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Electron-phonon interaction in one dimension: Exact spectral properties
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One-electron spectral functions for a one-dimensional continuum model including electron-phonon
coupling are calculated exactly. The electrons coupled to the phonons represent a Luttinger liquid.
Results are presented for an Einstein model for spinless electrons and for the model including
spin. Apart from Luttinger-liquid features, the spectra show a rich satellite structure with peak
separations partially determined by matrix-element effects. The use of Migdal s approximation
neglecting vertex corrections fails to reproduce the exact spectra even for an effective bandwidth
large compared to the phonon frequency. The relevance to high-resolution valence photoemission
from quasi-one-dimensional conductors is discussed.

Photoemission spectra can be strongly influenced by
the electron-phonon coupling. For the case of core lev-

els this is rather well understood as simplified models
can be solved exactly. An approximate treatment of
valence photoemission was presented in a classical pa-
per by Engelsberg and Schrieffer (ES).s In the spirit
of Migdal's theorexn4 they calculated the single parti-
cle Green's function t in the self-consistent Born ap-
proximation for an Einstein and a Debye model. For k
values corresponding to energy differences to the Fermi
energy of the order of the energy of an Einstein phonon
uo, they found strong deviations &om the quasiparticle
picture. In their calculation for a three-dimensional (3D)
system ES approxixnated the free electronic density of
states by its value at the Fermi surface. The accuracy
of the ES one-particle spectra for 3D systems is not easy
to estimate, as the calculation of higher order correc-
tions is diKcult. In this paper we show that exact spec-
tra for the model with a constant density of states can
be obtained, by observing that such a density of states
occurs in a 1D model with a linearized energy disper-
sion. This model can be solved exactly by bosonization
for arbitrary phonon dispersion uq in generalization of
the method used for the electron-electron interaction.
For a Debye model one could alternatively calculate the
Green's function using a Ward identity. ' Recent high
resolution valence photoexnission measurements on quasi-
one-dimensional conductorss seem to verify the I uttinger
liquid picture expected theoretically due to the electron-
electron interaction. For a discussion of the low energy
spectra of these materials a detailed understanding of the
in8uence of the phonons on the spectra is indispensable.
This we provide in the following.

Migdal's theorem is ixnportant for the treatment of the
electron-phonon coupling in ordinary metals and is a part
of the Migdal-Eliashberg theory of superconductivity.
Our exact solution presents a clear example of the limited
value of the "proof" using low order perturbation the-
ory. The 1D electrons coupled to the phonons represent
a Luttinger liquid, which cannot properly be described

using Migdal's approximation, which completely neglects
vertex corrections.

The transition from spinless electrons to a model in-

cluding spin does not change the spectra in the self-

consistent Born approximation. Our exact spectra, on
the other hand, show that there is a qualitative differ-

ence due to spin-charge separation as it is known kom
the model with electron-electron interaction. The in-

clusion of both electron-phonon and electron-electron in-

teraction is straightforward using bosonization but will

not be discussed here. i4 With this technique one natu-
rally calculates the one particle Green's function G(z, t).(
To obtain the spectral functions p&» (k, u) which deter-
mine the photoemission (inverse photoemission) spectra
a double Fourier transformation is necessary. This we

perform by a generalization of the technique introduced
in Ref. 12.

We start &om the Haxniltonian

II = ) ekctkc„+) urqbtb,

k

+) g(q)
i , (b, + b ,),

k,q

where ck (b~) are the electron (phonon) annihilation op-
erators. As we assume the electron-phonon coupling
strength g(q) to be nonzero only for iqi ( q, with

q, &( k~, we linearize the energy dispersion around
the Fermi points, i.e. , ei, = v~(ski —k~) as in Tomon-
aga's seminal paper. After bosonizing the electronic
degrees of &eedom, a canonical transformation reduces
the Hamiltonian to a sum of mixed, but independent
electron-phonon boson modes with energies 0

q, 1/2

(vz2q +u )/2 p Kvz~q —~ ) /4+4g v~q2ur~jii2, where

g = (L/2x)g (q) with L the length of the system. In
order to calculate the Green's function G (x, t), where
a = +, (—) denotes the right (left) moving branch of
electrons we bosonize the field operators g (x) as in the
electron-electron interaction case ' and obtain G (2:,t)
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where

j 2 —iqx + 2 iqx) itiq „tX pc+ e —,q, v

) (2)

2
C

vy' Q (+) Oq ~ 0 —QJ

4tt y ( q( Aq „(A22
—02,)

