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We present a prescription for performing electronic-structure calculations without the explicit use of a
basis. Our prescription combines a higher-order finite-difference method with ab initio pseudopotentials.
In contrast to methods that combine a plane-wave basis with pseudopotentials, our calculations are per-
formed completely in real space. No artifacts such as supercell geometries need be introduced for local-
ized systems. Although this approach is easier to implement than one that employs a plane-wave basis,
no loss of accuracy occurs. We apply this method to calculate the structural and electronic properties of
several diatomic molecules: Si2, C2, Oz, and CO.

I. INTRODUCTION

One of the most successful methods for calculating the
structural and electronic properties of condensed-rnatter
systems is based on combining pseudopotentials with a
plane-wave basis. ' Only the valence electrons are con-
sidered with this method. The resulting pseudopotential
is weaker (usually nonsingular) as compared to the all-
electron potential, and con verges rapidly in Fourier
space. Since the resulting pseudo-wave-function solu-
tions for the isolated atom are smooth, and often node-
less, plane waves are often a reasonable basis. For crys-
talline materials such as silicon, or gallium arsenide, less
than a hundred plane waves per atom are needed for a
converged solution. ' However, for localized systems such
as clusters, ' disordered systems such as liquids or
glasses, ' or semiperiodic systems such as surfaces ' the
direct application of a plane-wave basis is nontrivial. The
lack of periodicity in these materials invalidates Bloch's
theorem, and the implementation of Fourier transforms.
One procedure to "rescue" the plane-wave basis is the su-
percell method. ' In the supercell method, the localized
configuration of interest is artificially repeated to impose
periodicity on the system. For example, if one wanted to
examine a molecule, the molecule would be isolated in a
large cell, and this cell would be artificially repeated to
construct a crystal of isolated rnolecules. This forced
periodicity of supercells allows standard band structure
codes to be used for nonperiodic systems.

The drawbacks of the plane-wave —supercell approach
are notable. The plane-wave basis is required to replicate
not only the electronic states of the localized system of
interest, but also vacuum regions imposed by the super-
cell geometry. Replicating the vacuum in the supercell

for a localized system can be almost as costly as replicat-
ing the "real" part of the wave function. In a recent cal-
culation for a complex surface, the 7 X 7 reconstruction of
the (111)silicon surface, 700 atoms were effectively treat-
ed: approximately 400 "real" atoms in the supercell and a
vacuum contribution effectively corresponding to another
300 atoms. '

Another issue which complicates supercell calculations
concerns interactions from one cell into another. For ex-
ample, one can examine a vacancy in a crystal by consid-
ering a large supercell of the ideal crystalline solid and re-
moving an atom from the supercell. If one wishes to ex-
amine charged systems, the problem becomes more acute.
Consider a charged defect within a supercell
configuration; for this situation each individual cell is
charged. The total electronic energy summed over all the
cells diverges. A simple "fix" to this problem is to insert
a uniform compensating charge in each supercell, but
determining the effect of this uniform background in
terms of a total energy, or binding energy, is highly non-
trivial. '

An additional complication that arises with the use of
plane waves concerns the use of fast Fourier transforms
(FFT) for handling the convolutions. While FFT's are a
great advantage in expediting the calculation, these trans-
forms present computational communication obstacles
when one attempts to implement FFI'-based codes on
parallel computer architectures.

Here we present an approach which eliminates these
problems. Our approach is much simpler to implement
than the plane-wave basis without any loss of accuracy.
The approach is based on utilizing the higher-order
Pnite difference -method ''" In th.e finite-difference
method the unknown variables are the wave functions on
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a discrete grid. Within this approach, the "discrete" real
space grid is the basis. Derivatives are approximated by
a function which sums over the weighted value of the
wave function at the neighboring points. It might be
suspected that a grid approach would not be competitive
with other approaches such as plane waves. The real-
space grid must be fine enough to replicate accurately the
wave functions. A grid this fine may result in so many
points as to result in an unworkable scheme. If one con-
siders an all-electron potential it has a singularity at the
origin. A simple regularly spaced grid which is fine
enough near the singularity to describe the core states
would be "too fine" and wasteful for the outer "chemis-
try" regions of the valence states. This situation need not
be the case, especially when the finite-difference method
is coupled with pseudopotentials. The pseudopotential is
finite at the origin, and the resulting wave functions are
smoothly Varying functions. A simple, uniform grid may
be sufficient in this situation.

