP for P & Pni».
Thus useful information is only contained in F(P) for the
region between Pm;n and Puiax where it is not linear.

Using Eq. (4.4) and identifying (6) = exp( —ne) [see
(4.1)], f(a) is related to the entropy function by

A. Formulation
f( )

(e)
(4.11)

First introduce a scaling index e by

It is related to o. by

(4 3)

f (o.) is defined on an interval [am;» ainax] where o.~;n =
lnr/fornax and +max = in'/em;n. The maximum value
of f(a) gives the Hausdorff dimension of the spectrum.

B. Numerical results for f(a)

o.e = lnr. (4 4)

We also define an "entropy function" S(e) by

S(~) = —ln 0'(e), (4.5)

z„(p) =)-~I' (4.6)

where 0'(e) de is the number of bands whose scaling index
lies between e and e+ de, namely 0'(e) = O(o.)~da/de~.
Here it is important to notice that b„and 0'(e) depend
exponentially on n. A band at the nth level splits into
many bands at a higher level and may thus yield a num-
ber of different values of the scaling indices e. However,
we expect that the entropy function which represents
the distribution of e will converge to a smooth limiting
form as n tends to infinity, and give complete information
about the scaling behavior. As in the formalism of statis-
tical mechanics, it is convenient to introduce a "partition
function" and a "&ee energy" which are defined by

In all our numerical work we have taken t &
——t i„so

we refer just to the value of t i, in the rest of this section.
Since we are studying the u»on of the spectrum over all
values of k2, the system is symmetric with respect to an
interchange of t and ti,. Thus we carry out numerical
calculations only for t& & t . The system is characterized
by two parameters t~/t and t i,/t .

Before going to the numerical results we notice that the
results of Sec. III for the Lyapunov exponents [in partic-
ular Eq. (3.11) and the discussions below it] determine
types of spectra in some parts of the parameter space.
In region I in Fig. 1 (t i,/t & 1/2), the eigenstates are
extended in the z direction for irrational P. Thus the
spectrum is absolutely continuous and the minimum of
a is a~a = 1 and f(a~a) = 1. On line BC (t = ti,),
Eq. (3.1) is self-dual and the Lyapunov exponents for
both z and p directions are zero. Then the spectrum
is expected to be singular continuous. The properties of
region II have not been determined by the analysis of the
Lyapunov exponents in Sec. III, but it will be shown nu-

and

F(P) = lim —lnZ„(P). (4.7)

2t„(,/t.

Once the &ee energy is calculated, the entropy function
is obtained by a Legendre transformation,

A
1.0

S(e) = F(P)+Pe, (4.8)

dF(P)
d

(4.9)

dS(e)
(4.10)

Thus by changing "temperature" P one can pick a value
of e and then the corresponding S(e) is calculated. On
the other hand, P can be written in terms of c as

B
1.0

FIG. 1. Phase diagram of the different regions of the pa-
rameters of the Hamiltonian, for t g ——t g. In region I states
are pure extended, and in region III the states are purely
localized states. On the line BC the Hamiltonian has both
diagonals as re8ection lines, and the behavior is critical, very
similar to that at the Harper point B. Bicritical behavior is
found not only at the point C, but along the lines AC and
CE.



11 372 J. H. HAN, D. J. THOULESS, H. HIRAMOTO, AND M. KOHMOTO

merically that the spectrum is singular continuous in the
whole region II.

The energy spectra for t = tb (self-dual line BD) and
n = 10 are shown in Fig. 2(a). As is well known, the
spectrum for t b = 0 (the critical point of pure Harper' s
equation) has a self-similar structure. The whole spec-
trum has three main bands, each main band has three
subbands, and so on. This structure remains unchanged
for 0 & 2t b & t, but at 2t b

——t it changes F. or ex-
ample, band edges a and b in pure Harper's equation in
Fig. 2(a) continuously change to a' and 6' as t b is in-
creased. They are still band edges for 2t b & t Wh. en
2t b -+ t, however, the two points tend to the same
point c and are no longer band edges [see Fig. 2(b)]. For
2t b ) t, the topological structure changes further.

In order to see the global scaling behavior, we have per-
formed numerical calculations of f(a), which is defined
in the limit of n -+ oo, by extrapolating the numerical
data up to n = 19 (q = Fig = 6765).

Figure 2 is a plot of f(a) for t b = 0.4. This plot is

identical, within the precision of the plot, to the plot ob-
tained for the case t b

——0 (pure Harper's equation). As
was pointed out by Tang and Kohmoto, i4 f(a) is defined
on the interval between a~n 0.421 and am» 0.547,
and takes the maximum value f = 0.5 at a = 0.5. Calcu-
lations for a variety of other values of t b/t in the range
0 & t b/t & 0.5 give results that look identical to Fig. 3,

0.6!

