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This paper continues our study of vortices in Ginzburg-Landau theories with special attention to ap-
plications in superconductivity. In another paper, we derived asymptotic equations governing the dy-
namics of interacting vortices. Here, we study the hydrodynamic limit of these vortices. For vortices in
the solutions of the nonlinear Schrodinger equation, the hydrodynamic equation is the incompressible
Euler s equation in fluid mechanics. For vortices in the time-dependent Ginzburg-Landau equations, the
hydrodynamic equations can be thought of as being the complement of the Euler equations. Preliminary
results on the numerical studies of the hydrodynamic equations are presented. As applications of the hy-

drodynamic formalism, we study the pinning of vortex liquids by periodic potentials, and the propaga-
tion of magnetic fields into type-II superconductors. The hydrodynamic formalism suggests that to lead-

ing order, the vortex liquids are pinned even at small but positive temperature.

I. INTRODUt. l'ION

This paper continues our study of vortices in time-
dependent Ginzburg-Landau equations, with special at-
tention to the applications in superconductivity. In a
previous paper' (see also Refs. 2 and 3), we studied the
dynamics of separated vortices and derived a reduced sys-
tem of ordinary differential equations (ODE's) governing
their evolution. In the present paper we will study the
hydrodynamic limit of these interacting vortices and es-
tablish a continuum theory. The hydrodynamic equa-
tions resemble the equations in Quid mechanics and can
be used as a very efFective tool for analyzing many prob-
lems concerning the dynamics of vortices. As examples
we will study the pinning of vortex liquids by a periodic
potential, and the propagation of magnetic fields into
type-II superconductors. We will focus on the intuitive,
heuristic part of the argument, and leave the rigorous re-
sults to a separate paper. We concentrate on columnar
vortices, i.e., axial variations are ignored. In other
words, we will consider only the two-dimensional prob-
lem.

Our main motivation for studying the hydrodynamics
of vortices comes from type-II superconductivity. In the
classical mean-field picture, the phase diagram in the
H-T plane consists of three parts. In the Meissner phase
[T& T„H & H, ( T)], magnetic flux does not penetrate

1

into the bulk of the sample. In the mixed state [T& T„
H, ( T) & H & H, ( T)], magnetic fluxes penetrate the sam-

1 2

pie as quantized vortices and form the well-known Abri-
kosov Aux lattice. The rest of the H-T plane is in the
normal phase.

It is generally accepted that, when effects due to Quc-

tuations are taken into account, in a significant portion of
the 8-T phase diagram, generally close to the normal-
mixed state transition curve, the Abrikosov vortex lattice
obtained from mean-field theory can melt and form a
liquid state. The vortices lose their positional order and
the resulting "vortex liquid" has no shear rigidity at long
wavelength. It is also expected that the Aux flow of such

a vortex liquid will give rise to nonvanishing linear resis-
tivity, even in the presence of weak pinning centers such
as oxygen vacancies. This means that the material will

cease to be truly superconducting. '

Our primary interest is to study the intrinsic nonlinear
effects in the dynamics of such a vortex liquid. The work
presented in this paper and our ongoing work in this
direction are strongly motivated by similar considera-
tions in fluid mechanics. One main equation we will
work with,

p +V (vp)=0,
v= —VG,
—hG =p,

which comes from the hydrodynamics of vortices in the
Ginzburg-Landau theory, can be considered as the com-
plement of the incompressible Euler equation in fluid

mechanics,

p +V (vp)=0,
v= —V G,j.

—EG =p,
(1.2)

where V =(—B,B„). While (1.2) describes a flow in the
space of divergence-free vector field, (1.1) describes a
similar Bow in the space of irrotational vector fields.
Like its counterpart in fluid mechanics, (1.1) also admits
a "velocity-pressure" formulation:

v, +v(V v)+V qr=O,

7'Xv=0 .
(1.3)

These equations exhibit very interesting mathematical
properties. These are discussed in a forthcoming paper.