The two approaches, i.e., plane-wave expansions and
finite-difference descriptions, are intimately related. If
the wave function is slowly varying, then it should be
easy to expand the function in a plane-wave basis. Like-
wise, for a slowly varying function, the wave function can
be expanded locally in a Taylor series, and a finite-
difference method using relatively few discretization
points will work well. This will be especially true for a
higher-order finite-difference method.

The use of standard (low order) finite differences to
solve the Schrodinger equation and other related wave
equations has a long history. In the mid-1930s, Kimball
and Shortley used it to solve for the wave functions of the
hydrogen atom. ' The method was applied' sparingly in
the late 1930s and 1940s and has appeared sporadically
since then. Solving the entire problem in real space is not
a novel feature, and in this respect our method closely
resembles the discrete variational method of Ellis and co-
workers' and the discrete variable representation ap-
proach of Lill, Parker, and Light. ' Here we combine a
higher-order finite difference with the pseudopotential
method on a real space without the explicit use of a basis
set. The smoothness of the pseudopotential and pseu-
dowave functions, the accuracy of the higher-order
finite-difference expansion, and the simplicity of a real-
space discrete grid creates a method which is easy to use,
flexible, efficient, and as accurate as the plane-wave
method.

To illustrate the higher-order finite-difference pseudo-

potential method, we examine the electronic-structure
problem for simple diatomic molecules. The electronic
structure of small molecules presents a severe challenge
to plane-wave approaches. The plane-wave approach is
not only required to describe localized systems where the
wave functions are compact, but also the vacuum regions
where the wave functions vanish. In order to accurately
accomplish this with plane waves, the supercell used
must be quite large so as not to allow the wave functions
and the screening potentials from neighboring cells to
overlap. We have chosen to examine Si2, C2, 02, and CO.
Determining the electronic structure of the 02 molecule
is challenging owing to a large nonlocal component, and
the localized nature of the valence states. The CO mole-
cule is also challenging. The dipole moment of this mole-
cule changes sign with small changes in the bond length.
We have calculated the structural and electronic proper-
ties of these molecules with a finite-difference approach
and with a plane-wave basis. We also compare these re-
sults to a number of previous calculations.

II. COMPUTATIONAL METHODS

A key aspect of our work is the availability of higher-
order expansions for the kinetic-energy operator, i.e., ex-
pansions of the Laplacian. We impose a simple, uniform
orthogonal three-dimensional (3D) grid on our system
where the points are described in a finite domain by
(x;,y, zk). ' We approximate 8 ld'r/Bx at (x;,y~, zk) by

C„g(x;+nh, y, ,zk)+O(h + ), (l)
n= —N

where h is the grid spacing and N is a positive integer.
This approximation is accurate to 0 (h z +

) upon the as-
sumption that f can be approximated accurately by a
power series in h. Algorithms are available to compute
the coefficients C„ for arbitrary order in h. ' Expansion
coefficients for a uniform grid are given in Table I for
%&6.

With the kinetic-energy operator expanded as in Eq.
(l), one can set up a one-electron Schrodinger equation
over the grid. We will employ the local-density approxi-
mation in setting up the Schrodinger equation. We solve
for P(x;,y, ,zk ) on the grid by solving the secular equa-
tion:

TABLE I. Expansion coefficients C„, n =0, . . . , +N, for higher-order finite-difference expressions of
the second derivative.

C; C;g, C+2 C;g4 C;g5 C;g6

N=1
N=2
N=3
N=4
%=5
N=6

5
2

49
18

205
72

5269
1800
5369
1800

5
3

12
7

—3
20

1

5

5
21

56

1

90
8

315
5

126
10

189

1

560
5

1008
1

112

1

3150
2

1925
I

16 632
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g2 N N

C„g(x;+n,h, yj, zk )+ g C f(x;,yj +n2h, zk )+ g C„P(x;,y, zk+n3h)

+ [V;,„(x,,y. ,zk )+ VH(x, ,y. ,zk )+ V„,(x;,y, zk )]g(x,.,y, zk ) =Eg(x, ,y ,zk .) . (2)

If there are M grid points, the size of the full matrix re-
sulting from the above eigenvalue problem is MXM.
Y;,„ is the nonlocal ionic pseudopotential, VH is the Har-
tree potential, and V„, is the local-density expression for
the exchange and correlation potential. The two parame-
ters used in setting up the matrix are the grid spacing h,
and the order X.