0.5

(a)
/t a=0.4

04—

f(a )
0.3

and we conclude that f (n) is universal in this range. At
the critical point of the pure Harper's equation, arm;n
is the scaling index of the edges of the spectrum (and
the edges of each subband), whereas o.m» is the scaling
index of the center of the spectrum (and the center of
each subband). Even if t b is nonzero, the situation re-
mains the same as long as 2t b & t . More specifically,
the scaling index of each band is identical to that of the
topologically corresponding band of the pure Harper' s
equation.

At the bicritical point C (2t b
——t = tb) the shape

of f(e) suddenly changes. The nonzero values of f are
found in the range between arm;n 0.272, nm»
0.421, and the maximum value of f is about 0.33 at
a. 0.33. Note that nm» at this point is identical to
vermin for 2t b & t . At 2t b = t, however, the topo

l. p--
0.2

0.1

t, „/ t,

p. »--
0
0.4 0.5 0.6

0 35
I

0.3

0.2

taI. ta
0. S

(b)

e.

0.3 0.35 0.4

-1. 7» 1. 5

Ej t,
-l. 2»

FIG. 2. (a) Spectra for various points on line BD in Fig. I
(t = tb). (b) Enlarged version of (a).

FIG. 3. (a) Plot of f(n) for t b = 0.4t, t = tb Other.
points on the line BC of Fig Igive iden. tical results. (b) Plot
of f(a) for the bicritical point C where t b = 0.5t, t = tb
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TABLE I. Table of the extremal values of o. and the posi-
tion of the maximum in the multifractal analysis for various
values of the parameters of the Hamiltonian.

tab/ta
0,0.2,0.4

0.5
0.5
0.5
0.5
1.0
2.0
3.0
0.6

tb/t
1.0
1.0

0.75
0.5
0.25
1.0
1.0
1.0
0.5

&min

0.421
0.272
0.282
0.281
0.281
0.300
0.305
0.313
0.29

~max
0.547
0.421
0.381
0.366
0.370
0.650
0.640
0.628
0.41

Ckp

0.500
0.326
0.35
0.332
0.33
0.43
0.42
0.44
0.36

f(~0)
0.4980
0.3200
0.34

0.3294
0.32
0.41
0.41
0.42
0.35

logical structure of the spectrum and the scaling indices
are different. For example, the scaling index of the bands
coming &om the centers of the subbands of pure Harper' s
equation is 0.303. It is 0.289 at the edges of bands [e.g. ,
d, e, and f in Fig. 2(b)]. On the other hand, the index of
the edges for 2t a & t remains 0.421 at c in Fig. 2 and
becomes nmax.

Plots of f(ct) on line CD ( 2t a ) t = t~) were ob-
tained for some higher values of t a/t . Although f(n)
is not imiversal on line CD, there is some similarity be-
tween the curves we found, in that the maximum points
are nearly at a = 0.4 and the maximum values are also
about 0.4. The values of a~n, amax, ao, the position of
the maximum of f, and f(ao), the maximum value, are
shown in Table I.

We have also calculated the form of f on the line AC
(2t a/t = l, t & ta). As in the previous case on line
CD, the curves are somewhat similar to one another in
the sense that the maximum points are at 0.3 & a & 0.35
and the maximum values are also between 0.3 and 0.35.
The main features of these results are also given in Table
I.

Finally, we have calculated f(a) in region II, and one
example is given in Table I. In this region, the conver-
gence of the extrapolation n ~ oo from the numerical
data for finite n is not so good as the previous cases.
Thus we cannot obtain results for f(n) reliable enough
to establish or disprove universal features. Even though
the errors are rather large, however, it appears that f (a)
is a continuous function defined on a finite range of a.
Thus we conclude that the spectrum is multifractal and
singular continuous in region II. It is possible that the po-
sition ao and height f (ao) of the maximum are universal
in the region II, and also along the line AC (including
the point C).

(pure Harper's equation); (2) at the bicritical point of
t = ta and 2t a = t (point C in Fig. 1), the scaling
behavior suddenly changes; (3) when t = ta and 2t a &
t (line CD in Fig. 1), the scaling behavior is clearly
different from those of (1) and (2). Although it is not
completely universal, the changes are small for increasing
t a/t; (4) whent & ta and 2t a = t (line ACin Fig. 1),
the scaling behavior is similar but not identical to that of
point C (t = ta and 2t a ——t ); (5) when 2t a ) t and

& ta (region II in Fig. 1), it is difficult to estimate f(a)
but it is certain that the spectrum is also multifractal and
singular continuous.