We mention in passing that, by the same token, one ob-
tains (1.2) as the hydrodynamic equations for vortices in

the solutions of the nonlinear Schrodinger equation. The
difference between this and the standard semiclassical
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limit is explained in Sec. II.
Equation (1.1) arises when we consider variations on a

scale much larger than the typical spacing between vor-
tices. It should be of relevance for regimes when the
external field is intermediate between the lower and upper
critical fields. Close to the critical fields, either there are
too few vortices and the hydrodynamic formalism is in-

valid, or the vortex cores overlap and the Ginzburg-
Landau theory has to be used. The derivation of the hy-
drodynamic equations makes use of the assumption that
the fields p, v, 6 are smoothly varying on the scale being
considered, the validity of which is very much in doubt
when pinning disorders are present in the sample. How-
ever, under coarse graining, we expect that the eSect of
the weak and dense pinning centers (such as oxygen va-
cancies} can be taken into account by a renormalized fric-
tion coefficient in the second equation of (1.1). Strong
and widely spaced pinning forces can be modeled by
source terms in the equations (see Sec. IV}.

We will also consider some preliminary applications of
the hydrodynamic formalism. One example we will study
is the pinning of vortex liquids in superconductors by
periodic potentials ~hose scale is comparable to the
penetration depth. Due to nonlinear e8'ects, we obtain
I-V curves that are very close to the ones measured in the
experiments of Worthington et al. and Palstra et al. '

The discrepancy between our result and the conventional
picture about the pinning of vortex liquids is explained in
Sec. VI.

The hydrodynamic formalism also opens up new ways
of studying dynamic instabilities in the mixed state. As
an example we study the propagation of magnetic fiux
into type-II superconductors. Here we will take the pre-
liminary step of looking for solutions which contain
propagating fronts. The stability of these fronts will be
studied in Ref. 9.

H. HYDRODYNAMICS OF VORTEX LIQUIDS
IN GINZBURG-LANDAU THEORIES

A. Derivation of the hydrodynamic equations

In this section we consider a Ginzburg-Landau model
in the absence of magnetic fields:

tt, =Au +tt (1—lul'),

where u is a complex order parameter. This model may
not be an accurate model of any physical systems, but it
serves as a crude model for a wide variety of problems,
ranging from magnetism to nematic liquid crystals. For
us, it also serves the purpose of illustrating the technical
points.

As was discussed in Ref. 1, under appropriate scaling

g, (t) = —vga(g'i, . . . , g'„), (2.2)

where

(2.3)

and n. is the degree of the jth vortex. Obviously some re-

quirements on the initial data u 0(x) are necessary for the
above to be true, but here we will not elaborate on that.
For stability considerations, we will take n =+1.

Equations (2.2) and (2.3) are the starting point of this
paper. Let us consider a cloud of vortices

[g,P2, . . . , P~ j with degrees (n &, n 2, . . . , nt't j, respec-

tively, evolving under the law (2.2}with

(2.4)

p;(x, t) =c g 5(x—g'J(t)),
n =—1

E

J

pz{x,t}=s g 5(x—g(t)) .
n =1

(2.5)

In order to have a nontrivial limit for p&,pz as s~O, we
need the intervortex distance to be of order 0(~s).
Therefore the total number of vortices should satisfy
N, =0 ( I/e). These can be specified as conditions for the
initial configuration [g(0), . . . , Pz (0)j.

Assume that p';~p; (i =1,2) as e~O. Let us
derive the equations satisfied by p&,p2. Let G'(x, t)

N= —e g~ ', n~'in
~
x—g'j {t) ~. Then we have

6'(x, t)~6 (x, t)

lnx —y p2y, t —
p& y, t d y, 2.6

i.e., G satisfies

—66 =2m(p2 —p, ) . (2.7}

A scaling factor s is added to (2.4} to guarantee that the
velocities of the vortices remain bounded as s~O and
N, ~+ ~. One can think of s as being the weight of
each vortex. In the context of superconductivity, which
we will turn into in the next section, s is the flux quantum
carried by each vortex. We will study the limit when the
density of these vortices approaches some well-defined
function.

Let

(2.1)

asymptotic analysis suggests that as 5~0,
us(x, t)~e'+*'", except at the paths of the isolated vor-
tices f g', (t),g'2(t), . . . , g~(t) j whose dynamics is
governed by a simple system of ODE's,

To derive the evolution equations, we make the assump-
tion that the velocity of the vortex at g'z is approximated
by the value of a smooth vector field v, at this point if the
degree of the vortex is —1, and is given approximately by
v2 at this point if the degree is 1. Let y be a smooth func-
tion on R with compact support. Let us compute
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pcX, tq X 2X= 6 f Kt
n'. = —1J

Vtp(g)(t))f;(t)
n. = —1C

J

B. Incomyressible Euler limit for the nonlinear

Schrodinger equation

Consider

(2.14)

Vg)(gi(t))v, (gj(t), t }
n. = —1

C

J

~f (Vy)(x)v, (x, t)p, (x, t)d x .

