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Impurity states in doubly doped systems: Investigation of donor-donor and donor-acceptor pairs
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In a recent paper, Yi and Neumark [Phys. Rev. B 48, 17043 (1993)] determined the effective radii of
donors and acceptors in ZnSe:Na from the time decay of the close pairs. The pair decay rate used is pro-
portional to an overlap integral between donor and acceptor wave functions. We show that such an in-
tegral as well as the hopping matrix can be used for both donor-acceptor and donor-donor systems. The
density of states, calculated from these integrals, is capable of predicting the shift of conductivities ob-
served in experimental results. The calculation for the metal-nonmetal transition of Si: P,B is in good

agreement with recent experimental findings.

A number of measurements and calculations have at-
tempted to describe, both quantitatively and qualitative-
ly, the influence of the donor-acceptor and donor-donor
pairs in the luminescence and metal-nonmetal (MNM)
transition of semiconductor systems.! ! Recently Yi and
Neumark! have determined the impurity radii of
ZnSe:Na from the time decay of the donor-acceptor
pairs. The pair decay rate used is proportional to an
overlap integral between the wave functions of different
donor and acceptor radii. It can be expressed in the
form!*3

S(R)=f(a,B,R) . (1)

In deriving this equation, it was assumed that a=(1/a,),
where aj, is the donor radius, B=(1/a ,), where a 4 is the
acceptor radius, and R being the separation between
pairs. The overlap integral derived for shallow doubly
doped systems is written as’
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S(R)= 8y - H_exp(l—y)R
(1—y°) y
4[1—exp(1—y)R*]
+
(1—p?)R*

exp(—R*),
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where y =a, /a;, and R*=R /a,. Here we identify a, as
acceptor or donor, i.e., a, =a ,, a,=ap, or a,Fap (a,
being a different kind of donor). With the substitutions of
y=a/B and R*=PBR, Eq. (2) reduces to that given in
Ref. 1 [i.e.,, Eq. (5) of Ref. 1]. The hopping matrix ele-
ments are obtained as

4aB)”?
V R —_——n
R (a*—B%)R
X {2Bexp(—aR)
+[(a*—B*)R —2B]exp(—BR)} . (3)

The above equations (2) and (3), were derived from the
momentum transform, for the overlap S(R) and
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Coulomb hopping V(R) integrals, respectively. For two
functions f,(r) and f,(r—R) we have the overlap

S(R)= [drfy(r)f,(r—R). @)
It can be written in momentum space as
S(R)=(—21-)—3fdpf,(p)fz(p)exp(ip-R) : 5)
T
where
~ 1
fl(P)=8\/7Ta5/2m (6)
and
— 1
=8V ap P ——— . (7)
fz(P) ﬂB (B2+p2)2
For the hopping term, we have
V(R)= [drg(r)f,(r—R), ®8)
where
fi(r)
=, 9
g(r) el 9)

Equation (8) can be expressed in terms of momentum
space as

1

V(R)=—— [dpg(p)f,(plexplip-R) , (10
(2m)
where
4
— 3/ 172 s an
gp)=(a’/m) @+p?)

and f,(p) is given by Eq. (7).
We calculate the MNM transition by the Hubbard
model when’-®
wW/U=1.15, (12)
where U, the correlation energy, is given by
U=0.96E; (Ep being the isolated binding energy),”®
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FIG. 1. Overlap S(R) and hopping ¥V (R) integrals as a func-
tion of R for Si:P and Si:P,As systems.

and W is the bandwidth and it is given by
W=2Z|T(R)| , 13)

where Z is the coordination number for a particular ar-
rangement of centers. Here, we carried out the calcula-
tions averaging three different structural arrangements of
the centers (cubic, body-centered cubic, and diamond) to
ensure that the results are not sensitive to a particular
choice of Z (i.e., lattice). T(R) is defined by”?

T(R)= [ f4n)Hf r—R)dr . (14)

In the above equation H is the Hamiltonian including
the kinetic-energy operator and the electron-donor
(-acceptor) interactions. It is written as

2
T(R)=-— |v(R)+ 3R | | (15)
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FIG. 2. T(R) as a function of N for different systems. The
arrows indicate the impurity critical concentration for the
MNM transition.
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FIG. 3. Impurity density of states D(E) as a function of
effective Rydberg for different systems.

where K is the dielectric constant of the host material.
Both U and T(R) are scaled to the binding energy of
Si:P, i.e., E5=45.5 meV.

In Fig. 1 we show the overlap and hopping integrals
for Si:P,As and Si:P systems. In Fig. 2 we show T(R) as
a function of the impurity concentration N, for Si:P,As,
Si:P, and Si:P,Sb. The arrows indicate the calculated
critical concentration N for the MNM transition. The
values of N obtained from Eq. (12) are N(Si:P,Sb)
=3.4X10"% cm™3, Nc(Si:P) =3.9%10® cm™3, and
N((Si:P,As)=5.4X10"® cm 3. We assume that the con-
centrations of the two donors are equal.

To investigate any possible variation in the thermo-
dynamic and transport properties, due to these doubly
doped systems, we calculate their density of states. The
density of states D (E) is assumed to be parabolic and it is
given by

D(E)={2[1—(E/W)*|V2/aW} fE<W . (16)

The results for D (E) are shown in Fig. 3 for the ob-
tained N’s which agree with experiments.®® The effects
of the doubly doped systems are reflected in the density
of states, producing a different enhancement at the mid-
dle of the bands, where the Fermi energy is situated.
This situation will cause, for the same impurity concen-
tration, a shift in the specific heat and conductivity as
well. In fact a shift was observed for the conductivity of
Si:P,As compared to Si:P.°

With the scheme outlined above we have performed
the calculation for the MNM transition of the donor-
acceptor system Si:P,B. We found N.~4X10"® cm™3.
This value is consistent with recent experimental
findings.!%!!

Briefly, we have shown that the donor-acceptor pair
scheme used for luminescence is equally used for doubly
doped semiconductor systems.
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