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Ag-Au superlattice band structure
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The dispersions of the sp bands in Ag-Au(111) superlattices are calculated. The calculation employs
the nearly free-electron approximation for the wave functions within the Ag and Au layers. A one-band

model for the superlattice band structure is developed and applied to the present system. This results in

a simple analytic formula for the band dispersions of the superlattice geometry. The calculated band
dispersions are in good agreement with experimental results determined previously by photoemission
spectroscopy.

I. INTRODUCTION

The study of epitaxially grown multilayers and super-
lattices is an important field of research. A fundamental
effect of the superlattice modulation in a crystal is the
modification of its band structure. This leads to possibili-
ties of band-structure engineering, which is an important
concept in modern device and material design strategies.
Although superlattices have been used in many applica-
tions, there remain many interesting scientific and tech-
nological issues to be investigated in detail. Specifically,
there are few superlattice systems for which the electron-
ic band dispersions E(lt) have been determined experi-
mentally over a wide energy range. For metallic superlat-
tices, the Ag-Au(111) system is one that has been investi-
gated experimentally. ' The measured energy dispersions
of the sp band of this system show gaps caused by the su-

perlattice modulation at the expected locations in the
Brillouin zone.

Motivated by the availability of experimental data for
Ag-Au(111) superlattices, we present in this paper a mod-
el calculation for this system. The purpose of this work is
to illustrate some of the essential features of the superlat-
tice electronic band structure as a function of the lattice
modulation. Although modern first-principles calcula-
tions or simulations using large computers are capable of
delivering this type of information, the complicated for-
malism and expensive execution tend to be overwhelm-
ing. The cost issue is especially critical when the super-
lattice unit-cell size becomes large. Our approach here is
quite different. We use very simple models to solve the
problem analytically, yielding an expression for the band
dispersions of the superlattice in terms of the band pa-
rameters of the constituents. These analytic results can
then be used to predict the general trend and behaviors as
functions of the superlattice geometry. The system
chosen for this study, Ag-Au(111) superlattices, has a
particu1arly simple sp band for each of the two com-
ponents, making an analytic solution possible. Our re-
sults are fairly accurate, to within about +0. 1 eV, as
compared to the experiment. The simplicity of the ana-

lytic formalism and the numerically realistic results make
this calculation of pedagogical value. The material
presented here is suitable for use as a take-home problem
for graduate courses in solid-state physics.

The main ingredients of our model calculation include
the nearly free-electron approximation for the sp bands of
Ag and Au, and a straightforward application of wave-
function matching and the Bloch theorem at the layer
boundaries. The model will be developed in Sec. II
below. After that, we will make a comparison with avail-
able experimental data obtained by photoemission spec-
troscopy.

II. MODEL DEVELOPMENT

A. Nearly free-electron approximation
for the sp band of Ag and Au

The d bands of Ag and Au are at a few eV below the
Fermi level. Between the d bands and the Fermi level,
the electronic states are mostly of sp character, and the
band structure can be described quite well by the nearly
free-electron approximation. Only two reciprocal-lattice
vectors are needed in the Fourier expansion of the wave
functions for a good description of this portion of the sp
band. The method of nearly free-electron approximation
can be found in any solid-state physics textbook. For a
review of the application of the nearly free-electron
method to the noble-metal band structures, we recom-
mend the paper by Smith. We will write down the basic
formulas for the [111]direction in the following, mainly
for the purpose of defining the notations and quantities
relevant to our calculations. The wave-function P(z) for
either Ag or Au is given by

P(z) =exp(ikz)+R exp[i(k —g)z],
where k is the wave vector, R is the ratio of coefficients
between the two Fourier components, and g=2p is the
primitive reciprocal-lattice vector in the [11 1] direction.
The relation between p (distance between the zone center
and zone boundary, kt L ) and d (atomic layer spacing) is
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given by

p=krL =n/d. . (2)

The Fourier expansion of the crystal potential is given by

U= V exp(igz)+ Vgexp( ig—z),
where V is real. Working within the subspace spanned

by exp(ikz) and exp[i(k —g)z], the eigenvalue equation
for the energy E is given by