(2.8)

where u':R ~C'. This equation arises as a model for
the dynamics of quantum fluids. ' The vortex dynamics
associated with (2.14) has been studied in Refs. 10 and 11.
Instead of (2.2) and (2.3},we now have

Similarly, we have

p', t y y, t p, t

Integration by parts gives

p, , +V (v;p, )=0, i =1,2 .

(2 9)

(2.10)

(2.15)

where % is given by (2.3), and V =( —B„,B„). One
difference between (2.14),(2.15) and (2.2),(2.3) is that for
(2.14),(2.15) the logarithmic scaling is not required. We
recognize immediately that (2.15) is the same as the equa-
tions describing the dynamics of point vortices in in-

compressible ideal fluids where the circulation carried by
the jth vortex is 2rtnj It is w. ell known' that the contin-
uum limit of these interacting vortices is given by the in-

compressible Euler equation

This is the basic continuity equation. Next we relate v1
and v2 to G. For vortices of degree 1, we have
g'= —VG (g ), and therefore we obtain

p, +V (vp)=0,
v= —V G,
—EG =2mp,

(2.16)

n =1
J

n'. =1
J

s g vi(g'i, t)q(P~)= —s g VG(gj )gr(g'J) . (2.11)
where p is identified as the vorticity and G the stream
function. The factor 2m can be scaled away.

This line of argument suggests the following. Consider

Passing to the limit as c,~0, we obtain isu, '=—s bu'+u'(1 —~u'~i) . (2.17)

fpi(x, t)vi(x, t)p(x)d x = —fpi(x, t)VG(x, t)p(x)d'x .

Therefore we get

v~= —VG .

Similarly, we have

v, =VG .

(2.12)

(2.7), (2.10), and (2.12) are the equations we need. We
write them together as

p, , +V.(v;p;)=0, i =1,2,
—EG =2m. (p~

—p, ),
v1= VG,

v2= —VG .

(2.13}

p, +V.(vp) =0,
—AG =2',
v= —VG .

(2.13')

In the special case when all the vortices have the same
sign, say, n '= 1 for all j, then p2

=p, v2= v, p1=0, and we

get a simpler system for (p, v, G}:

Here we change to convective (instead of diffusive) scal-
ing in order to have finite velocity for the vortices. This
changes the Hamiltonian in (2.15) from the one given by
(2.3) to the one given by (2.4). Otherwise the sum on the
right-hand side of (2.15) is of order 0 (1/s). Let us con-

I 8&(x)/c
sider initial conditions of the form u 0(x)=e ' where

N —'g .
80(x)=s g tan (2.18)

j=1 j
Ig =(g, g ),j =1, . . . , N, j is distributed in such a way
that

X

s g 5(x—g)~pa(x) . (2.19)

go(x)=e g ln~x —
g~~ .

j=1
(2.20)

Then we expect that, for t )O, u'(x, t)=e' '*'"~', where
8'(x, t} and the conjugate function of 8'(, t), g'(, t) satis-
fy

V8'(x, t)=v(x, t), P'(x, t)=G(x, t), (2.21)

where (p, G, v) is the solution of (2.16) with po as initial

Notice that the harmonic conjugate function of 80(x) is
given by

N
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data. Moreover, we should have

N
y ~(t)

8'(x, t)=s g tan
j=1 x — t

(2.22)

where, for fixed t, the distribution of
I g'. (t),j= 1, . . . , N, I is given approximately by p(, t). It
would be very interesting to check the validity of these
statements even on the level of formal asymptotics.

The difference between the argument suggested here
and the standard semiclassical limit (see, for example,
Refs. 13 and 14) lies in the choice of the phase function.
In the standard semiclassical limit the phase function is
regular and independent of s. Consequently the semiclas-
sical limiting velocity fields are always irrotational. Here
the phase functions are multivalued and depend on s.
The multivaluedness of the phase functions gives rise to
quantized vortices which in turn give rise to rotational
velocity fields in the continuum limit. It should be no-
ticed that, to the leading order, the conjugate function of
the phase which approximates the stream function does
not depend on s; neither does the gradient of the phase
function.