To make the above statements more concrete, we inves-
tigate scaling of the total bandwidths. Recall that in the
pure Harper's equation in the critical case (t = tat t 5 ——

0), the total bandwidth W scales as W 1/q for large
q [see Eq. (1.5)]. We know from the analytic results of
Sec. III that this scaling also holds all along the line BC
(t = ta & 2t a) except at C. The numerical results show
that for the Fibonacci sequence the result

9W - . 9299/9tI~ —tt' (5.1)

holds accurately, in agreement with Eq. (3.14).
On the bicritical line AC (2t a = t ) tq), which sep-

arates the region of t dominant from the region of t a
dominant, we know from the results of Sec. III that the
sum of the bandwidths should scale as q 2. Figure 4
shows the results for q W plotted against n ( ln q/ ln r)
for different values of ta/t on this line. In this subsec-
tion, all the plots of W are in the units such that t = 1.
It is seen that the scaling index b for the global behavior
of W which is defined by

W (I/q) (5.2)

14

F W

12

t9/t, = 1
05
0.25

10

I
I

I
I

I
I

I
B
I

I

is 2. For t = t& ——2t z, the quantity WF2/t tends
rapidly to 6.4911. In addition to this power-law decrease,
an oscillatory behavior is observed for tz g t . The os-
cillation has a period 4 against n in the case 2ta = t,
which is probably related to the period 8 of the Fibonacci
sequence modulo 3.

V. NUMEMCAL RESULTS FOR BANDWIDTHS

A. Total bandwidth for Fibonacci sequence

In the previous section, we have obtained the following:
(1) for t = ts and 2t a & t (line BC in Fig. 1), the
scaling behavior of the spectrum is»~reversal, that is,
f(a) is completely identical to that of the t s ——0 case

+ + + + + + + + + + + +

2 4 6 8 10 12 14 16 18 20
n

FIG. 4. Plot of E W versus n for t 9/t = 0.5 and various
values of t9/t . A period 4 oscillation as a function of n for
the case t9/t = 0.5 can be seen clearly superposed on the
I/I" dependence of W.
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In the region 2t s & t & ts we find two different types
of behavior, but in all cases the analysis is complicated
by oscillatory terms superposed on a general power-law
dependence on q. Plots of ln W against ln F„(which is
proportional to n) appear to lie close to a line of slope
—1.25 for the case 2t s & t = ts (the line CD in Fig. 1),
whereas they cluster around a line of slope —1.56 for the
case 2t b & t & ts (the interior of the region II in Fig. 1).
Figure 5 shows plots of ln(E„.2sW) against n for various
examples of 2t s & t = ts Th. ere is a period 4 oscillation
in the case t s = t = ts, similar to the oscillation of
period 4 that shows up in Fig. 4 for the case t s = t /2 =
tt, Th.ere is also an oscillation of period 6 for the case
t s ——t /y 2. In other cases the oscillation around the
general horizontal trend is irregular, and shows no signs
of diminishing as n increases. An accurate estimate of the
exponent b' can be made when the period is short, but we
can only make a rough estimate when there is no period
within the range of n we can use. There appears to be a
slight difFerence, of order 0.01, between the values we get
for b with t s

——t = ts and with t s = t /Q2 = &t,/+2.
Figure 6 shows plots of ln(Fi ssW) against n for vari-

ous examples of 2t t, & t & ts Again. , there are large os-
cillations about the general horizontal trend of the plots,
and a simple period, 6 in this case, can be seen clearly
for & s = t /+2, ts = 0. For reasons that are discussed
later in this paper, we think that this period is related to
the period 12 of the Fibonacci sequence modulo 4. The
value of b = 1.56 is not so easy to estimate for these ex-
amples, but it is clearly intermediate between the value
we found on the line CD of Fig. 1 and the value of 2

which is known to be correct for the bicritical line AC.
The results in this subsection are summarized as fol-

lows. The scaling index 8 for the total bandwidth is 1
on the critical line BC in Fig. 1. Not only at point C
but also on line AC, h is 2, i.e., the bicritical behavior is

t / t =0.0 t / t =1/J2
b a

'
ab a

=0.5 =0.6

=z.o
I

1.56

100 .
0 0

0 0

10 .
0 0

0

0 0

+, t o

0

0
I

I
I
I

0 I

I

2 4
I I t 1 t I

8 10 12 14 16 18 20

FIG. 6. Plots of I'„W on a logarithmic scale versus n for
various values of t s/t and t /ts g 1. For t t,/t = 1/~2 a
period of 6 can be clearly seen.

found. On line CD, we cannot find a significant depen-
dence of 8 on t s/t, and it is about 1.25. Also in region
II, the situation is similar and the value of 8 is about
1.56.

In the limit of t s/t —i oo, the problem reduces to
the case only with nearest-neighbor couplings. Thus the
b must be 1 in this limit. Although we investigated b'

for quite large t s/t (up to t s/t = 10) in region II
and on the line CD, we could not find a tendency that h

decreases and approaches 1.

100 .

t = t t /t =t/j2
a b ab a

=0.75

=1.0
—20 x

FA W
x

X
x x x x

X

0

+
0

0
+

0 0 0

L

2 4
t t I t

8 10 12 14 16 18 20
fl

FIG. 5. Plots of I" ' W on a logarithmic scale versus n for
t = ts and various values of t s/t Period 6 can b. e seen for
t t, /t = 1/v/2, and period 4 for t s/t = 1

B. Scaling for ttt = 1/q

For rational approximants to the golden mean the to-
tal bandwidth is spread over a large number of bands in
different energy ranges. For large denominator rational
approximants to a small denominator rational, say ptt/qo,
the total bandwidth is concentrated in narrow ranges
about the qtt values of the energy where there is a log-
arithmic singularity in the density of states for the case
P = po/qo. ' For sequences such as P = 1/q or 2/q
the limit of the sequence gives po

——0, qo
——1, and all

the width comes from one singular energy at or near the
center of the band. To a considerable extent the results
for this case can be understood in terms of the WKB
analysis presented in Sec. VI, and many, but not all, of
the results appear to generalize to more complicated se-
quences of fractional values of P.