(fi /2m )k —E Vg

(A' /2m)(k —g) E-=0. (4)
Vg

Solving this 2X2 determinant equation, we obtain the
standard result

e(k p}=E+—e(p}—[V +4Ee(p)]'~2, (5)

which together with Eq. (1) gives the wave function as a
function of E. An analysis of Eq. (5) shows that there is
an "energy gap" of size ~2V

~
at k =p (the L point in the

Brillouin zone). Within this L gap, the wave vector k be-
comes complex, k =p +i g, and the solution given by Eq.
(1) represents nonpropagating waves. The clean (111)
surface supports a surface state, which is a nonpropagat-
ing solution that satisfies the vacuum boundary condition
(see the paper by Smith for a detailed discussion). This
gap separates two branches of dispersion curves
representing propagating waves with real k. For Au and
Ag(111}, the lower branch is occupied, and the upper
branch is empty. The Fermi level lies within this gap.

The parameter V is determined by the size of the gap.
For Ag(111),

~
V ~=2. 1 eV. A numerical evaluation of

the above equations for the sp band of Ag near the gap
shows a small but significant deviation from the experi-
mental results (the curvature of the band does not match
the experimental results). This is because the mixing
with other bands is not totally negligible. A first-order
correction of the above model to account for the "multi-
band effects" can be made to bring the model calculation
and the experimental band dispersions into good agree-
ment. This can be done by either adjusting the midgap
energy position or by using an effective electron mass.
In our treatment here, we choose to use an effective elec-
tron mass m =0.74m„where m, is the free-electron
mass. The energy reference E =0 for our work will be
the Fermi level. This is located at 0.33 eV above the
lower edge of the I. gap, so EL = —0.33 eV for the lower
edge. These three parameters EL, Vg, and m provide a
complete specification of the band dispersion and corre-
sponding wave functions of the occupied sp states of
Ag(111) relative to the Fermi level. The range of validity
extends to about 4 eV below the Fermi level.

The occupied branch of the Au(111) sp band near the
Fermi level can be described well by a shift of the corre-
sponding Ag dispersion by 0.77 eV toward higher binding

where e(x) =R x /2m. This equation gives the wave vec-
tor k in terms of the energy E, i.e., the band dispersion.
We also get

R =(E—A' k /2m)/V

energies. Thus EI = —1.1 eV for Au(111), and the other
two parameters V and m are taken to be the same as
those for Ag(111).

The band dispersion does not depend on the sign of V .
The sign comes into play when an interface is present in
the system, because the phase of the crystal potential at
the interface will depend on this sign. Here we choose
the origin of our coordinate system midway between two
(ill) atomic planes, and with this choice V = —2. 1 eV.
This corresponds to the so-called Schockley-inverted
case, and the wave function is p like (s hke) at the lower
(upper) edge of the gap. ' ' If one chooses the origin at
an atomic plane (as done by Smith ), the sign of V be-
comes positive. Our choice is more convenient for the
superlattice geometry, because the boundary between
neighboring Ag and Au layers is midway between two
atomic planes.

Because of the reQection symmetry exhibited by U, the
most genera1 solution at a given energy E in either Ag or
Au is a linear combination of P(z) and P( —z), where P(z)
is given by Eq. (1). Please note that taking the complex
conjugate of P does not necessarily yield an independent
solution at the same E. For nonpropagating solutions, it
is easy to show that P' 0:P.

B. One-band model for the superlattice

By "one band, " we mean that the superlattice band is
synthesized from the sp band of Ag and Au only. Other
bands (such as the d bands) are ignored. We will ignore
the small difference in lattice constant between Ag and
Au. Figure 1 defines the geometry of one period of the
superlattice. The Ag (Au} slab consists of X, (N2) atorn-
ic layers, and the origin is taken to be midway between
the rightmost Ag atomic plane and the leftmost Au atom-
ic plane. We wi11 assume that the nearly free-electron
wave functions given in Sec. II A are valid all the way to
the boundary. This is not a bad approximation, since the
metallic screening length is quite short in these metals
(-0.5 A). In other words, the boundary effect of the
crystal potential does not propagate far into the metals.