C. Remarks on the hydrodynamic equations

(1) Comparing (2. 13') with (2.16), we see that the only
difference is in the direction of the velocity. For (2.1), the
interaction between the vortices is either attractive or
repulsive, and the force is in the direction of the position-
al vector g', —g . In contrast, far (2.14), the interaction
between the vortices is always neutral, as in ideal fiuids,
and the force is in the direction perpendicular to the posi-
tional vector. This results in the difference in the expres-
sions for v: the V operator in (2. 13') is changed to the V
operator in (2.16). Consequently, while v in (2.16) is al-
ways divergence-free, the v in (2. 13') is always irrotation-
al.

(2) Shock formation. Let us look for solutions of
(2. 13') that are independent of y. It is easy to see that
(2. 13') then becomes

U2
U, +

x
=0. (2.23)

p, +V.(vp) =0 .

(2.23) is the celebrated inviscid Burgers equation. It is
well known' that for generic smooth initial data, shocks,
namely jump discontinuities, form in the solutions of
(2.23) after finite time. These shocks can only arise from
compressive waves for which p is negative. They are of
no relevance to the physical problems considered here
since (2.13) is valid only when p is non-negative. Howev-
er, when vortices of both signs are present, we do get
such discontinuities, which represent interfaces between
patches of vortices of different signs.

(3) In (2.13), let v=(p&v&+pzv2)/(p&+pz), p=p&+p2,
then we have

the effect of annihilation of vortices which should enter in
the above equation as a sink term. Therefore we do not
expect (2.13) to be of much use when vartices of opposite
signs are mingled together. However, (2.13) is very useful
when studying the dynamics of patches of vortices of
different signs. In that case the annihilation of vortices
can be modeled by interfacial boundary conditions.

III. HYDRODYNAMICS OF VORTEX LIQUIDS
IN SUPERCONDUCTORS

A. Derivation of the hydrodynamic equations

g, = —
Vg &(g'), . . . , gN ),

J

where

(3.2)

~(k . 4)=En nj&o(~k —
C, l) (3.3)

and Eo is the modified Bessel function of zeroth order.
In the same fashion as in Sec. II A, we can derive the fol-
lowing equations for the hydrodynamics of vortices in-
teracting according to (3.2) and (3.3):

p, , +V (v;p;)=0, i =1,2,
v, =VG,

v~= —VG,
—EG+G =pz —

p~ .

(3.4)

In the more general case when the relaxation time param-
eter y is complex y = I', +iI'2, (3.2) and (3.3) are changed
to

n 'I ]m ] g
'+ I pm24 Vf. g'n;&o( lg'J'

J .~.J
where m& and m2 are absolute constants and m& &0.
Here we used the notation (v„v2) =(—v2, v, ). To get
the hydrodynamic equations in this case, we must replace
the second and third equations in (3.4) by

I )m )v)+ I 2m2v) —VG

I &m&v2+I 2m2v2 =VGj.

Our starting point is the phenomenological time-
dependent Ginzburg-Landau (TDGL) equations. In Ref.
1 we studied the vortex dynamics associated with the
TDGL equation

s y, +yiVq&= —( —isV —A) y+(I —~q)~2)q),
(3.1)

y
—A, +V&= —VXVX A (tp—Vtp—yVg) —lql2A—,2

where e= 1/~ and ~ is the Ginzburg-Landau parameter.
We are interested in extremely type-II superconductors,
i.e., x»1. (3.1) is a nondimensionalized form of the
TDGL equation in which the anly control parameter in
the equations is ~. In particular, the basic length scale we
are using is the penetratian depth, i.e., A, = l.

In the asymptotic limit as a ~0, a collection of vortices

jf&, . . . , g& I with degrees In &, . . . , nN I evolves accord-
ing to

Consequently the total mass (the area integral of p) is al-
ways conserved in time. Obviously, we are not modeling

(3.6)
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p, +V (vp)=0,
v= —VG,
—hG+G =p .

(3.7)

This is the analog of (1.1) obtained earlier by the author.
(3) Comparison with Maxwell's equations In .mks

units, Maxwell's equations'9 of electrodynamics are

Some comments about Eqs. (3.4) and (3.6) are in order.
(1) The linearization of (3.6) at a uniform state p=po

reduces to the equations studied by Ambegaokar et al. ,
'

and more recently by Marchetti and Nelson. ' As we will
see later, the nonlinear convection term is important in
modeling some physical problems, such as the propaga-
tion of magnetic field into a type-II superconductor.