Several issues must be addressed to solve Eq. (2). The
first concerns the procedure by which the self-consistent
field, i.e., the Hartree and exchange-correlation poten-
tials, is constructed. The exchange-correlation potential
V„, is a functional of the local charge density. Once the
density is determined on a grid point, V„, depends only
on the charge density at that point. We use the
Ceperley-Alder form as parametrized by Perdew and
Zunger' for V„,. Another issue concerns the construc-
tion of the Hartree potential. For small simple isolated
systems, we can solve for V& by direct numerical summa-
tion over the grid. We evaluate VH on the ij k grid points
by assuming the integrand does not change appreciably
within a cube of volume h around each grid point. V& is
given by

and for ijk =i'j'k'
Q(x, —x,') +(y; —y; ) +(z, —z; )

2 7T
g (0,0,0)= —h —+3 ln

&3+ l

Near the square root singularity, which occurs at
ijk =i'j'k', we have performed an explicit integration
over the cube. We find this simple procedure is eScient,
yet accurate, for small clusters. As the clusters become
larger, e.g., ten atoms or more, it eventually becomes
more efBcient to solve the Poisson equation using a ma-
trix formalism coupled to the higher-order finite-
difference method. To set up the matrix, one needs to
determine the boundary conditions; i.e., the values of the
potential just outside of the domain. We obtain these by
the use of a multipole expansion for the charge density,
or using the direct summation scheme outlined above.
This matrix equation can be solved by iterative subspace
methods, in a similar manner used to determine the ei-

VH(x;, y, zk)= g p(x,',y', zk)
i'j 'k'

Xg (x, —x,',y —
y, ,zk —

zk ), (3)

where for ij k Ai j''k'

g (x,. —x;.,yj
—yj, zk —zk. )

genvalues and eigenfunctions of the Hamiltonian ma-
trix. ' This is a straightforward procedure which re-
quires essentially no increase in memory and is easily ex-
tended to periodic systems. We used a Broyden mixing
scheme to expedite the convergence of the self-consistent
fi ld 1921

Nonlocality in the ionic pseudopotential corresponds
to an angular momentum-dependent projection term. We
construct these ionic pseudopotentials as we would for
any electronic structure calculation. Details of their con-
struction can be found elsewhere. The core radii which
define the pseudopotentials here are given in Table II.
We employ the Kleinman-Bylander form in real space 24

for the nonlocal ionic potentials:

V;,„(x,y, z)P(x,y, z) = V&„(x,y, z)g(x, y, z)

+g G&~ u&~ (x,y, z)h VI (x,y, z),
lm

(4)

where

f uI (x,y, z)b, V((x,y, z)lt(x, y, z)dx dy dz
GI f uj (x,y, z)E Vl(x, y, z)ul (x,y, z)dx dy dz

TABLE II. Core radii (in a.u. ) for the ionic pseudopotential
construction.

Atom

Silicon
Oxygen
Carbon

rs

2.50
1.30
1.45

2.50
1.65
1.45

where g is the wave function, V&„ is the local ionic pseu-
dopotential, 6VI = VI

—
V&„ is the difference between oth-

er / components of the ionic and the local ionic potential.
The functions ul are solutions to the atomic pseudopo-
tential for the valence states of interest. Usually, one
component is taken as the local component. Here we
take V&=V„where V, is the s component. For the sys-
tems of interest, we may ignore contributions to the po-
tential higher than I =1. The range of hY& is usually
much less than a bond length. The nonlocality in V;,„ is
reflected by the occurrence of g(x,y, z) in GI . The in-
tegral involving P(x,y, z) is performed by a direct summa-
tion over the relevant grid points, i.e.,
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f gI (x,y, z)A V&(x,y, z)g(x, y, z)dx dy dz