We now construct the wave function of the superlat-
tice. For simplicity, we will use subscripts 1 and 2 to
denote Ag and Au, respectively. Instead of using P(z)
and P( —z) directly, we use the symmetric combination
P, =[/(z)+P( —z)]/2 and the antisymmetric combina-
tion P, = [P(z)—P( —z)]/2. The most general solution in
the Ag slab at a given energy E is given by

—Nd1 N2d

FIG. 1. The coordinate system and one period of the super-
lattice are shown. The origin is chosen to be at the Ag-Au in-
terface. There are N& atomic layers of Ag to the left of the ori-
gin, and N2 atomic layers of Au to the right. The interlayer
spacing is d.
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=ayi, (z)+byi. (z),

where a and b are arbitrary coefticients. A similar expres-
sion gz can be written for the Au slab. The wave func-
tion and its derivative must be continuous at z =0.
Working out the algebra, it is easy to show that

f,=a [P,(0)/(t, (0)]P„(z)+b[P', (0)/P', (0)]P,.(z), (8)

where P' denotes the first derivative of P. The reason for
using the symmetric and antisymmetric wave functions is
that P,'(0)=0 and P, (0)=0, which leads to considerable
simplification in the algebra for matching the boundary
conditions.

We now apply the Bloch theorem to the superlattice
geometry to link the wave functions and the first deriva-
tives at z = —N, d and z =N2d. Denoting the wave vec-
tor of the superlattice by q, we get

$2(N2d) =exp[iq(Ni+N2)d ]pi( Nid)—,

1tz(N2d) =exp[iq(N, +Ni )d ]1(',( Nid) .—
(9)

(10)

Applying the Bloch theorem to the Ag slab itself, we get

P, ( N, d )
—=a [P,( N, d )+—P, (N, d )]/2

+b [$1( N, d )
—$—, (N, d ) ]/2

=a cos(k, N, d)P, (0)

ib sin—( k i N, d )P,(0),

where we have used P, (+N di) =e px(+ik, N, d )P (0i).

Similarly,

1(', ( N, d ) = i—a sin(k—,Nid )p', (0)

+b cos(k, N, d)P', (0) . (12)

One can easily derive similar expressions for the Au; that
is, one can express $2(N~d) and P'2(N2d) appearing in

Eqs. (9) and (10) in terms of Pz(0) and Pz(0). With these

substitutions, Eqs. (9) and (10) become a pair of linear

homogeneous equations in a and b. The resulting quadra-
tic secular equation for exp[iq(N, +Nz)d] can be solved

in a straightforward manner, which yields q in terms of
F., namely the band dispersion for the superlattice. The
result is

Our computation of the superlattice band dispersion
begins with Eqs. (5) and (6), which give k and R in terms
of F., respectively. These are then plugged into Eq. (15)
to get g, and finally Eq. (13) yields q in terms of F. R. eal
solutions of q give rise to propagating waves, while com-
plex solutions can be found in "gaps" which are impor-
tant for surface and interface states if additional boun-
daries are present in the system. In our discussion of the
results, we will concentrate on the real solutions which
correspond to band dispersions.

III. COMPARISON WITH DATA

There exist two reports on the experimental band
dispersions of Ag-Au(111) superlattices in the litera-
ture. ' The data were obtained by angle-resolved photo-
emission spectroscopy using the light source at the Syn-
chrotron Radiation Center of the University of
Wisconsin-Madison. The experimental details will not be
discussed here. The more recent of these two reports has
a better signal-to-noise ratio, and the data are of higher
quality. Therefore, we will concentrate our discussion on
this one first. The system investigated is an Ag-Au(111)
superlattice with a period of 12 monolayers (ML), which
consists of 8 ML Ag and 4 ML Au. For simplicity, we
will refer to this system as the (8+4) superlattice, and

N, = 8 and Nz =4 in our notation. Figure 2 shows the re-
sult of our computation. The occupied Ag and Au sp
band dispersions are indicated by dashed curves for com-
parison. The calculated superlattice band, presented in
the extended zone scheme, is shown by the solid curves.
It falls between the Ag and Au band dispersions, as ex-

pected intuitively. It is closer to the Ag dispersion, be-
cause the system is overall Ag rich. The theoretical su-

perlattice band exhibits two gaps of 0.298 and 0.114 eV at

Ag-Au(111) Superlattice
F Ag:Au 2:1,12-ML Period

&& Expt.
Theory

cos[q(N, +N~)d]