(2) A special form of (3.4) was obtained by Chapman
and Rubinstein, ' who considered the case when all vor-
tices have the same index (either + 1 or —1). In this case
(3.4) reduces to

variables using the Fourier methods, and the temporal
variable using the classical Runge-Kutta methods. Fig-
ure 1 is the contour plot of p at a later time with initial
data

B. The efFect of thermal noise and pinning

Consider the dynamics of vortices interacting through
(3.2) and (3.3), and also under the influence of thermal
noises and pinning potential V:

dgj = —[Vt ff'(g'„. . . , g~ )+VV(g' )]dt+&2Tdp

and

(3.16)

p(x, 0)= sin(x) sin(y)+ sin(2x) cos(2y) .

The picture exhibits clearly the formation of cellular
structures. This is generic when the initial data have a
regular pattern.

VXH=J,

B,+VXE=O .

(3.8)

(3.9)
(3.17)

We also need the constitutive relations

B=pH, J=o(E+vXB) . (3.10)

B,=VX(vXB)

E= —vXB .

(3.11)

(3.12)

If the magnetic Reynolds number is large, Rm =
opSX »1, then the leading-order electromagnetic in-
duction equation becomes

Here Pi, . . . , PN are independent Brownian paths and T
is the temperature.

In this case, the hydrodynamics has been studied ex-
tensively in the probability literature as the "propagation
of chaos" (see Refs. 20—22, etc.}. A similar problem, the
convergence of the random vortex method, has also been
studied in the numerical analysis literature. 3'2 The hy-
drodynamics in this case is described by the mean-field

limit. If initially at t =0, s gi ',5(x—gj(0)) converges
in law to a nonrandom distribution po(x), then for t &0,
s QJ ='i5(x —g'(t)) necessarily converges in law to a non-
random distribution p(x, t), where p satisfies

gv= JXB (3.13)

One additional equation is needed to relate v to B. In the
flux-flow theory, this is simply given by the phenomeno-
logical equation

p, +V.(vp) = Tb p,
v= —VG —VV,
—KG+6 =p,

(3.18)

balancing the Lorentz force with the frictional force,
where ri is a phenomenological mobility coefficient. Us-
ing (3.8) and (3.10), we get

with initial data p(x, 0)=po(x). These equations will

serve as the starting point in the next section where we

study the pinning of vortex liquids.

gv= —(VXB)XB .1

p
(3.14) IV. PINNING OF VORTICES

BY A PERIODIC POTENTIAL

B,= V(B VB) . —1
(3.15)

We carried out a preliminary numerical study of the
solutions of Eq. (3.7). For simplicity we adopted the
periodic boundary conditions. We discretize the spatial

In the two-dimensional geometry considered here,
B=(O,O, B) and v=(v, , vz, O), and hence we can write the
previous equations as

B +V (vB}=0

gv= —8&8, q=gp,

We mentioned earlier that the motion of vortices
causes the conversion of electromagnetic energy to kinet-
ic energy, and hence resistance. Fortunately, real materi-
als contain all sorts of impurities (or defects} such as oxy-
gen vacancies, grain boundaries, and twin boundaries.
These impurities or defects act as barriers or pinning
centers to impede the motion of vortices. The efFect of
pinning on the overall dynamics is an extremely impor-
tant problem which has attracted considerable attention.
In this section, we study the pinning of vortices using the
hydrodynamic formalism developed earlier. As we
remarked in the Introduction, we model the weak pin-
ning forces by a renormalized friction coefficient in (3.4)
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and (3.6), and the strong pinning forces by a source term
in these equations [see (3.18)]. We assume that these
strong pinning centers exist on a scale much larger than
the typical spacings between vortices, and much smaller
than the sample size. Twin boundaries, grain boundaries,
and columnar defects can all fit this description. %e will
examine the collective effects of these pinning centers on
a cloud of interacting vortices. As a first step, we will
model these effects by a periodic pinning potential.
Currently, we are studying the effects of random poten-
tials and extensions to higher-dimensional models.

Before studying the efFect of periodic potentials an a
cloud of vortices, let us consider a simpler example,
namely, a single particle on the line traveling in a period-
ic (with period [0,1]}potential V under the influence of
thermal noise. We will assume that the particle obeys
overdamped dynamics, i.e., the inertia is negligible com-
pared with friction. This is consistent with the TDGL
models for the dynamics of vortices in superconductors.