We have made some numerical checks of the scaling
relations (1.5) and (3.13) for the case t/, & t & 2t s,
and of the scaling relation (3.15) for ts & 2t t, & t, but
these have not been extensive, and we have not found
particularly interesting features. We have concentrated
on three critical or bicritical cases. For tb ——t ) 2t b
the bounds (3.30) show that the width must scale as 1/q,
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and finite size scaling theory suggests that it should have
the limiting form given by Eq. (3.14). For the bicritical
case ts = 2t s & t the bounds Eq. (3.33) show that the
width must scale as 1/q2 (except possibly in the special
case t = t&), but Eq. (3.15) does not tell us much more,
since we expect the additional length given by Eq. (3.9)
to be involved. Finally, there is the critical case 2t I,

=
2t q & tg & t, which one might expect to be analogous
to the other critical case, since the dominant terms are
essentially the same, but rotated through an angle z'/4
in the p, z plane, with one half the size of imit cell.
However, we know no rigorous bounds in this case, have
derived no useful finite size scaling relations, and expect
the infiuence of the additional lengths given by Eq. (3.9)
to be important.

The case t = ts & 2t ~ is critical and the measure
W scales like gt2 —4t2s/q as predicted by the finite size
scaling theory of Eq. (3.14). We have done a numer-
ical check for numerator 2 and q odd, where we have
evaluated qW/gt2 —4tzs for t s——0, 0.2, 0.4 and found
that they very rapidly converge to a common value. The
difference between values of qW/gt2 —4tzt, for different
values of t s is less than one part in 10s for q greater
than 41. This implies that the energy scale is reduced by
a factor gl —4t2&/t~ and that there are no logarithmic
corrections in the case of @=2 as we increase t s.

For numerator equal to unity, the scaling limit remains
the same, but there are large corrections to scaling, which
are shown in Fig. 7. These show an interesting cusplike
oscillation of qW/gl —4t &/t2 for nonzero t q The pe.-
riodicity of this oscillation can be related to the integral
of the classical momentum over the length of the system,
as we discuss in Sec. VI, while the magnitude of the os-
cillation is bounded by two curves which are followed by
odd and even values of q with t s=0.

The 2t q & max(t, ts) region is analogous to the
t = ts dominant region just considered in that, with-
out t, ts, the problem reduces to that of the Harper' s
equation with twice as much flux per unit cell, and that
t, tz may be regarded as perturbations to the critical
Harper problem. It is probably not important that the
perturbations generally break the square symmetry of the
system, since, as we discussed in Sec. II, the symmetry

10

9

8

(aj
(p, /q„p, /q, ) = (&/3, 1/3)

5
15 18 21 24 27 30 33 36

1O - (b)

under p -+ —p remains, as well as rotation of phase
space by z. In the cases we have examined with P = 1/q
the measure scales like 1/q for max(t, tz) ( 2t z. As
was mentioned in Sec. III, qW does not seem to tend to
a limit, but oscillates in the t s dominant regime.

To study the periodic nature of the measure, it is
convenient to choose the set of parameters t /2t i ——

cos(zpq/qq), ts/2t s ——cos(xp2/q2), and characterize the
system with a set of fractions (pq/qq, p2 jq2). Several
graphs of qW as a function of q are shown in Fig. 8. For
pq

——p2
——1, we have found strong peaks at multiples

of qq x q2 (primary peaks) and much less strong peaks
at multiples of qq (secondary peaks) if qq is a small inte-
ger such as two or three. For qq and qz both large, close,
and relatively prime, for example, five and six or five
and seven, the secondary peaks do not seem to occur at
definite multiples of either number. The primary peaks
always occur at multiples of qq x q2. If qq ——q2 or they
share a common factor, then the secondary peaks occur
at integer multiples of their lowest corn~on multiple, and
the values of qW at these points nearly match those of
the primary peaks.

In the bicritical case with 2t q = ts & t we know &om
the inequalities (3.32) that the measure of the spectrum

qW 98
1—t g

2

9.7
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I

I
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FIG. 7. Plots of qW/ gl —4ts& as a function of q for t &=0,
0.1 vrith t = tz ——1. The squares representing t &

——0 form en-
velopes (upper and lower bounds) for other values of t s ( 0.5.

