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The e8'ects of nonmagnetic impurities (Kondo holes) in Kondo insulators (KI's) are studied based on
the U = ~ Anderson model in the framework of a slave-boson mean-field theory under the coherent-
potential approximation (CPA). The density of states for f electrons and its variation with the concen-
tration of Kondo holes are calculated self-consistently. The specific-heat coefficient, residual resistivity,
and the T=0 static susceptibility in the alloying system are obtained. The results show that the insulat-
ing gap in KI's can be easily smeared out by Kondo holes, and the system changes gradually from an in-

sulator to a heavy-fermion metal with increasing concentration, which is in qualitative agreement with

experiments. Furthermore, the appearance of an impurity band in the gap comes out naturally in the di-
lute limit of our CPA calculations.

I. INTRODUCTION

Recently, a new class of Ce-based compound with insu-
lating ground states in heavy-fermion systems has been
discovered, namely that of Kondo insulators (KI's),
which includes CeNiSn, ' Ce3Bi4Pt3, * CeRbSb, ' etc.
At low temperatures, Kondo insulators show unexpected
semiconducting behavior different from the properties of
heavy-fermion metals. The semiconducting behavior of
KI's is thought to be caused by a small real gap at the
Fermi level that separates the filled and empty renorma1-
ized bands. The gap results from the hybridization be-
tween a half-filled conduction band and local f electrons
of periodically placed Kondo ions. This picture is fre-
quently referred to as a Kondo lattice (KL) with insulat-
ing ground states. Experimentally, evidence for the pic-
ture comes primarily from thermodynamic and transport
properties ' as well as from neutron scattering. '

Theoretically, a slave-boson formalism in a mean field of
a U= ao single-band Anderson lattice Hamiltonian with
a degeneracy N =2 and two electrons per site is adopted
to construct an insulating KL model. As a consequence
of the coherence in the KL, a hybridization gap opens at
the Fermi level between the two renormalized bands, and
small-gap semiconducting properties of KI's can be natu-
rally evolved. '

The formation of the coherence (i.e., the nature of the
small gap) in KI's can also be studied by adding nonmag-
netic impurities (Kondo holes) which are concerned with
the alloying effect of KI's. Experimental results for
(Ce& „La„)3Bi4Pt3 (Ref. 3) show that alloying with La
decreases the resistivity and increases the specific heat to-
ward values expected for the metallic case, and a smear-
ing of the gap is attained by a moderate La substitution
(about x =7% La). Thus adding Kondo holes to an insu-
lating KL breaks the lattice periodicity, suppresses the
gap, and leads the system to change from an insulator
into a heavy-fermion metal. A theoretical study of
magnetism in doped KI's was first given by Doniach and

Fazekas using a simplified Gutzwiller variational ap-
proximation, which can be applied only at T=O. The
impurity bands in the gap of KI's at low doping concen-
trations was discussed by Schlottmann and co-
workers' '" with a special perturbation expansion to the
second order of U, which allows for a consistent descrip-
tion of the high- and low-temperature behavior, ' but it is
more suitable to the small-U cases. However, in actual
heavy-fermion systems correlation U is believed to be
very large, and also a slave-boson mean-field theory for
the U= ae Anderson lattice model (ALM) has been used
successfully to explain the semiconducting behavior of
pure KI's. ' Therefore, a theory of doped KI's which
can be applied to cases of infinite U and finite tempera-
ture as well as over the whole La-concentration range
(O~x & I) is needed.

In recent publications' ' we have provided a
coherent-potential approximation (CPA) theory of
heavy-fermion alloys in the framework of slave-boson
mean-field approximation (SBMFA) upon doping of Kon-
do holes in metallic KL's, which is different from the pre-
vious CPA treatments of the ALM. ' ' The purpose of
this paper is to extend the above theory to the insulating
case. We expect to give a unified explanation of alloying
effects in KI s, including the formation of the impurity
band in the dilute limit, the crossover from KI's to a
heavy-ferrnion metal for moderate concentrations, and
also the concentration dependence of thermodynamic
and transport properties in doped KI's.

The rest of this paper is organized as follows: In Sec.
II, we describe the disorder model and CPA formalism of
Kondo insulators in the SBMFA. In Sec. III, we present
the self-consistent results of the f-electron density of
states (f DOS) in an alloying KI. This involves the ap-
pearance of an impurity band in the dilute limit, and the
gradual smearing out of a rea1 gap with the increasing of
Kondo holes. An attempt to explain the effect of the
Kondo holes on the low-T specific-heat coe%cient, resid-
ual resistivity, and T =0 static susceptibility will be given
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in Sec. IV. Finally, our results will be summarized in Sec.
V.