Consider the Langevin equation satisfied by the trajec-
tory of the particle, x (t):

dx =[F—V'(x)]dt+&2TdP . (4.1)

(x (&) ) (4.2)

Here ( ) means averaging with respect to the thermal

Here F is the mean force, P is the standard Brownian
motion, and T is the temperature. This is the classical
problem of a Brownian particle in a periodic potential.
In the context of superconductivity, it has been used to
model, among other things, the pinning of vortices near
H, . We will use it here ta illustrate the difFerent phe-

nomena caused by nonlinear interactians between vor-
tices. We are interested in the relation between F and
ll,(F}defined by

FIG. 1. Behavior of solutions of (3.7). Displayed is the contour of p with initial data p(X,O) = sin(x) sin(y)+ sin(2x) cos(2y). Re-
gions of high density of vortices form a cellular pattern.
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noise. A,(F) is the average asymptotic velocity of the par-
ticle.

The F-A, relation corresponds roughly to the I-V
curves often measured in experiments (where F, the ap-
plied force, is proportional to the applied current, and
A,(E) corresponds to the induced voltage). This relation
gives the effective constitutive equation replacing the
standard Ohm's law for normal conductors. Of special
interest is the behavior of A,(F) for small F. A truly su-
perconducting state should have zero linear resistivity
when the current density is infinitesimally small, i.e.,
A, '(0)=0, giving rise to a nonlinear response function.
Such a nonlinear behavior is indeed observed in experi-
ments on high-T, materials (see, for exainple, Refs. 7 and
8). What is not yet completely understood is the origin of
this nonlinear behavior. One attractive proposal is to at-
tribute this to the existence of a vortex glass state in the
presence of weak pinning centers (see Refs. 5 and 6).

Returning to (4.1) and (4.2), we can express A,(F) as

A,(F)=f [F—V'(x)]m(x)dx, (4.3)
0

where m is the invariant measure associated with (4.1):

I [F—V'(x) ]m I „=Tm„„. (4.4)

We can evaluate (4.3) numerically and obtain the E-A. re-
lation. This was done, for example, in Ref. 25. The im-
portant features are the following. If T =0, then

A,(F)=0 for F&F, , (4.5)

where F, is the maximum value of V'. If T & 0, then we

always have a linear relation between F and A, for small F,
i.e., A, '(0)%0, and A, '(0) is proportional to T (= tempera-
ture) for small T.

Next we come to the main interest of this section: pin-
ning of vortex liquids by a periodic potential. At this
preliminary stage, we will restrict ourselves to the one-
dimensional version of (1.1). This might be of relevance
for studying pinning by twin boundaries when the applied
current is in the direction of the twin and the Lorentz
force is in the direction perpendicular to the twin. More-
over, we expect that, at least qualitatively, the overall pic-
ture described below should also hold for (3.10) with a
two-dimensional periodic potential.

In the presence of thermal noise and the pinning poten-
tial, (1.1) changes to (in one space dimension)

U
2

1

u, + +uV" —f v (y, t) V"(y)dy =Tu„„(4.7)
0

with initial data u (x,O) =uo(x }satisfying

f uo(x)dx =F .

To define A,(F), let X(r}be the solution of

X(r) =u(X(r), r )

with X(0}=xuC[0,1]. Define

A, (F)= lim
X(r)

t~+m t

(4.8)

(4.9)

(4.10)

~2
1+VV"—f 8'(y)V"(y)dy =TO'„„

0

and f 'i}'(x)dx =F. When T&T' and 0&E&F,(T), i}'

has zeros in the interval [0,1]. A typical V is displayed in

Fig. 4. To compute A,(F), we can replace (4.9}by

(4.11)

(4.12)

0.8-

07-

0.6-

It is easy to see that A,(F) does not depend on xu. In the
case when T=0, the solutions of (4.7} may contain
shocks. If the particle X(t) falls into the shock, then we

specify that the particle travels with the shock.
The behavior of A,(E) for the potential

V"(x)=2 sin(2mx) is displayed in Fig. 2, at different tem-

peratures T =0, 0.01, 0.03, 0.04, 0.07, and 0.1. For T =0
we get qualitatively the same kind of behavior as for the
simple model (4.1). However, the picture changes quali-

tatively for small but finite T. For the present model,
there is a finite value T', and a function F, ( T) defined for
T&T', such that if 0(T&T' and 0&F(F,(T) then

A.(F)=0. This is depicted in the phase diagram in Fig. 3.
Notice that Fig. 2 is qualitatively very close to the experi-
mental results of Refs. 7 and 8.

