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Hot-electron effects in a multiple-layer system are treated as a function of a parallel electric Geld on
the basis of a microscopic-balance-equation theory. Dynamically screened intrasubband scattering
on ionized impurities, acoustical phonons due to deformation potential and piezoelectric interaction,
as well as polar optical phonons are taken into account. The real-space transfer of electrons into the
region between the layers is described by transfer scattering on optical and acoustical phonons. The
obtained Geld-dependent drift velocities, electron temperatures, and densities of the two electronic
subsystems are analyzed by considering the energy loss rates and frictional-force contributions of
the included scattering events. Analytical expressions are derived for the transfer-scattering contri-
butions to the energy and force balance and the phonon assisted electron-density transfer. Specific
results are obtained for a multiple-quantum-well system, which we compare with our former, more
phenomenological, approach applied to analyze experimental results of multiple b layers in GaAs.

I. INTRODUCTION

Nonlinear transport in semiconductor materials has re-
ceived much interest &om both the experimental and the-
oretical points of view. In the last decade, interest has
turned to investigation of hot electrons in semiconductor
heterostructures. For systems consisting of several car-
rier subsystems the treatment of nonlinear transport is
complicated by cross-correlation terms due to the carrier
transfer mechanisms. It is known that an electronic
real-space transfer can cause a negative differential con-
ductivity if the mobility in the barriers is lower than in
the wells. However, depending on the changes of charge
density and potential distribution involved, the transfer
process can diminish the negative differential conductiv-
ity caused by electron transfer between band edges with
different effective masses (e.g. , in GaAs I' ~ L, X).

Most theoretical investigations of nonlinear transport
phenomena rely on Monte Carlo simulations or the so-
lution of the semiclassical Boltzmann equation. An al-
ternative analytical Green's function theory has been de-
veloped by Lei and Ting in order to study the nonlin-
ear transport in various semiconducting materials. In
this approach, balance equations were derived by sep-
arating the center of mass &om the relative motion of
electrons and treating the density matrix of the system
to Grst order in the electron scattering on impurities and
phonons. The balance equations for momentum and en-

ergy were solved by using a parametrized distribution
function of Fermi type, which is appropriate if there is a
rapid carrier-carrier interaction for the thermalization to
an electron temperature and the formation of an effective
drift velocity. The approach had been applied to various
interesting hot-electron transport phenomena and has al-
ready demonstrated its reliability and practicability. '

The purpose of the present paper is to extend the

microscopic Green's function theory to treat electron
transitions between confined and extended states as im-
plemented in the real-space transfer in multiple quan-
tum wells (MQW's) and superlattice systems. The elec-
trons in the confined and extended states are treated as
separate subsystems —an assumption justiGed for weak
electron-electron scattering between them in comparison
to the collisions within each subsystem. This assumption
is in accordance with the general observation that intra-
subband transitions are usually more pronounced than
intersubband processes. This is due to the more severe
restrictions with respect to the possible Gnal states be-
cause of momentum and energy conservation for inter-
subband as well as intervalley transitions in comparison
to intraband scattering processes. A quantitative treat-
ment of the intersubband Coulomb scattering would put
our approach on a firmer basis, but this is beyond the
scope of the present paper, since the degenerate density
of the two-dimensional electrons terms proportional to
the product of four distribution functions appears in the
balance equations.

In an electric Geld parallel to the layers, the electrons,
which are primarily confined in the potential wells, may
acquire enough energy to be transferred to the region be-
tween the layers. We consider the special case that the
impurity concentration in the interlayer space is much
lower than the equivalent concentration within the wells
and the subsequent increase in mobility is not compen-
sated by an increase of the effective masses.

We had treated this real-space transfer both experi-
mentally and theoretically already in Refs. 9 and 10 for
the special system of multiple b layers in GaAs. We fo-

cused our attention on the effects of scattering events
and did not consider the details of the potential pro-
Gle. This approximation is also adopted here. In com-
parison to our former approximate treatment, we now
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develop a full microscopic theory of the real-space trans-
fer process by including microscopic mechanisms for the
exchange of particles between the two different groups
of electrons. This adequate treatment of the electron
transfer processes also allows us to remove the restric-
tion to low electric fields, which was necessary in our
former approach. ' Methodologically, the particle bal-
ance approach for the real-space transfer resembles the
treatment of intervalley transfer in k space.