=cos(k, N, d )cos(kzN2d)

—[(y+ 1/y)/2]sin(k, N, d )sin(kzNid),

where

(13)

C4

Ck
C

C4

"a

OQ

Au Band

g =P'i(0)gz(0)/[Q i(0)gz(0) ] . (14)

Equation (13), based on the application of the Bloch
theorem, is a fairly general result, and does not depend
on the nearly free-electron approximation. For the Ag-
Au superlattice considered here, we can use Eq. (1) to
evaluate g, and obtain

y= [k, p[2R, /(1+R, )]]/—[k~ —p[2R2/(1+R~)] j .

9/12 10/12

k/krr

11/12

FICx. 2. Band dispersion curves of Ag, Au, and an (8+4)
Ag-Au superlattice along the [111]direction, displayed within

the first zone of Ag (Au). The theoretical superlattice disper-
sion curves are indicated by the solid curves. The diamonds are
data points.
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k/p =—'„' and —,"„respectively. These positions in the

Brillouin zone correspond to the superlattice zone boun-
daries, and are indicated by the vertical dash-dotted lines
in the figure. Also show in this figure are the data, indi-
cated by diamonds. The upper gap at k/p =—'„' is clearly
seen. The lower gap at k/p = —",, is not apparent due to
its small size and noise in the data. However, if one views
the data at a glancing angle to the paper surface, it is
clear that there is a kink and o8'set at the correct loca-
tion, which is indicative of a small gap.

The upper branch of the data near k/p =
—,", shows a

parabolic shape extending to k/p less than —,", . This is re-

lated to the nature of the photoemission band-mapping
technique. ' What the experiment provides is a band
structure in the repeated zone scheme, although the peak
intensity is not necessarily detectable everywhere. To
make a better comparison between the theory and experi-
ment, we replot the data and calculation in Fig. 3 using
the reduced zone scheme. Here, one sees that the sp band
is folded into three branches. The data are somewhat
higher than the theory for all three branches, and the
average deviation is about 0.1 eV. The overall agreement
in the shapes of the bands is very encouraging. For the
lowest branch, we show a dashed curve through the data,
which is just the theoretical curve shifted up by 0.05 eV.
With this shift, it describes the data well. Similarly, we
find a shift of 0.11 eV for the top branch, as indicated by
the dashed curve. For the middle branch, the shift is not
a constant, and therefore we cannot simply make a rigid
upward shift of the theoretical curve. The dashed curve
shown in the figure is a sixth-order polynomial fit to the
data. This polynomial is constrained to have zero slopes
on both ends, and thus the number of free parameters is
five. This represents the minimum number of parameters
for a fit to a curve of this shape, because one needs to ac-
count for five basic features including the heights of the
two ends of the curve (two parameters), the curvatures
near the two ends (two parameters), and the point at

Ag-Au(ill) Superlattice
Ag:Au 2:1,12-ML Period

1
4P
C

C4
C

FIG. 3. The theoretical and experimental band dispersions
for the (8+4) superlattice are shown in the reduced zone.

which the curvature changes from concave to convex
(one parameter). In our fit, we have ignored the data
point very close to k =0 in Fig. 3 because the photoemis-
sion data here are likely an unresolved convolution of two
peaks derived from both the middle branch and the bot-
tom branch (the resolution of the photoemission experi-
ment is about 0.1 eV, and the peaks are further
broadened by lifetime effects). The dashed curves in Fig.
3 are thus fair representations of the data. Based on this
analysis, we obtain the experimental band gaps as 0.30
and 0.12 eV, with an estimated error of no larger than
+0.05 eV. These numbers are very close to the theoreti-
cal values of 0.298 and 0.114eV mentioned above.