II. DISORDER MODEL
AND CPA FORMALISM OF KPs

The disorder system that we shall investigate is
modeled after (La„Ce& „)NiSn and (La„Ce& „)3Bi~Pt3.
This doped KI system contains two kinds of rare-earth
atoms 2 and 8, where A (La like) is a nonmagnetic atom
without any f electrons, and 8 a magnetic atom with f
electrons. The substitution of A for B creates the missing

f centers, which are referred to as the Kondo holes. As
an appropriate starting point for discussing doped KI's,
we introduce compositional disorder into the nondegen-
erate ALM with a half-filled conduction band. The ran-
dom variable in the lattice point i is defined by

1 for iEA
0 for i EB.

Note that the random average P=g, =x, where x is the
normalized concentration of A atoms (Kondo holes).
The disorder Hamiltonian of the alloying KI s with Kon-
do holes can be written as

X~ckckcFkn+( —Ef )fkofkcr ]
kyar

+gg;(Er +E~)f,~ f;
I CT

+ ~(1—
g; )(f; c; +c, f, )

I CT

+ ,' Ug—(1 k—)f;.f;.f; .f;— (2)
l CT

where ck (c; ) and fk (f; ) are operators in the Bloch
(Wannier) representation for the conduction (c) and lo-
calization f electrons, respectively; o is the spin index,
and ck the band energy of c electrons from the Fermi lev-

el, which is taken to be zero. E& i—s the energy of f
electrons on magnetic (B) atoms, and Ez represents the f
level on Kondo holes (nonmagnetic A atoms). Since the
Kondo hole is a missing f center, we should take the lim-
it in the calculation in order to ensure that there is no f-
electron occupation on A sites. V is the c-f mixing pa-
rameter, and U the on-site Coulomb repulsion between
two electrons with the opposite spin.

In the strong correlation limit, U~ ac, double occupa-
tion is strictly forbidden on the B sites. The correlation
can be accounted for by introducing Barnes' and
Coleman's ' slave-boson operator b; in the c-f mixing
term instead of the Coulomb repulsion part in Eq. (2).
Thus we can write Hamiltonian (2) for U~ oo in slave-
boson formalism as

H=g[ckck&ck&+( E~)fk f«—]++(;(Ez+E&)f;f~+~(1—(;)(bf ~c; +c; f; b; )

+g(1—g;)A, ; g ft f, +b,tb, —1
o'

(3)

where a constraint due to infinite U,

gf; f; +b;b;=1 foriEB,
determined by the following saddle-point equations:

rA, = —~(c; f; ) foriEB,

is added with the Lagrange multiplier A, This constraint
prevents the double occupancy of the f level on the B
sites.

In the SBMFA, the operator b; and constraint (4) are
replaced by their mean-field values with the ansatz
r=(b;) =(b; ) and A, ;=A, for all 8 sites. The Hamil-
tonian (3) can then be reduced to its SBMFA formalism:

~MF Xlckckcrcko +Effkuf ka

+rV(flak ck +ck fk )]

+&0;tcr.f; f~ rV(f; c; +c, f; )J— .

+A(r 1)g (1—
g, ), —

where E&=A, —E& and cz =Ez —E& are, respectively, the
renormalized f level of the magnetic (8) atoms and the
Kondo holes ( A atoms). The SB parameters r and A, are

and

1 —r =g (f; f; )=n& for i EB,

which can also be obtained by minimizing the mean-field
energy (,HMF ) with respect to r and A, . Here ( ) denotes
the statistical average, and n& is the average f electron
number per B site.

Since in the SBMFA a Kondo hole is simulated by a
very large f-level energy cz =E~ E&, with E& slightly—
above the Fermi level p (E& p= Tx, Tx —Ko—ndo tem-
perature) and Ez ~ao, a Kondo hole doping leads to a
very strong scattering center, and a treatment of HMF
within a low-order Born approximation would not be
adequate. Therefore, we attempt to use a coherent-
potential approximation, which also allows us to solve
the disorder SBMF Hamiltonian (5) for arbitrary concen-
trations of the Kondo holes.

The idea of the CPA is to replace the disorder potential



11 334 ZHENG-ZHONG LI, %ANG XU, CHUN CHEN, AND MING-%EN XIAO

H=g[c)", f), ]

E'k+ Scc S,f c

Ef+Sff .