These coefBcients obey the "sum rule" c+ q ] + c+ q
2 2

C g C 2 1.
In the following we restrict ourselves to an Einstein

model with q-independent frequency tdp and coupling
constant g for ~q~ ( q, . The relevant dimensionless cou-
pling constant is given by P—:g2/(4fpv~). The q de-
pendence of the two boson modes is shown in Fig. 1 for
an intermediate coupling strength P = 0.1. The model
becomes unstable for the critical coupling strength P, =
0.25, where the renormalized Fermi velocity vz given by
the slope of Oq i for q -+ 0 goes to zero. In the limit
tdp M oo with gz/up and q, fixed the electron-phonon
model corresponds to an attractive electron-electron in-
teraction, where this instability is known to occur. In this
limit it is therefore obvious that the 1D electron-phonon
model is a Luttinger liquid. For arbitrary parameters this
follows &om general arguments by Haldanes and (or) our
explicit result Eq. (2) for G(z, t). The anomalous dimen-
sion is determined by

t' 2P ) 1

~1+ /1 —4P&,/1 —4P' (4)

i.e. , the leading order is Pz gq. If the Green's func-
tion is calculated by perturbation theory for the self-

using the eigenvectors of the coupled boson problem. As
p (ks + k, td) = p (k~ —k, —e), where ur is measured
relative to the chemical potential and k = k —k~, we
only calculate

ikp x 27r
iG~+(z, t) = —e'" *exp ) )

q)0 v=1,2

energy no indication of Luttinger liquid. behavior shows
up in the Born approximation g, which is identical to
the self-consistent Born approximation. In order to cor-
rectly describe the anomalous dimension perturbatively
one needs a resummation of all fourth order diagrams
(see Fig. 2) including the "non-Migdal" diagram 2(c).
The necessity to include this diagram can most simply
be seen in a simpli6ed version of the present Inodel with
only "right moving" electrons and phonons analogous to
the g4 model in the electron-electron interaction case. 2

In this model omission of diagram 2(c) leads for small
negative k to a wrong splitting of the main peak of the
spectra in fourth order perturbation theory. An extended
discussion of that problem will be given in Ref. 14.

In order to obtain the spectral function p~ (k, a) a dou-
ble Fourier transform is necessary. The summation (in-
tegration) in the exponent on the rhs of Eq. (2) can-
not be performed analytically. An additional problem
is given by the slow decay of G(z, t) for large argu-
ments and the singular contribution of the factor pre-
sented by the noninteracting Green's function Glol(z, t).
We therefore consider large but Rnite systems and ex-
pand G(z, t) recursively in a Laurent series in exp (i & z)
as in Ref. 12, which allows us to perform the x inte-
gration analytically. At this point we have to introduce
the cutoH' q, which we usually take much larger than
kp = (dp/us', i.e. , the e8'ective bandwidth us'q, is chosen
much larger than urp. As long as ~k

—kF~ (( q, the re-
sulting spectral functions p (k, ~) are insensitive to the
value of q, . The time Fourier transform is done numer-
ically with an exponential damping factor exp( —g~t~),
corresponding to a convolution of the spectrum with a
narrow Lorentzian. This way the discreteness of the spec-
tra for large but 6nite systems no longer shows up. For
all calculated spectra the sum rule for the total spec-
tral function Idun [p+(k, u) + p+(k, u)j = 1 is numeri-
cally ful6lled with very high accuracy.

In Fig. 3 we show results for p++(k, ur) for the same
coupling strength as in Fig. 1 and various values of the
momentum k. The corresponding results using second
order self-energy (the result of Engelsberg and Schrief-
fer for finite systems including a Lorentzian broadening)
are shown in Fig. 4. The absolute values of the peak
positions in the exact spectra in Fig. 3 are indicated in
Fig. 1. In order to understand the peak structure the
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FIG. 1. Dispersion of the two independent boson modes for
the coupling strength P = 0.1 including the absolute values

of the peak positions of Fig. 3. The lower solid line presents
Oq ~ and the upper one Oq q. The dotted lines indicate the
small k behavior of Oq ~ and the large k behavior of Oq q. For
the dashed line see the text.