By separating the center of mass &om the relative mo-
tion of essentially two- and three-dimensional types of
carriers (2D and 3D), treating the center-of-mass mo-
tion classically and introducing two electron tempera-
tures and quasichemical potentials for the two subsys-
tems, we derive a set of balance equations for the force,
energy, and particle exchange to determine 2D and 3D
drift velocities and populations of the two subsystems in
the steady state.

II. THE HAMILTONIAN

+T + +F + +le + +2e + +ph + III (2.1)

of the two subsystems 1 and 2 which are in a station-
ary nonequilibrium state include the kinetic (Hz) and
potential (H~) energy of the center-of-mass motion in a
constant electric field as well as the electronic contribu-
tions (Hq, and H2, ), which depend on the relative co-
ordinates, and the interaction term (HI) connected with
the electron scattering on impurities, phonons, and other
electrons. For simplicity we assume that the bulk phonon
spectrum (H~g) is not changed by the superlattice poten-
tial, i.e., we restrict the model to quantum well widths,
for which the interface contribution can be neglected.
In the single electron picture the electronic states in the
rectangular potential wells can be characterized by the
wave function

pt all ( II ~ ) = e' "ll 'il ([z —l (d + a)], (2.2)

which depends on the layer index I and a two-dimensional
wave vector k~~ = (k, k„). The envelope function of the
lowest subband can be approximated by

Let us consider an essentially two-dimensional subsys-
tem of electrons within a periodic square well potential
(type 1) together with its more or less three-dimensional
counterparts (type 2) above the barrier, as schematically
shown in Fig. 1. The electric field E is aligned paral-
lel to the wells and perpendicular to the z axis, which is
chosen in the direction of the periodic potential. In this
paper, we consider the special case that the sheet sepa-
ration d is much greater than the well width a so that
electron tunneling through the barriers and the energetic
width of the quantum well subbands can be neglected.
That means that electrons in different wells decouple, as
is characteristic for a multiple quantum well system. Fur-
thermore, we assume that within the wells there is only
one relevant energy level separated by E, &om the top of
the barrier. Of course, our treatment can be extended to
more confined levels in principle; however, the numerical
effort to solve the system of coupled equations increases
considerably in this case.

A suitable starting point for the theoretical descrip-
tion is the second quantized Hamiltonian in the coordi-
nate representation, where the center-of-mass degrees of
freedom have already been separated &om the relative
coordinates. The total Hamiltonian

E

(2/a) cos(nz /a), —a/2 & z & a/2

f
0, otherwise

and the corresponding energy

52 k~
ll

1lc
]] m]

(2 4)

is degenerate with respect to l. Here we assumed that (i)
tunneling is small enough that electrons are confined to
just one well, and (ii) the width of the wells is narrow and
the electron density is not too high, such that electrons
occupy only one subband.

The three-dimensional electronic states are character-
ized by plane waves with energies given by

A2 k2
, +Ec

2m2
(2 5)

in the effective-mass approximation. In this paper we
consider the special case that the effective-mass disconti-
nuities can be neglected so that we have only one effective
mass m' = m& ——m2 for 2D and 3D electrons.

Electron-impurity and electron-phonon interaction
processes within each electronic subsystem (1 and 2) as
well as phonon-mediated electronic transitions between
them are taken into account in the interaction part

(2 6)

FIG. 1. Schematic diagram of the considered two-carrier
subsystems.

More precisely, we treat scattering of electrons on ionized
impurities, acoustical phonons via a deformation poten-
tial as well as piezoelectric interaction, and polar optic
phonons within each electronic subensemble, but transfer
processes only due to scattering on acoustical and optical
phonons, whereas transfer by electron-electron collisions
is neglected for simplicity. When transfer processes by
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optic phonons are dominating, this approximation is jus-
tified as shown in Ref. 15, but for low electron energies
it can play a role besides the transfer due to acoustic
phono ns.