+X,A(1 —x )(r —1), (9)

of Kondo holes by a translational invariant but
frequency-dependent coherent potential of the effective
medium. The coherent potential for a single-
conduction-band Anderson model should be assumed to
be a 2X2 matrix:

I'

Scc Scf
( ~ '=S Sfc ff

The efFective-medium Hamiltonian can then be written in
the following matrix form: 0 rVS(, ) VSff '

(16)

where only the matrix element Sff is unknown. At the
same time, the self-consistent CPA equation (13) can be

simplified as

medium of A and B atoms. Only when the self-consistent
equation (13) is satisfied can the effective medium be con-
sidered well chosen.

Substituting Eqs. (14) and (15) into Eq. (13), and taking
(because Ef «Et, EL~ ~) to ensure zero f

electron occupation on Kondo holes, after some algebraic
manipulations (the details of which will be given in the
Appendix) we find a simple analytical solution of the
coherent potential:

co Ef —Sff
G(co, k) =

k fc

with

S,f
co 6k Scc

where 1V, is the number of unit cells in the system. In the
Bloch representation, the matrix of the medium Green's
function (GF) is determined by (co H) —in the space of
basis vectors (c(, ,f„),and reads

SffFff

The averaged site GF's are expressed as

1 o) —E —S

), (~—
~), )(~—Ef —Sff)—(rV)'

F,f(co)=Ff, (co)= F„(co),rV

co E Sf ff

(17)

(19)

B„=(co E), S«—)(u —Ef Sff —
) Spf—Sfg— Fff (co)=

~—E —Sf ff

{rV)
F„(Q)) . (20)

co —E —Sf ff

F„(co) F,f(co)
F(co)= QG(coyk)= F ( ) F

s k
CO ff CO

(12)

The only remaining thing we should do is to determine
the coherent potential S(cok), which is related to a self-

consistent requirement of the CPA. In the single-site

CPA, the potential S(co,k) has to be determined in such a
way, that, on the average, the scattering t matrix for the
difference between potentials of the disorder system and
the effective medium vanishes on each site. According to
Yonezawa, this requirement is equivalent to a self-

consistent equation in the single-site CPA:

xtz+( I —x )tt) =0, (13)

where t„and t~, respectively, are the scattering t ma-

trices for A and B atoms.

t„( )=V„( )[1—F( )V„( )]
—1 (14)

with scattering potentials of A and B atoms in the
effective medium

—SCC
—S,f

Sfc GL, Sff
—SCC

rV —Scf
V =

rV —Sfc Sff

which are deduced from HM„—H=X; V; with the use of
Eqs. (5) and (9), denoting the difference of the scattering
potentials between the disorder system and effective

From Eq. (10), we obtain the averaged site GF of the
effective medium

As shown in Eq. (20), Fff(co) is also related to the self-

consistent determination of the slave-boson (SB) parame-
ter r and Ef(=A, Ef). Therefor—e, we have to solve the
CPA equation (17) in combination with SB equations (6)
and (7). Noting that the SB saddle-point equations (6)
and (7) only appear on the magnetic (B) sites, we can
rewrite them by taking an average over the randomness
and using GF spectral theorem as follows:

(1 x)rk=—f , dc@ f(co)ImFf, (co+iO+),2V +~
(21)

(1—x)(1 r) = ———I des f(co)ImFff (co+iO+ ),

III. THE f DOS IN DOPED KI's

The f-electron density of states (f DOS) in doped
Kondo insulators is defined by the imaginary part of the
effective medium GF, Fff(co). The f DOS per magnetic

( A ) atom for each spin can be written as

1
iaaff ( co, x ) = — ImFff ( co +i 0 +

)x{1—x)
(23)

where f(co) is the Fermi distribution function.
Equations (17)—(22) constitute a set of fundamental

equations for determining the coherent potential (Sff)
and the SB parameters (r and A, ); it smoothly and natural-

ly interpolates two mean-field theories for the Anderson
impurity and the Anderson lattice, and can easily be ap-
plied to calculate the electronic DOS of the HF alloys
with arbitrary Kondo-hole concentrations.
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where Fff(ro) should be calculated self-consistently from

Eqs. (17), (20), (21), and (22) by numerical method. In
calculations the unperturbed DOS of conduction elec-
trons, No(ro), is needed. For simplicity, a constant DOS
of No(ro) is assumed:

40
~ B:

C:
D

E
30

z=0.10
z=0.15
z=0.$0
z=0.50

for I~I~D1

No(ro) =
0 for lcol &D,

(24)