The agreement between theory and experiment is quite
good, considering that state-of-the-art, first-principles
calculations of band structures often exhibit errors larger
than what we have here. The good agreement is due in
part to our use of the experimental band dispersions of
Ag and Au, and in a sense our model is an interpolation
based on known results. We now comment on sources of
error in our model. Equation (13) is exact within the
one-electron, one-band picture. The one-band approxi-
mation will likely introduce some error, but the largest
error is likely in the computation of y. The nearly free-
electron model is obviously not the most accurate method
for generating the wave functions, for which higher har-
monics, although small in magnitude, should have been
retained. Also, there is some error in assuming that the
Ag and Au wave functions can be used all the way to the
boundary without modification by the boundary potential
which must have a finite extent. However, we are unable
to quantify these discussions, as more accurate calcula-
tions are unavailable at this time.

There is another, earlier report on the superlattice
band structure of Ag-Au, as mentioned above. ' The
data, with more noise, were not of as high quality as
those shown in Figs. 2 and 3. Nevertheless, the overall
shapes of the bands from the calculation are in good
agreement with the data. Differences similar to those
seen in Fig. 2 are observed. For brevity, we will not show
the corresponding figures. We will just give the values of
the band gaps. For the (6+6) system, the measured
upper gap is 0.28+0. 1 eV, and the theoretical value is
0.360 eV. The lower gap is zero based on the data, and
the theoretical value is 0.006 eV, which is too small to be
observed experimentally. For the (4+4) system, the
measured upper gap is 0.37+0. 1 eV, and the theoretical
value is 0.270 eV. The lower gap was not accessible in
the experiment. Thus all of the experimental results are
in agreement with the theory within the experimental er-
rors.

For ref-rence purposes, we show in Fig. 4 the calculat-
ed band-edge energies for superlattices with a 12-ML
period. The abscissa is the thickness of the Ag slab
within one period; when it is zero (12), the system is pure
Au (Ag). The results for k/krr = 1 ( in terms of the orig-
inal zone) represent the variation of the valence-band
maximum. It is at 1.1 eV for pure Au, and rises to 0.33
eV for Ag. The variation is fairly linear, with a small up-
ward bowing. The point at k/kj-L =

—,", for the pure ma-
terial is split to form a gap for the superlattice (the upper
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Ag-Au(111) Superlattice
12

tial, if the up and down parts are of equa1 thickness, will
have no even harmonics (the potential is an odd func-
tion). Thus the second gap has to be zero for symmetry
reasons. In our model, the potential is not a simple
square-well-type potential, and so the point at which the
gap vanishes does not happen exactly at the (6+6)
configuration. Rather, it happens approximately at the
(5+7) configuration. Because of the existence of this
"node" for the lower gap as a function of the Ag a slab
thickness, the gap is generally smaller.

IV. SUMMARY AND CONCLUSIONS

10/12

0 2 4 6 S io 12

Number of Ag Atomic Layers per Period

FIG. 4. Theoretical band-edge energies as a function of the

Ag slab thickness for a 12-ML period superlattice. The upper-
most curve shows the variation of the valence-band maximum
at the L point. The two curves below show the variation of the

gap at k/krL
&p

and the bottom two curves show the varia-

tion of the gap at k /k J

gap). As expected, the gap is the largest with about equal
Ag and Au slab thicknesses at which the superlattice
modulation has the largest Fourier component. The
lower gap at k/krL =

—",„however, shows a very different

behavior. It is zero at about equal Ag and Au slab
thicknesses. This is not surprising. Within the nearly
free-electron model, the gap is just twice the appropriate
Fourier coeScient of the crystal potential. The upper
gap is related to the reciprocal-lattice vector of
1lg, =g —g, where g, =g/12 is the primitive reciprocal-
lattice vector of the 12-ML superlattice, and the lower

gap is related to 10g, . If one considers the Ag-Au super-
lattice modulation as a square-well-type potential in a
crude approximation, it is easy to see that such a poten-

This study is a model calculation of the sp band struc-
ture of Ag-Au(111) superlattices. The model employs
some basic ideas in solid-state physics, i.e., the nearly
free-electron approximation and the Bloch theorem. The
results are expressed in terms of simple analytic func-
tions, and agree well with the experimental data, to
within about 0.1 eV. This is one of the few systems in
which the band structure can be calculated analytically
with numerically realistic predictions. For this reason,
this system and the calculation can serve as models to il-
lustrate the general electronic behaviors of superlattices.
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