=g ulm (x, ,yj, zl, )3, VI(x, ,y, z„)g(x, ,y, , z~ )h
' .

igk

(6)

The local potential resides only on the diagonal; only
the diagonal part of the matrix needs to be updated dur-
ing the self-consistency iterations. The full matrix for
these isolated systems is real, symmetric, and sparse.
These attributes can be utilized in expediting the diago-
nalization procedure. The sparsity of the matrix is a
function of the order N to which the kinetic energy is ex-
panded. We have employed an iterative subspace diago-
nalization' procedure which can take advantage of the
sparsity to solve for the eigenvalues and vectors. An al-
ternate approach to using the sparsity in performing the
matrix vector products is to leave the matrix in operator
format. Using this procedure, there is no need to store
the matrix in any sparse form since the coefficients C, ,

l

i =1,2, 3; n = N, N in—Eq. (2) are constant and as a re-
sult, the matrix-by-vector kinetic operations required by
the diagonalization routine can be performed in "stencil"
form. The nonlocal operations are accomplished by per-
forming them as vector-by-vector operations. This stra-
tegy not only saves storage, it leads to an efficient im-

plementation on most high-performance vector and
parallel computers.

In performing calculations for the structural and elec-
tronic properties of these molecular systems, three items
need to be determined: the domain to contain the atoms
or molecule, the order N for the kinetic-energy expan-
sion, and the grid spacing, h. We start our calculations
by solving for the electronic structure of the isolated
atoms by direct integration. Given the pseudoatom wave
functions, we choose a radius, R,„beyond which we ex-

pect the atomic states to vanish. Typically this radius en-

compasses at least 99% of the valence charge. We chose
R,„ to be 6.8 a.u. for Si and 5.6 a.u. for C and 0 (1

0
a.u. =0.529 A). The domain for a molecular system is

then constructed by requiring all atoms of interest to re-
side at least R,„from a surface.

In the standard finite-difference method, the order X is

fixed (at N =1) and the mesh size h is varied to obtain a
desired accuracy. Typically to determine the accuracy,
the results of two meshes are compared (h and h/2), and
an estimate of the error is then determined. A more ap-
propriate mesh-spacing h can then be derived, if neces-
sary. Since we have knowledge of the eigenvalues and the
pseudo-wave-functions as determined by a direct integra-
tion of the atomic pseudopotentials, we can use this infor-
mation to compare with the results obtained by the
finite-difference method. We have two parameters, N and

h, to obtain the desired accuracy. To find these we start
with a large grid spacing and continuously reduce h until
the eigenvalues and wave functions are replicated. We
have verified this procedure for several orders of N, in

Eq. (1).
Let us illustrate this procedure for the oxygen atom.

Given the localized nature of the oxygen wave functions,
this atom should be a severe test. In Fig. 1, we illustrate
the convergence of the eigenvalues as a function of h for
several values of N. For the "standard" finite-difference
method, N = 1, the eigenvalues have not converged to the
known values even for h =0.35 a.u. At this value of h,
the eigenvalues differ by more than 0.1 Ry from those
determined by direct integration. However, for N~4,
the eigenvalues are converged to within 0.01 Ry for
h ~ 0.4. We have experimented with higher values of N,
i.e., with N=6 —9. We find that for most applications,
orders higher than N =6 do not provide significant im-
provement. For example, if N is increased from 6 to 9,
the total electronic energy of the oxygen atom changes by
less than -0.005 Ry for h =0.4 a.u. All of the following
calculations reported have been done with N=6. The
grid spacing was taken to be h =0.75 a.u. for silicon, and
h =0.4 for carbon and oxygen.

As a test of the Hartree potential, we illustrate this po-
tential in Fig. 2 for the oxygen atom as calculated by a
direct integration and by a summation procedure as in
Eq. (3). The only significant difference resides at the ori-
gin: away from the origin the largest difference is less
than -0.01 Ry. The difference at the origin is -0.2 Ry.
While this is a relatively large difference, it is not an im-

portant correction as it is confined to a small region of
space.