I

A

20

where D is the half-width of the conduction band.
The f DOS can be solved analytically in the case of

x ~0 and x ~1. However, in the region of 0 (x & 1, we
have to proceed with a numerical calculation. The nu-

merical results are shown in Figs. 1 and 2. In the limit of
x =0, a real hybridization gap opens near the Fermi level

due to the translational invariance of the insulating KL
system as shown in Fig. 1(a). Adding Kondo holes into
the KI's, an impurity band emerges within the gap, and

10

-2.0 0.0

(~-e)/Tx

2.0

FIG. 2. The concentration dependence of f DOS for the
doped KI's, where V and Ef are the same as in Fig. 1.
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so- (a)
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(~-w)/T„
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(b)

the band is broadened with an increase in the Kondo-hole
concentration x [Fig. 1(b)]. In the moderate doping con-
centration when x ) 15 lo La, the real gap will gradually
be smeared out and, instead, there will occur a "two-
peak" pseudogap structure indicating the metallic
behavior of the system (see Fig. 2). Therefore, Figs. 1 and
2 can be used to explain the experimental result that
upon doping the system will

chancre
from a Kondo insu-

lator into a heavy-fermion metal. %e will discuss this
problem in Sec. IV.

The height of the impurity band at the Fermi level can
be obtained analytically in the dilute limit of our CPA
formalism. Since in the dilute limit, when Kondo-hole
concentration x —+0, Eq. (17) gives the coherent potential

Sff~0. Substituting this result into F„(c0),we can easi-

ly derive an approximate expression of the

ImFff(@+i 0+ ) from Eq. (20):

4.0

~al

I

A

2.0

e

0
Ig

Q

=0. Off

ImSff (p+i 0,
+

)

ImFff(iJ, +i0+)=
(Ef —(I) + [ImSff(@+i 0+)]

where we have set

Re[Sff(p+iO+ )]=0

(25)

(26)

due to the electron-hole symmetry of the system as we
have pointed out in Ref. 13. Now, the CPA equation (17)
at the Fermi level p can be rewritten as

0 A

—1.0 -0.5 0.0 0.5 1.0 ImSff (@+i0+ )ImFff (@+i0+ ) =x . (27)

(~-~)/TK

FIG. l. (a) The f DOS of a pure Kondo insulator. (b) The f
DOS of the impurity band inside the gap for dilute doping
cases. Here the parameters for the numeric a1

calcula-

tionss are chosen as V=&0.2D, Ef= 1.2D, and T&
=1.14D exp( —2DEf /V ).

ImSff (@+i0+ )=— (Ef p) . —(28)

Thus the f DOS at the Fermi level in the limit of the
sma11 Kondo-hole concentration turns out to be

From Eqs. (25), (26), and (27), one can immediately ob-
tain

I /2
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FIG. 4. Specific-heat coefticient of doped KI's where
y„=k& /D. We take V and Ef to be the same as in Fig. 1.
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magnetic susceptibility of our alloy system. The results
are as follows.

(a) Specific-heat coefftcient of doped KI: In the low-
temperature region, the main contribution of the specific
heat comes from f electrons near the Fermi level, and the
specific-heat coefficient of the doped KI can be written in
terms off DOS as

FIG. 3. (a) The f DOS at the Fermi level Nf(p) varies with
the Kondo-hole concentration x. (b) Xf(p) vs &x in dilute
cases. Here the necessary parameters are chosen as in Fig. 1.

y(T, x)= ,'k~P f—deuce Nf(co, x)sech

(30)

Nf(p, x ~0)=
' 1/2

1 x (E —p)
&x . (29)

(rV)'

IV. COHERENCE IN DOPED KI's

We now turn to a discussion of coherence effects on the
low-temperature properties of a doped Kondo insulator.
We have calculated the low-temperature specific-heat
coefficient, residual resistivity, and zero-temperature

The result predicts that the height of the impurity band
at the Fermi level is proportional to &x for small x in
analogy to the result of Schlottmann. ' Furthermore, we
have also calculated Nf(p, ,x ) in the whole concentration
region (0(x (1) by the numerical method, and the re-
sults are sketched in Fig. 3(a). The numerical results for
small x are shown in Fig. 3(b). It is easily found that
Nf (p, x )-+x in accordance with our prediction in the
dilute limit.

where P= I lk~T, and Nf(cu, x ) is the f DOS of alloying
KI's. The numerical results of the low-temperature y-T
curves for various Kondo-hole concentrations are given
in Fig. 4. From Fig. 4 we see that, in a pure Kondo insu-
lator where x =0 (curve A), y vanishes at T =0, due to
the existence of a real gap in the excitation spectrum.
However, upon doping a nonzero coefficient of specific
heat at T =0 occurs (curve 8), and for moderate doping
(x & IS%) the y Tcurves beha-ve like a heavy-fermion
metal with a pseudogap, as shown in curve C and D.
This indicates that the substitution of La for Ce gradually
smears out the gap, and leads the system to a disordered-
induced metallic phase, which is in qualitatively agree-
ment with experiments.