FIG. 8. Plots of qW/g(1 —tz)(1 —t2s) as a function of q
in the critical regime 2t g

——1 ) t, tg for several values of
(t, ts) = [cos(z'pz/qz), cos(wpz/qz)]. Each graph is character-
ized by a set of fractions, (pq/qq, pz/qs).
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C. Scaling for p = p/(ps + 1)

The sequences P = p/(p2+1) are intermediate between

P = 1/q and P = Ii„/F„ i The conti. nued fraction ex-

q-'N

10

7.5
40 42

I I I I

44 46 48 50 52 S4 56 S8

must be proportional to q, and there is one length scale
remaining which is given by Eq. (3.9), so we might expect
a scaling form

q W = gI„[q arccos(t /2t I,)] . (5 3)

Figure 9 shows gI (z), with z = qarccos(t /2t I,), for
t /2t I,=l/3 and 0.99. In the limit t = 2t I„gs,(z) be-
comes a slowly increasing function of z, and we have not
determined its limiting value; this slow convergence may
be a special feature of particular fractional forms of P, as
we found no sign of it for the Fibonacci sequence. Figure
9(b) transparently displays a cusplike form of the scal-
ing function, whose variation lies well within the bounds
given by Eq. (3.33). Earlier in this subsection, such cusps
were reported when we considered the t = tI, domi-
nant region. It turns out that a function of the form

gI (z) = A —8 in[1+
l
sin (vr(z —b))l], where A, 8, and

b are constants chosen to fit, describes the actual scal-
ing function rather well. The motivation for this form of
gI„(z) came from the idea that z must be a dimension-
less quantity and that such a quantity can be obtained
by multiplying q on both sides of Eq. (3.10) before one
takes the limit q ~ oo. Since t b

——t b, this gives us
z = q~ = ln2 ln(1+ ITq(to/2toI)l) which seems to
contain essential features of gI„(z). Based on this hy-
pothesis, the cusplike behavior can be understood as the
re6ection of the importance of the absolute value of the
Chebyshev polynomial.

pansion has only two terms in it, rather than the n/2
terms for the Fibonacci sequence, and it represents a slow
modulation of the diagonal term, and so could be treated
by WEB methods (although we have not succeeded in
carrying out such an analysis in this ease). It is, how-
ever, more complicated than the P = 1/q case in that the
significant contributions to the bandwidth come not only
&om bands in the immediate vicinity of the singular en-
ergy —t tI, /t I„but also from the centers of neighboring
clusters of p subbands.

We have studied the bicritical case tb = 2t I,
——1 and

= cos(pie/qi), where qi was kept small (( 7). With
this choice of t we expect behavior periodic in q in the
limiting values of q2W coming from the constant term
Eq. (3.6), but there may also be some dependence on the
numerator p coming from other terms in the characteris-
tic equation. We have confined ourselves to numerators
not exceeding 20, and denominators up to 401. As in
the previous case of a simple fraction of P, the scaling
function showed periodicity (up to corrections to scaling)
with periods equal to qi for both p2 6 1. The pattern of
graphs are quite difFerent in two cases and values of max-
ima and minima as well as where the maxima and min-
ima occur do not agree in general. The convergence to
the limit was much slower here than it was with P = 1/q.
This might have to do with the fact that, for the fraction
p = JI/(p2 + 1) 1/p with p & 20, the corrections are
not yet completely negligible. For pi/qi ——1/4, we should
expect a period of 2 because p2 + 1 (mod 4) alternates
between 2 (0) and 1 (3) for odd and even p but instead
we observe a period of 4. Apparently the scaling func-
tion here is more complicated than what was the case if
the relevant variable was simply the ratio of two length
scales of the system. This shows conclusively that there
is periodic dependence on the value of the numerator as
well as on the value of the denominator.

In the t b dominant critical region we have found in-
stances of an anomalous (noninteger) scaling exponent.
Figure 10 shows a plot of log(qW) against logq for the
case 2t I, = l, t = 0, tI, ——cos(vr/4), p = p/(p2 + 1).
For numerators equal to 2 mod 4 we see the points ly-

ing on a line with a negative slope, whereas linear scal-
ing should give no slope at all, as we see for the other
values of p. The slope both of this plot, and of the

q-'W

qVV
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20 30 40 50 60 70 80 90 100

0.1

10 100

FIG. 9. Plots of q R' as a function of q at the bicritical
point 2t &——1=t for t&=0.5 and 0.99, respectively.

FIG. 10. Plot of qW on a logarithmic scale against logq for

P = p/q = p/(p + 1). Points for p = 2 mod 4 are clearly seen

to lie on a line with a slope —0.50.
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very similar plot for P = p/(p2 —1), is found to be
within 0.3%%uo of —1/2, which implies that, for the sequence

p/q = 2(2n+ 1)/[4(2n+ 1)2 + 1], the scaling is like 1/qsi2
rather than 1/q. For t = O, ti, ——cos(m/3), the plot
alternates between points with exponent close to 1, if
p = 0, +1 (mod 6), and those with exponent close to 1.5
if p = 2, 3, 4 (mod 6) for both types of denominator. It
is much harder to extract the critical exponents here be-
cause we have to increase p by six instead of four to arrive
at points lying on the same line. For 0 & t = tb & 2t b,
the evidence for noninteger exponent is far less obvious
and we are not sure if the exponent is significantly dif-
ferent from one. The noninteger exponents found in our
studies of the Fibonacci sequence are likely to be related
to these results.