The Hamiltonian matrix size obtained by the finite-

-0.5

-0.6

Oxygen

-2

).5

CP
M

2s
-0.7

-0.8

-0.9

FIG. 1. Behavior of the 2s and 2p eigenval-

ues for oxygen as a function of the grid spacing
parameter h and the finite-difference expansion
parameter N. The size of the resulting matrix
correlates ~ith 1/h '.

-2.5
0 5 10 15 20 25 30 5 10 15 20 25 30
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Carbon

FIG. 2. The atomic oxygen Hartree potential from a self-
consistent field calculation using a direct integration method,
solid line, and using higher-order finite difference and the sum-
mation procedure as in Eq. (3), filled dots.
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0

0.75-
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xygen

difference pseudopotential method is comparable with
that obtained using plane waves. The full Hamiltonian
matrix size for the silicon dimer is approximately
4000X4000. The matrix size for the carbon, and oxygen
diatomics, and the CO molecule is approximately
14000X14000. We need not store the full matrix as
mentioned previously. The nonzero elements of the
Hamiltonian matrix were on the average 13—14 per row
and jor column for all the molecules studied.

In Table III, we list the pseudopotential eigenvalues
from the direct integration of the atomic Schrodinger
equation for Si, C, and 0, and as calculated using the
finite-difference method. The largest error in the eigen-
values is on the order of -0.02 Ry. This is the type of
error which one would introduce by using a plane-wave
basis and the supercell method. As a test of the atomic
wave functions from our finite-difFerence method, we
have calculated the lowest excitations for the atomic
species of interest: a I' —+'D transition. Using local-
density spin-polarization formalism, we compare to mea-
sured atomic spectra. In Fig. 3, we illustrate the wave
function from finite-difference calculations, and compare
the wave functions from direct integration. It is perhaps

E, (FD)
E, (DI)
Ep {FD3
Ep (DI3
P~'D (FD)
P~'D (Expt. )

Silicon

—0.78
—0.80
—0.29
—0.31

0.77
0.78

Carbon

—0.99
—1.00
—0.38
—0.40

1.31
1.26

Oxygen

—1.74
—1.74
—0.68
—0.68

1.87
1.84

TAQI.E 777. Atomic energy levels (in Ry) from pseudop«en-

tials by direct integration (DI) and from finite-difference calcu-

lations {FD}.Also, the lowest excitation (in eV) as calculated

from finite difference pseudopotentials and as measured from

atomic spectra (Ref. 25).

0.5-
0.25-

0, ,
0 1 2 3 4 5 6

Distance (a.u.)
FIG. 3. Radial pseudo-wave-function distributions for sil-

icon, carbon, and oxygen for the s state (dashed line) and p state
(solid line). The solid points correspond to a finite-difference
description for the s state (~) and the p state (1).

somewhat surprising that these wave functions are so ac-
curate given that only —10—15 points are considered
along a given axis.

The chief source of error from the higher-order finite-
difFerence method arises from the finite size of R,„.
Even if the valence charge is strongly localized, the
exchange-correlation potential does not decay very rapid-
ly. For example, consider an exchange potential which
scales as -p(r)'~ . Even if the charge falls off by three
orders of magnitude at R,„ the exchange potential de-
cays by only one order of magnitude. By requiring the
charge to vanish outside R,„, we also require the
exchange-correlation potential to vanish beyond this ra-
dius. This error manifests itself in a small error in the re-
suiting self-consistent potential and in the total energy of
the atom. For examp)e, in the case of atomic oxygen the
"6nite-di5'erence" self-consistent potential divers by an
rms error of -0.01 Ry from the potential found by
"direct integration. " The total energy of the oxygen
atom as calculated within the finite-difference pseudopo-
tential is likewise different from the direct integration. In
the worse case, we have found an error of -0.1 Ry in the
total energy. However, this error wi11 exist for the molec-
ular, or larger cluster, case. %'e expect relative energy
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differences to be much smaller than this error. We also
note that similar problems can occur for supercell ap-
proaches, i.e., the exchange correlation may not be
correctly replicated unless the cell size is quite large.

III. APPLICATION TO DIATOMIC MOLECULES

The diatomic molecules were computed following the
same prescription as for the atomic species. By determin-

ing the electronic energy change as function of bond
length, we can find the cohesive energy, the equilibrium
bond length and the vibrational modes.