(b) Coherence effect in residual resistivity: Once the
effective medium S is found, the CPA expression of the
electrical conductivity for doped KI's can be obtained
easily. In the single-site CPA the conductivity of our sys-
tem reads

2 2

o(T, )=xf de — gu (k)[lmG„(k, cu+i0+)]
3vrh 0 (31)

where u(k) is the velocity of the conduction electrons, 0 is the volume of the system, and

~—Ef —SffG„(k,co) =
(co eq)(co Ef Sff )

—(r V)—— — (32)
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is the matrix element of the effective-medium GF for the conduction electrons. At zero temperature, Eq. (31) becomes

2e vF
2 2

o ( T=0,x)= g[lmG„(kp+i0+ }]2,
3M 0 (33)

where we have approximated v(k) by the Fermi velocity vF, which is reasonable when the system is assumed to be iso-
tropic. After a straightforward calculation, we find that

2e vF l +D
2 2

o(T=0,x)=
3~2@ 2g) —g)

(r V)

ImSff(p+i0+)

(r V)' (Ef —p, )(e—p, )—
ImSff (p+i 0+ )

+(e—p)'
'2 (34)

where 0, denotes the volume of the unit cell. We have
calculated the residual resistivity p( T=O, x)
= ihr(T=O, x) from Eq. (34). Numerical results of re-
sidual resistivity versus Kondo-hole concentration x are
given in Fig. 5. As mentioned above, in the case of pure
KI's where x =0, the system stays in an insulating state
with infinite resistivity. Alloying a small amount of Kon-
do holes destroys the lattice periodicity, and results in an
impurity band, on which the Fermi level is pinned. At
this time, a finite resistivity is obtained. The residual
resistivity of the doped KI's will decrease dramatically
with the increasing of the Kondo-hole concentration, and
the system will undergo a change from insulating to me-
tallic ground states in accordance with experimental ob-
servations. '

Equation (34) can be solved analytically in the dilute
Kondo-hole limit where x ~0. Taking into account that
(Ef p)=(rV) l2D—(&(rV), and also that the main
contribution of the integral in Eq. (34) comes from the
energy region near e=p, we can neglect the term con-
taining (Ef —p)(e —p) in the denominator of the in-
tegrand, and Eq. (34) can be simplified as

28 vF $ +D
2 2

cr(T =O, x ) = z, (35)
5

[
25+( e p)2]2

5.0

4.0

3.0

2.0-

1.0

0.0
0.0 0.2 0.4 0.6 0.3 1.0

FIG. 5. Residual resistivity vs Kondo-hole concentration,
where p„=3~D20, /2e2vr2. Here V and Ef take the same
values as in Fig. 1.

where

(rV)

ImSff (p+i 0+ )
(36)

In the case of x~0, where 5 is very large due to the
ImSff (p+t'0+ )~0, the integral in Eq. (35) then becomes
2D/52. In this case, we obtain the residual resistivity in
the form

37tfl Qq (rV'}4
pres(x

2e ur [ImSff(p, +iO+)]
(37)

Substituting Eq. (28) into Eq. (37), we find an asymptotic
expression of the residual resistivity in the small Kondo-
hole concentration as

6mRD 0
p„,(x ~0)= x

e VF
(38)

which indicates that p„, approaches infinity following the
power-law x ' when x ~0.