The phenomena described above can be explained as
follows As t. ~+ e&, v(, t) converges to a steady-state
solution of (4.7), V( ), which satisfies

p, +(pu }„=Tp„„,
v =—(6„+V„)+E,

—6 =p

(4.6)

0.5-

p4-

0.3-

0.2

where Vis a periodic potential with period [0,1] and F is
the mean applied force. We imagine that there are many
twin boundaries inside the sample, so the period of the
potential is sma11 compared to the sample size, which is
taken to be infinite here. We will study periodic solutions
of (4.6).

(4.6) is equivalent to

p. 1

0 0.2 0.4 0.6 0.8

FIG. 2. F-A, curves for the one-dimensional vortex liquid

model in a periodic potential. The vortex liquid is pinned even

for small but positive temperature.
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evolution of magnetization curves, Vinokur, Feigel'man,
and Geshkenbein studied the flux creep in the presence of
impurities with a renormalized mobility coefficient which

depends exponentially on the activation barrier, which in

turn depends logarithmically on the current,

Unpinned phase

J,
g(J)=rt e ' ' U(J)=U ln (5.1)

This renormalized mobility coeScient accounts for the
average effect of the impurities. Notice that it depends
on the current density. With (5.1), (3.15) becomes
(neglecting coefficients)

B,=V(lVBl VB), m = +1 .
Uo

(5.2)

FIG. 3. Schematic phase diagram for the pinning of vortex
liquids.

It is easy to see that when V has zeros we get A,(F)=0.
We should emphasize that the above is based on the

hydrodynamic formalism which in the present situation
is given by the mean-field equations (4.6). Thermal fluc-
tuations are of the order (1/~)'/~. Therefore, in the
large-It limit, %hey do not contribute to the leading order.
If we do take into account the thermal noise, then the re-
sults should be modified by a term of order (1/z)'/ .

V. PROPAGATION OF MAGNETIC FIELDS
INTO TYPE-II SUPERCONDUCTORS

As another example of the application of the hydro-
dynamic formalism, we study the propagation of magnet-
ic fields into type-II superconductors. This is motivated
mainly by the theoretical work of Vinokur, Feigel'man,
and Geshkenbeinz and the experimental work by Welp
et a/. To explain recent experimental results on the time

v(x) p, z

0.15

0.1

0.05

Or, in terms of J,

J, =~(IJI J). (5.2')

(5.3)

Here we used the notation x+ = max(x, 0). For these
solutions, the fronts at time t are located at x =ky(t),
with

=c t 1/(m+2) (5.4)

where c& is related to co by a simple relation. It is also
known that the propagating fronts are highly stable un-
der the dynamics given by (5.2).

However, recent experiments by Welp et al. suggest
that the flux fronts in type-II superconductors are ex-
tremely unstable. Since these instabilities cannot be stud-
ied within the flux creep theory of Vinokur, Feigel man,
and Geshkenbein, we are motivated to study the possi-
ble dynamic instabilities caused by nonlinear interactions
in the vortex liquid. Here we will only report our prelim-
inary results on the existence of planar fronts. The dy-
namic instabilities of these fronts will be studied in Ref.
9.

This is a well-known equation which occurs in models of
filtration of gases in porous media. Unlike the standard
diffusion equation, this equation supports front propaga-
tion with a finite speed. In particular, it has the following
self-similar solutions for arbitrary co & 0:

Ji(x, t)=0,
J2(x, t)

1 ill X
+~~ 0 2(m +1)(m +2) t /~~+ ~

Co

-0.05

-0.1

-0.15

-0.2 I

0.2
I

0.4
I

0.6
I

0.8

The thickness of the flux front is on the order of the
penetration depth A, . This parameter was set to be 1 in all
previous discussions. In order to study front propaga-
tion, we must restore this parameter. This has the effect
of changing Ko(x) to Eo(x/A, ). Therefore we change
(3.7) to

FIG. 4. Typical pro51es of 8' in the pinned phase. Notice that
8 contains zeros. This is the reason why the vortex liquid is
pinned.

p, +V.(vp)=0,
v= —VG,
—A, hG+G =p .

(5.5)
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Atx =1,we chose

pi(t)=GI(t) =0 (5.8)
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