VI. %'KB THEORY

The saddle point value of the energy contour E, corre-
sponds to quantum mechanical states that can thread the
system without attenuation and there exists an interest-
ing relation between the integral of the classical momen-
tum p given by Eqs. (2.1)—(2.4) between turning points
with periodicities in the scaling functions.

In Ref. 6 it was shown that for P = 1/q the sum of
the bandwidths could be related to the Green function
at the turning points. For t = ts ) t &+t s, energy close
to —2(t & + t s) and z = P/2+ (, where ( is small, the
continuum approximation for Eqs. (1.6) and (3.1) takes
the form

Differentiation of the right-hand side of this equation
with respect to t i, gives an integral that can be eval-
uated explicitly, and reintegration of this result gives

1
(ts+ 2t scosp )(t + 2t i, cosz) = 0.

&ab
(6.5)

The quadratic approximation to the Hamiltonian near
one of the saddle points is given by

tts 2ts. ( t2 ) ( ts2H+ =+ i ~1 —,[~1—t s 2z'Q ( 4t2q) ( 4t2s)

( d dxi(—+ —„(i, (6.6)

and diagonalization of this by a canonical transformation
gives an energy scale

4 tanh (2t g/t ) g
p dx qx —— d8 . (6.4)2x 7i 0 sinh t'ai

The first term in this expression gives rise to the correc-
tion to scaling that alternates with the parity of q even
for t &

= 0, while the second term gives a period in q that
goes like z'zt /4t s for small t r,. For t i,/t = 0.1 it gives
24.5 as the period, which is in good agreement with the
numerical results shown in Fig. 7. In the limit 2t s ~ t
the second term is z q and cancels the periodicity due to
the first term.

For 2t &
——2t s dominant the problem is somewhat dif-

ferent. The classical contours through the saddle points
are given by

a+ 2(t.—,+ t.&) = 4~'P'(t. y t.—,+ t.&)a A Q ll

4mpt b
~

1 —
2 [ ~

1—
4t ) ( 4t s)

(6.7)

A very similar expression is obtained near the other turn-
ing point with z close to zero and p close to z. This can
be diagonalized by a canonical transformation, and the
energy scale it yields is

This quantity gives a good account of the relative sizes
of the energy scales of the bandwidths shown in Fig. 8.
However, as we showed in the study of the characteristic
equation in Sec. III, the lengths given in Eq. (3.9) are
certainly relevant, and there must be terms periodic or
nearly periodic in q. These should come from the rect-
angular contours given in Eq. (6.5), whose areas are

4nr/igti —4t i,t s (6.2)
t i ( ti,4 arccos

i

+
~

arccos
i

j
E 2'") i 2") (6.8)

in both cases. The earlier arguments s 2 io applied to
this case give the scaling result quoted in Eq. (3.14).

The corrections to this scaling form can be calculated
by using the WEB approximation to get a more precise
approximation to the bandwidths, s which involves the
connection between the turning points as well as the be-
havior at the turning points. We have not worked this
case out in detail, but we know that for 2t i,

——2t s the
phase change around an orbit close to the critical orbit

1 2 ( 2t s+t coszi
p dz- dzarccos

~2m/ + 2t s cosz)
(6.3)

and jt js the ratio of these areas to the quantum of action
4m P given by Eq. (1.2) that determines this periodicity.

Qualitatively this accounts for the periods in q of 9
and 2]. which show up in Figs. 8(a) and (b), since the
smallest areas given by Eq. (6.8) are 4s /9 and 4s /21
in the two cases, and the larger rectangles are multiples
of these. To understand these results in more detail we
need to make a more careful study of the way the phases
acct the dynamics.

The bicritical case tb ——2t b is simpler, since one of
the arccosines in Eq. (6.8) is equal to ~. For t = t i,
the two rectangles have areas 4vr2/3 and 8m 2/3, so the
period 3 in q which can be seen in Fig. 9(a) should be
expected, while for t = 0.495t i„7r/arccos(t /2t i, ) is
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equal to 22.2, which agrees well with the period shown
in Fig. 9(b).

For a large denominator &action p/q approximating a
small denominator rational pp/qp, the coinmutator [x,p ]
remains finite and the WKB approach does not directly
apply. Wilkinson25 has shown that at t = tz, t z =
t

&
——0, each one of qp clusters of bands are described by

an efFective Hamiltonian obtained &om quantizing the
inverse of the characteristic polynomial (3.6) for the nth
band,

E„(ki,k2) = Pp „[2t~' cos(qpki) + 2t~~' cos(qpk2)] . (6.9)

The new fiux for each cluster depends on the Chem num-
ber for that particular band, but is in general of the or-
der of the difference p/q —pp/qp, therefore, small. A
more direct wayi is to regard the problem as having

p = pp/qp with the wave vector k2 slowly modulated
with a period q, qp/~q, pp p, qp~. The k2 in (3.6) becomes
k2, = k2 + 2&&[(p,qp

—ppq, )/qpq, ] and ki is also site
dependent. This approach generalizes to t q g 0 with
the result that singular energies are the qp roots of the
equation

P, (E) —4(-1)& 8:, = 0 (6.10)

for t = ti, dominant and of

for t i,
——t 5 dominant regime. We have done some nu-

merical checks for pp
——1, qp ——2 and found that the

singular energies come at +2t and +2/t2 + tz~ —t2t~z,

respectively, in agreement with predictions given by
Eqs. (6.10) and (6.11).