FIG. 2. Second and fourth order diagrams for the
self-energy. The diagram 2(c) is the one neglected in the
Migdal approximation.
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Lehmann representation 1.8

l
p~~(k (u) = ) A((nq „))h u) + ) nq „Oq„

(~, .} k q~ )
Xbqkg nq „q&

'-12
V

o 0.6
3

where A(, I, ~~~i ments
boson occupation numbers is h 1 ful

'
he p as in the case of

imp e expj.icit resultsthe e ectron-electron interaction Sim 1

or t e matrix elements can be given for the -t
models 1»14

or e g4-type

The threshold of the (unbroadened) spectral function
p++(k~ + k, u) is determined by n& z

——1, with all other
Aq zero, i.e., u = —Og i The position of the main

peak for k & 0 and ~sg~ ( up in Fig. 3 ' b hi
es o energy. Increasing ~s1,

~

this peak looses weight

and broadens with the maximum approximately at v~k
due to the decomposition of k into many small negative
momenta k, with 0& ~

= G~~k, ~. Decompositions of k

involving at least one larger ~k;~ with energy Af, 1 are

weight of the "first phonon satellite" at u —0& 2
in-

creases and for sg/urp ~ —2 it has become the new "main
peak. " This exchange of peak character also occurs in
the approximate spectral function Fig. 4 resulting from
the second order self-energy calculation. The main dif-
erences between the exact and approximate spectra are

the power law asymmetry of the peak at threshold t ical
for Luttin e 1

'
ger liquids and the more pronounced satellite

es o ypica

structure in the exact solution. The power law behav-
ior is due to decompositions of k involving small positive

he nth order phonon satellite starts at —n~o for

preference of this decomposition into n nearly equal mo-
menta k/n is a matrix element effect ~4 B ' '

hy increasing the
coupling strength more and more satellites show up. For
~sq ~

&& ~Ks ( && up (not shown in Fig. 3) all these satel-
lites end up in the remaining peak at u = ey, which also
foor the broadening p = 0 has a finite width and resembles
the Lorentzian of second order perturbation theory. i4
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For the model including electron spin the electron-
p onon coupling term in Eq. (1) involves the charge den
sity, while the spin degrees of freedom are not influenced

y the phonons. The charge part of the Hamiltonian has
the same form as in the spinless model but with the re-

function G~ (z, t) for the model including spin

iG~~ (z, t;g) = iG+(z, t; V2g)iG+(z, t;0) . (6)

Results for the same g value as used for the spinless model
in Fig. 3, which corresponds to P = 0.2 f th
o e c arge degrees of freedom, are shown in Fig. 5.
The corresponding approximate spectral functions result-
in &om the sec
by Fi . 4. In

g econ order self-energy are again t dpresen e
y ig. . n Fig. 5 the spin-charge separation of the

uo is t e prominentthreshold peak for k ( 0 and ~s & ~ '
th

eature. There are power law singularities determined b
the anomalous dimension given in Eq. (4) at ur = 8+k
and ~ = v~k, where v& is the slope of 0 in the 1'

of small . On
in e imit

s lit'
q. ne should note that for small cou 1 th

p i ting between these peaks is of ord b t
coup ing e

r erg, u too tain
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FIG. 4. Approximate spectral function following Ref. 3 for

the same parameters as in Fig. 3.
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FIG. 3. Exact s ectrp ral function for the spinless model for
P = 0.1. The broadening p /can ndo an e& & y'coo are chosen 0.02.

FIG. 5. Exact spectral function for the model including
spin for the same parameters as in Fig. 3.
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an indication of it in perturbation theory the calculation
of all fourth order self-energy diagrams is necessary. For
~ey[ & ufo the "spin peak" at a = v~k is the larger one

and for increasing [k[ the "charge peak" decreases and
gets broader as in the spinless case. Due to the second
Green's function in the parentheses on the rhs of Eq. (6)
the "spin peak" is at the "asymptotic" position ~ = vpk
for aU values of k. For ek/ufo = —2 the peak that started
out as the first phonon satellite for small ~k[ has almost
merged with the spin peak, in order to present the main
peak. The behavior of the higher phonon satellites is
similar to the spinless model. For [ek[ = uo the differ-
ence between exact and approximate spectra is large, but
increasing [es

~

it becomes smaller more quickly than in

the spinless model, because of the "spin peak. "
The results presented show that a reasonably strong

coupling of the electrons to an Einstein mode in a quasi-
one-dimensional conductor has a strong influence on
angular resolved photoemission spectra and with the en-

ergy resolution available should be detectable. The de-
tailed understanding of the electron-phonon interaction
in 1D not only for weak coupling can be useful quite gen-
erally for systems where the electron-phonon coupling is

large, e.g. , doped C60 compounds. A detailed presenta-
tion and interpretation of exact spectra also for a Debye
model, inclusion of the electron-electron interaction, and
the comparison with various approximations will be given
elsewhere.
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