(c) Zero-temperature magnetic susceptibility: The stat-
ic magnetic susceptibility of the pure KI can be expressed
as

+v.v. ++pauli & (39)

Xp,„b(T=O, x) = ,'gl p~Nf (p, x ) . — (40)

where yv v is an interband Van Vleck contribution to the
susceptibility and is of order gr psl4D as pointed out by
Riseborough, where pz is the Bohr magneton, and gL
the Lande factor off electrons. yp, „&; represents the Pau-
li spin susceptibility, which has been discussed in Ref. 8
for pure KI's. At zero temperature, one can easily find
that yp, „&;(T =O, x =0)= ,'gL psNf (p, x =0). Sinc—e the f
DOS for pure KI's at the Fermi level vanishes, i.e.,
Nf(p, x =0)=0, due to the existence of a real gap near
the Fermi level p, the Pauli term makes no contribution
to the susceptibility at T =0. However, a nonzero value
of yp, „&; occurs even in the dilute limit of doped KI's,
where an impurity band emerges inside the gap of f
DOS. We have calculated the T=O Pauli susceptibility
for doped KI's from the well-known formula



11 338 ZHENG-ZHONG LI, WANG XU, CHUN CHEN, AND MING-WEN XIAO 50
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0.5
0.00 0.05 0.1 0

FIG. 6. Magnetic susceptibility at T =0 K for small Kondo-
hole concentrations, where we take V =0.6D and E~ = 1.2D for
the numerical calculation, and y„=p& /D.

x
gp h(T =O,X~O)= 4ggps

1/2
1

The numerical results in the limit of small Kondo-hole
concentrations are shown in Fig. 6, where a constant con-
tributj, on at x =0 is of the Van Vleck origin as mentioned
above. An analytical expression for the Pauli susceptibil-
ity in the limit x —+0 can be easily obtained from Eqs.
(29) and (40):

insulator. We have presented a single-site CPA theory
for doped KI's in the framework of the slave-boson
mean-field approximation. The f-electron density of
states in the whole La-concentration range 0 (x 1 can
be calculated self-consistently in our CPA formalism.
The obtained f DOS clearly shows many interesting
features of the coherence in doped KI's with an increase
in the Kondo-hole concentration x. For instance, in the
small x an impurity band appears inside the gap and its
height at the Fermi level goes up according to x '; in the
moderate doping concentration the real gap of the insu-
lating ground state will gradually be smeared out and, in-
stead, a pseudogap with a two-peak structure of the me-
tallic ground state will occur. Using this result, alloying
effects on the low-temperature specific-heat coe5cient,
residual resistivity, and T =0 magnetic susceptibility in
doped KI's can be explained qualitatively. Our results re-
veal that upon doping the system undergoes a gradual
change from a Kondo insulator into a heavy-fermion
metal, which is in agreement with the experiment obser-
vations.

Finally, we would like to point out that the above dis-
cussion is valid only in the framework of SBMFA, where
the Auctuations have been neglected. In order to extend
our theory to study the transport properties of doped
KI's at elevated temperatures, we have to go beyond the
mean-field theory. This problem is under investigation.

(41)
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V. CONCLUSIONS

In this paper, we introduced compositional disorder
into the nondegenerate Anderson lattice model with a
half-filled conduction band as an appropriate starting
point to discuss the substitution of La for Ce in a Kondo
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APPENDIX

Now we give the major steps toward a simple analyti-
cal solution of the coherent potential. Setting Eq. (15)
into Eq. (14), after taking eL —+ ~, we obtain the scatter-
ing t matrices of A and 8 atoms in the effective medium

SccFff
SccFcf

SccFcf
—(1+SffF„) (Al)

S-('+SffFff)+Fff~ S SffF f F f~
—Sff(1+S„F„)+F„X (A2)

where

Bf Fff+S„(F„Fff F fFf ),
B2 —( 1+SffFff )( 1+S„F„) S„SffF,fFf-

+(FfFf, F„Fff)X+[(Sf —rV)Ff, —

+(Sf,—r V)F,f ],
X =(S,f rV)(Sf, rV) . — —

(A3)

(A4)

(A5)

By combining Eqs. (A 1)—(A5) with the single-site CPA
equation (13), we obtain a set of four self-consistent equa-
tions of the coherent potential as follows:

ff ff ffS„x + (1—x)
1 2

ff=(1—x) (S,f rV)(Sf, rV), (A—6)—
2
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1 1S Ff x +(1—x)8, ' 8, (1+F„S„)x + (1—x)
1 2

p=(1—x) (S,f —rV)(Sf, —rV), (A7)
2

1S„Ff, x + (1—x)8, ' 8,
S„=O, Sf Sf PV. (A10)

By substituting Eq. (A10) into Eq. (A9), we finally obtain

=(1—x) (S,f—rV)(Sf, rV—) . (A9)
2

Obviously, Eqs (A6) —(A8) have the following exact solu-
tion:

Sffr'ff ——x, (Al 1)
=(1—x) (S,f rV)(Sfg rV),

2
(A8)

which is just the simplified self-consistent equation (17).
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