In generating a self-consistent potential, we find similar
issues as for basis oriented method. For example, a self-

consistent screening potential for the silicon and carbon
diatomic cannot be stabilized by the usual criterion for
charge neutrality, i.e., by integral occupation of the
lowest-energy levels. For both silicon and carbon, two
molecular configurations: (a) ( lo s ) (10 „) (20 g ) ( lm. „)
and (b) (1cr~) (1cr„) (lm„) may "oscillate" during the
iteration process for obtaining a self-consistent potential.
Configuration (a) can correspond to a triplet ( X ) or a

singlet state ('X+). Configuration (b) corresponds to a

singlet state. Two common procedures are used in such
situations. One procedure is to fractionally occupy the
(20

g ) and ( le „) orbitals until a stable potential is ob-

tained. Another procedure is to fix integer occupation of
the triplet or singlet configuration, and iterate either
configuration to self-consistency. In the context of a
spin-polarized local-density procedure, the latter pro-
cedure allows us to calculate the energy difference in the
triplet and singlet states, AE, , via perturbation theory:

LakEzp p xlfy, z E„p x,y, z, x,y, z

e„(p(x,y, z), g(x,—y, z)) jdx dy dz,

where e„,(x,y, z) is the exchange-correlation density,
p(x, y, z) is the electronic charge density, and g(x, y, z) is
the spin density. We have used this latter procedure as it
is easy to implement with little loss in accuracy. For the
silicon dimer, we were able to reproduce previous spin-
density calculations which used a plane-wave basis. We
find the triplet to be the ground state. Carbon is more
complex. The observed ground state is the 'X+ state, but
this state differs by only 0.08 eV from the II„state. We
find a singlet state which is consistent with previous cal-
culations. However, some recent spin-polarized calcu-
lations have yielded a triplet ground state.

In Fig. 4, we illustrate the binding energy as a function
of bond length for the molecules of interest. The
cohesive energy from local-density calculations is not
very reliable without including gradient corrections.
Our motivation here is not to improve on this formalism,
but to test the accuracy of the finite-difference method.
We have determined the cohesive energy by subtracting
the energy of the constituent atoms from the molecular
energy without gradient corrections. We summarize our
calculated binding energy in Table IV. Typically, we find
an overbinding by —1 —2 eV compared to experiment.
This overbinding is reassuring in that incomplete or
poorly converged bases often yield cohesive energies
which are underbound compared to experiment. Only
our CO molecule is slightly underbound. It may be that
our grid spacing of h =0.4 a.u. is slightly too large for a
highly converged solution. However, our binding energy
exceeds that of previous work. '

Bond lengths are accurately reproduced by our calcula-
tions as are the vibrational modes (see Table IV). The
largest bond length discrepancy is for the carbon diatom-
ic. This error is 0.03 A smaller than the experimental
bond length. If we were to allow fractional occupation,
we would admix "triplet" character into the carbon dia-
tomic ground state. Since the triplet state has a longer

-5.5

CII
-3.5

c
LLI

CII -4

c
Cl

-4.5
3.5 4.5

R (a.u.)

-7

-7.5

-10

I -6

CAIc
LQ

CIIc
c
tG

2.4

R (a.u.)

2.8 FIG. 4. Binding energy of selected diatomic
molecules as function of the bond length R in

a.u. (1 a.u. =0.529 A). The calculated points
(solid circles) are fit to a cubic polynomial.

-6.5

Ul
L
Clc
UJ
U)c

-7.5c
IXI

-8

R (a.u.)

I

2.5

Cl

~ -10.5

c
ILJ

~
c -11

Xlc
lZI

-11.5

R (a.u.)
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TABLE IV. Properties of diatomic molecules. The experimental data are from Ref. 20. The
theoretical results are from a finite-difference pseudopotential (FDP) calculation, and from other
methods using similar forms for the local density approximation.

Cohesive energy (eV)
Experiment
FDP
Other theory

Bond length (A)
Experiment
FDP
Other theory

Vibrational mode (cm ')
Experiment
FDP
Other theory

'From Ref. 26.
From Ref. 30.

'From Ref. 31.