VII. DISCUSSION

Our studies have shown that the characteristic crit-
ical properties of Harper's equation persist when the
symmetry is broken by terms that couple sites to their
next-nearest neighbors, provided that the reflection sym-

metry in the diagonals is preserved, and provided that
the next-nearest-neighbor terms satisfy the inequality
t q+ t & ( t = ti, In this regio. n, the multi&actal anal-

ysis gives a universal result, strict bounds for the width
W of the spectrum show that it must go to zero with
the reciprocal of the denominator q, and numerical re-
sults and semiclassical analysis show that qW has a limit
that is rescaled by the next-nearest-neighbor coupling,
but which is independent of the numerator p. It is only
in the corrections to scaling that any oscillatory behavior
shows up.

For the bicritical line t q ——t z ——max(t, tq)/2, which
divides the region dominated by the nearest-neighbor
terms &om that dominated by the next-nearest-neighbor
terms, the multi&actal behavior is quite cMerent, and the
width W of the spectrum is known to be proportional to
1/q, as we know from the rigorous bounds, io ii as well as
&om numerical work. In this case an oscillatory behavior
superposed on the 1/q2 dependence shows up, whose pe-

riodicity is at least partially understood from the &KB
analysis of Sec. VI.

The region for which we have least understanding is the
region dominated by the next-nearest-neighbor terms,
with t ~ = t & & max(t, ti, )/2. Although the case

= 0 = ti, is equivalent to the original Harper equation,
with the axes turned by m/4 and the unit cell doubled in
area, for any nonzero values of the nearest-neighbor cou-
pling their strengths t, ti, remain relevant, as can be seen
clearly from Eq. (3.6). The spectrum has a multi&actal
form, but the multifractal analysis gives different ranges
of the exponent for difFerent values of the parameters of
the Hamiltonian. There seems to be a marked difFerence
between the behavior for t = ti, and for t P ti, Wh.en
the width W of the spectrum is studied the results are
quite different for the ratio of Fibonacci numbers and for

1/q or similar sequences of &actions with fixed numer-
ator. For P = 1/q we find W going to zero like 1/q,
with an oscillatory coefficient, while for the Fibonacci
sequence the oscillatory behavior is similar, but the de-
pendence on the denominator is of the form 1/q~, where
b seems to be about 1.25 for t = ti„and 1.56 for t

We believe a partial understanding of this behavior
can be obtained &om our results for P of the form

1/(qi+ 1/q2) which were discussed in Sec. V C. For large
values of the numbers in the continued &action expan-
sion of P we get relatively simple scaling behavior which
can be studied by using WKB theory, although we have
not carried out the analysis in detail yet. Because of the
periodic or nearly periodic behavior as the q~ are varied,
each stage of the scaling may carry one arbitrarily close
to the bicritical boundary of the critical region, and we
found examples, one of which is shown in Fig. 10, where
for certain values of qi the dependence of W on q2 at the
next stage of scaling was the 1/q2 typical of the bicriti-
cal boundary. Approximants of the golden mean, which
are the ratios of two Fibonacci numbers, have continued
&action expansions in which the terms are particularly
small, so one is very far &om the simple scaling behav-
ior expected for large qz, so the scaling behavior at each
stage may be intermediate between the critical and the
bicritical behavior.

Pote added in proof. Equations (4.6)—(4.11) can be
used to show that the exponent h defined in Eq. (5.2)
is given by the value of f' at the po—int where 1 —f =

o'.f', so th—at it is minus the slope of the tangent to the
curve f (a) through the point n = 0, f = 1. This implies
that the maximum of the curve cannot be exactly at the
point n = 0.5, f = 0.5 given by Tang and Kohmoto
for the pure Harper equation, since we know that b = 1.
More careful analysis of our numerical results gives the
maximum at n = 0.500, f = 0.498, in agreement with
results for the Hausdorff dimension recently obtained by
Wilkinson and Austin. If this is used to deduce b from
our plots of f against n it gives very good results in those
cases where there are no incommensurate oscillations (the
first, second, and fourth rows of Table I). The results
given in the third row of Table I are incompatible with the
known result b = 2, but extrapolation errors are of order
0.02 for these cases with 1arge oscillatory dependence on
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APPENDIX A: EVALUATION OF PRODUCT
OF OFF-DIAGONAL TERMS

Evaluation of the product in Eq. (3.3) is required to
obtain Eq. (3.6). The expression

q —1

P(k, ) = (t. i t.—,
e-'""("+l) '"'

+ "( +-', )+' .
)+ ge

= (—1)~-~-'[t' e-'~" + t', e""']
ab ab

+2(t.—,t.,) 'T,
t+st~s )

which is the result used to derive Eq. (3.6).