Si2

3.0
4.2
4.18'

2.24
2.25
2.25'

511
520
486'

C2

6.32
7.3
7.24'

1.24
1.21
1.25b

1855
1909
1903

02

5.21
7.5
7.53'

1.21
1.21
1.21

1580
1630
1606b

CO

11.24
11.1
9.6'

1.13
1.13
1.17'

2170
2000
2100'

bond length than the singlet state, triplet admixture
might increase the bond length. The vibrational modes
were determined by fitting a cubic polynomial to the en-

ergy versus bond-length curve. The vibrational modes
are accurate to within a few percent on the basis of this
fitting.

Let us concentrate on a comparison between a plane-
wave basis and our finite-difference "basis" for the oxy-
gen molecule. In Fig. 5 we compare the self-consistent
field, V&„+VH+ V„„obtained from a supercell plane-
wave calculation to one obtained using the higher-order
finite-difference method. For the plane-wave calculation,
a supercell of two sizes was considered. We considered
supercell cubes of 12 and 24 a.u. on edge. For the finite-
difference calculation a A,„of5.6 a.u. was used, result-

ing in an effective cell size of 12 a.u. on edge. The only
significant difference between the two potentials occurs at
the atom sites, and can be attributed to the Hartree po-
tential (see Fig. 2). The eigenvalues for an oxygen mole-
cule as determined from the plane-wave and from the
finite-difference calculations are given in Table V.
Surprisingly, the orbital energies for the plane-wave cal-
culation do not appear to be converged using a 12 a.u.
cell. By increasing the cell size to 24 a.u. , the orbital en-
ergies as determined by the plane-wave calculation ap-
proach the finite-difference results. The orbital energies
have not been corrected for spin polarization, and corre-
spond to the local-density eigenvalues. The energy cutoff
for the plane-wave calculation was taken to be 48 Ry.
For the 12-a.u. cell, =9800 plane waves were included in
the calculation whereas for the 24-a.u. cell, over 77(XM
plane waves were needed. This result suggests that very
large supercells must be utilized to achieve converged or-
bital energies. It also suggests that finite-difference calcu-
lations may be more eScient for such calculations.

For the case of the oxygen molecule, we have explicitly
calculated the cohesive energy, bond length, and vibra-
tional modes via plane waves and a supercell

TABLE V. Orbital energies for the oxygen dimer. The orbit-
al energies (in eV) have been calculated via higher-order finite-
difference pseudopotentials, and plane-wave supercell calcula-
tions using two different supercells.

I i i i I » i I i i i I i i i I

—4 —2 0 2 4
z (a.u. )

FIG. 5. The 0& self-consistent local potential obtained form a
large (24-a.u. box) supercell plane-wave calculation, solid line,
and a small cell higher-order finite-dimerence calculation, filled
dots. The oxygen atoms are at +1.14 a.u.

Orbital

Os

alp

P

Finite difFerence

—32.56
—19.62
—13.63
—13.24
—6.35

Plane wave
(12 a.u.

supercell)

—32.09
—19.11
—12.93
—12.54
—5.53

Plane wave
(24 a.u.

supercell)

—32.60
—19.57
—13.37
—12.98
—5.98
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configuration. For the 12-a.u. supercell, the bond length
agrees within 0.01 A. The vibrational mode also agrees
to within 20 cm '. The cohesive energies do show some
difFerences. The plane-wave value is 6.8 eV/atom as con-
trasted to the finite-difference value of 7.5 eV/atom.
However, when the cell size is increased to a value of 24
a.u. , the cohesive energy of the plane-wave result is in-
creased to 7.2 eV/atom. This is consistent with the ei-
genvalue trends, i.e., the 12-a.u. supercell is not suScient
to replicate an accurate description of the oxygen mole-
cule.

As in the case of plane-wave solutions, we can calcu-
late the densities of individual orbitals, g(rj, and the
total charge density of the molecule. In Fig. 6, we illus-
trate the charge density of the 02 diatomic orbitals and
compare directly to the plane-wave basis. The FFT grid
size used for the plane-wave orbital calculation was 128,
which is more than five times as dense as the finite-
difference real space grid. The agreement between the
two orbital sets is remarkably good, considering the
differences in the grid point densities.