(A8)

P(k2) =
q —1 -'-,"( +-, )-;~,

&e
~ ~ ~ p

~=o

APPENDIX B:EXACT EXPRESSIONS
FOR THE INTERSECTION SPECTRUM

( +—)+'k
)age (A1)

q+
&e + &e

while the k2 independent terms can be written as

(A2)

q —1

Q= (t. +te ""("+
~ p ~ ~

n=o

+te ("+ )+' ') —(—1)~~2t cos(qk ), (A3)

where t = t &t g, here we have subtracted ofF the k2 de-
pendent terms using Eq. (A2). The expression obtained
from Eq. (A3) by setting k2 ——0,

q —1

must be periodic in k2 with period 2'/q, since the ad-
dition of 2z/q to k2 yields a permutation of the same
factors in the product. This tells us that the only terms
that survive in the product are those with q factors of
exp( —ik2), those with q factors of exp(ik2), and those
with equal niimbers of factors of exp( —ikz) and exp(ik2).
The first two cases give

Avron, Mouche, and Simon7 have shown that for the
case t &

——0 = t g the intersection spectrum has measure
4~ts —t

~
By e.xploiting the techniques used in earlier

work ' we can generalize this result to the case tg &
t ) t &+ t g. This argument depends in its details on
the parities of p and q, so we will give the argument
explicitly for the case of p, q odd. For qk2 ——x and qki
zero or x we exploit the symmetry of Eq. (3.1) about the
points n = 0 and n = q/2, which allows the problem to be
reduced to eigenvalue problems for tridiagonal matrices
of order (q 6 1)/2. The eigenvalues E++ and E which
correspond to eigenstates of Eqs. (3.1) and (3.2) that are
even about both these symmetry points or odd about
both of them give solutions with qk~ ——0, while E+
and E + give solutions with qki ——x. We number the
eigenvalues &om highest to lowest, starting with zero for
the solutions Eo + and Eo+ which are even about n = 0,
and starting with unity for those that are odd about this
point. The highest value of m is (q —1)/2 in all four cases.
The matrices corresponding to odd and even boundary
conditions about the point n = 0 differ only in whether
the 01 element is zero or not, and the trace formula gives

2t& —E+ +) (E —E+ ) =0(t./t + e '"+')-
~ p p p

n=o

+e 2%lp(~+1))

(B1)Q/t~ + (—1)"~2 =

(A4)

is a polynomial in t /t whose zeros are given by

2~I (—= —2 cos (n+ —
/t q g 2) (A5) ) (E + —E ) = 2(t.-—t., —t.&), —(B2)

These are the zeros of the equation

where each term in the sum is positive. The matrices cor-
responding to odd and even boundary conditions about
n = q/2 differ in having an extra term k(t —t &

—t s) in
the lowest diagonal element, so the trace formula gives

( t. )) (t. ')
cos

/
q arccos —

/

—:Tq
/2t) g2t)

( 1)P 9 —
( 1)PQ (A6)

with each term in the sum positive. Addition of these
two equations gives

) (E + —E+ ) = E+ —2(ts —t +t 5+t g) . (B3)

Q/t +(—1)~ 2=2T (t /2t)+( —1)" 2. (A7)

where Tq is the Chebyshev polynomial of order q. Since
the coefFicient of x& in Tq(x) is 2~, this gives The terms in the sum are all positive, and are equal to

the band gaps with qk2 ——0, qkz ——vr in the intersec-
tion spectrum, while the eigenvalue Eo+ is the highest
band edge of the intersection spectrum. A similar argu-
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ment can be constructed for the solutions with qk2 ——m,

qky = 0, where we number the eigenvalues Z++, Z in
increasing order. This gives

2t, —E+++) (E +-—E++) =0, (86)

) (f++ —F ) = fo++——2(tg —t —t 5
—t g) . (84)

and

) (E ———E +)—=2(t.;+t., —t.),

Again, all the terms in the sum are positive and give
band gaps of the intersection spectrum, while E'0++ is the
lowest band edge of this spectrum. Addition of Eqs. (83)
and (84) gives the measure of the intersection spectrum
as

E+— g++ ) (E—+ E+ ))—(g++

) (E —E++) = Eo+ —2(ts+t —t f,
—t g), (88)

with all terms in the sums positive. Addition of this to
Eq. (84) gives the measure of the spectrum for qkq ——0
as

E++ g++ ) (E E—+—+
) ) (g++

= 4(tb —t ) . (85)

For the case tg ) t b + t g ) t there is no change in
the argument that leads to Eq. (84), but Eqs. (Bl)—(83)
must be replaced by

= 4(4 —t f,
—t s), (89)

and this gives the generalization of the result for the in-
tersection spectrum for the case tg & t & + t g & t .
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