In Fig. 7, we compare the total charge density of the
diatomic molecules as calculated from the finite-
difference method to plane-wave calculations using the
same pseudopotential in a supercell geometry. (The total
energies, bond lengths, and vibrational frequencies agree
to within computational accuracy. ) The charge densities

FIG. 6. Molecular orbitals for the oxygen molecule. The
contour spacings are in units of 0.001 a.u. The orbitals have
been calculated with a higher-order finite-difference method
over a fixed grid, left figures, and with a plane-wave basis, right
figures.

&, si, (

c
2

0

CO p
, QO

FIG. 7. Pseudo-charge densities, ~f(r) ~', for Si„C2, 02, and
CO molecules. The left-hand side corresponds to finite-
difference pseudopotential calculations; the right-hand side cor-
responds to pseudopotential-plane-wave calculations. The den-
sities are in atomic units. The contour spacings are 0.0125 for
Si„0.05 for C&, and 0.15 for 02 and CO.

are nearly identical; the chief difference is a finer grid
used for the plane-wave basis.

The charge density of the carbon dimer is unusual
compared to other forms of carbon. In crystalline forms
of carbon such as diamond and graphite the bond charge
has a double "hump, " i.e., a saddle point occurs in the
charge density at the bond site. Large carbon clusters
such as the fullerene molecule also has a double hump
configuration. This bond charge configuration is unlike
the configuration in other neighboring covalent materials
such as silicon, or germanium. In silicon or germanium,
the charge density has a maximum at the bond site. The
bond charge for carbon which we calculate is more like
silicon or germanium. However, this is true only for the
singlet state. The carbon dimer in the triplet state does
have double hump structure. In the molecular case, the
occupation of the 20. orbital controls whether the bond
configuration results in a local maximum or saddle point
structure.

It is very gratifying to note that the finite-difference
wave functions reproduce the dipole moment of the CO
molecule. The dipole in CO is extraordinarily sensitive to
the bond length and even changes sign with changing
bond length. ' At large distances the dipole corresponds
to charge configuration of C+0 . At smaller distance
the sign reverses, and at equilibrium, the dipole corre-
sponds to charge state of C 0+. The dipole we ca1culate
is —0.10D compared to the experimental value of
—0. 1227D. A previous local-density calculation has
given a value of —0.01D. ' In Fig. 8, we illustrate the
dipole of the CO molecule versus the interatomic separa-
tion. We compare to the experimental results, and to two
other theoretical calculations: a Hartree-Fock calcula-
tion, and an all-electron loca1-density calculation. In Fig.
9, we plot the valence charge density of the CO molecule
as a function of interatomic separation, i.e., for 8 =2.30,



50 HIGHER-ORDER FINITE-DIFFERENCE PSEUDOPOTENTIAL. . . 11 363

CO HF

AE-LDA

1.5 2.5
R (a.u.)

(b

FIG. 8. Dipole of the CO molecule as a function of bond
length. A positive dipole corresponds to C+0 . Results from
two theoretical calculations and experiment are illustrated. The
open circles correspond to a finite-difference calculation.

2.15, and 2.00 a.u. We can use a qualitative criterion for
assessing how the covalent bond charge is altered by
changing the bond length. We can define a "bond
charge" by the charge within the lowest closed contour
formed between the cation and anion. Under this cri-
terion, no bond charge exists for the CO molecule at
T=2.30 a.u. A small bond charge exists at T=2. 15
a.u. , and increases significantly at R =2.00 a.u. This
strong rearrangement of the charge effectively transfers
charge from the 0 anion to the CO covalent bond as the
bond length is decreased.

(c)

FIG. 9. Pseudo-charge-density for the CO charge density for
three different bond lengths: (a) 2.30 a.u. , (b) 2.15 a.u. , and (c)
2.00 a.u.

IV. CONCLUSIONS

In summary, we have presented a method for perform-
ing electronic-structure calculations without the explicit
use of a basis. We have combined the finite-difference ap-
proach with ab initio pseudopotentials. In contrast to the
methods which use a plane-wave basis, our calculations
are performed completely in real space. No artifacts
such as supercell geometries need be introduced for local-
ized systems. The method is applicable to charged sys-
tems. Moreover, it is much easier to implement than are

plane waves, and it is more amenable to implementation
on parallel computers.
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