Because of the underlying symmetries we prefer a
momentum-space representation of the Hamiltonian (2.1)
and (2.6) by introducing via

01 (r) ) Pl kll (r() z) elk)I I

kII l

(2.7)

) 'k

k
(2.8)

0,'ph ——) M12(gA) e' ' ' (b~q+b ~g)
qA

x ) e'"' ' ' It(q +k, )c1 „+ „(
kIII cr

(2.9)

creation (c1k &
and c2k ) and annihilation (c1kll~~ and

II
~ 2kcr

cqk ) operators for electrons in the relative coordinates
with definite wave vectors (k~~ for type 1 and k for type
2) and spin o. The resulting expressions for the type 1

and type 2 contributions of the Hamiltonian (2.1) and
(2.6) had already been derived and were published in
Refs. 6 and 16, respectively. The transfer between two-
and three-dimensional carrier types is accounted for by
microscopic scattering processes on both acoustical and
optical phonons,

the Frohlich matrix element

I M(q, op) I

e2

2 eoq (Kqqo

heep,r) (2.13)

! M(q, piez) !

32vr A, e e~4
2 2 2

q~qy + qyqg + qzq~
tc pvstq

——,(3 q-q&q. )' (2.14)

where uo is the longitudinal optical phonon frequency, K

the static dielectric constant, and e the high-&equency
dielectric constant, and eo = 1/41r, respectively. In the
case of heterostructure quantum wells with regard to
the interaction with optical modes, the limitation to one

type of bulklike phonon is appropriate for the scattering
within the lowest level, for which the electron only neg-

ligibly penetrates into the barrier. This may appear as
a restriction now, when the transfer of electrons from
the well into the states above the barrier is taken into
account. However, for the considered potential created
by doping profiles the assumption of one type of bulklike
phonon is realized.

Piezoelectric scattering on phonons is only treated for
the separated type 1 and type 2 electronic subsystems.
The piezoelectric interaction is allowed for both longitu-
dinal and transverse phonons. Since for GaAs the trans-
verse sound velocities are lower than the longitudinal one
we regard only the sum of the two independent transverse
branches. This approximation is further motivated, be-
cause a longitudinal mode is already included in the con-
tribution &om the deformation potential interaction.

II."„=) M21(q&) "' (b'„+b,i)
qA

ik!I.(R~II RIII ) — +e II Il I/( —kz)c2k+gn c1klllqq

kl! ~

(2.10)

Here, eq4 is the nonzero piezoelectric constant and v, t a
mean transverse sound velocity [v,t ——(vq f „+vq, ) )/2].

III. BALANCE EQUATIONS

Here the form factor I~ is calculated &om

I,(q)= f dz q(z —Id),z"*, (2.11)

The Liouville equation for the statistical density ma-
trix p of the relative electron-phonon system is solved by
considering initially decoupled relative electrons, which
are in their respective thermalized stationary state de-
scribed by the density matrix po (Ref. 11)

! M(q, ac)
I

=
2vsp

(2.12)

where Eq is the acoustic deformation potential, p the
mass density of the crystal, and v, the longitudinal sound
velocity. Furthermore, we include intrasubband and
transfer scattering on polar optical phonons described by

and R1 (R2) are center-of-mass coordinates of type 1 (2)
electrons, respectively. b+& (bing) are creation (annihila-

tion) operators for phonons of wave vector q in branch A

and of &equency uqp. The matrix elements M&2 and M2q
of the electron-phonon interaction are assumed to agree
with the corresponding ones for the intrasubband scat-
tering. For both intrasubband and transfer scattering by
deformation potential interaction of acoustic phonons the
matrix element is expressed by

Hph/T (Hle @le~1)/Tle1 1
Po =

Zph Z].

—(02e —I 2.~2)/&2e1

Z2

and by turning on the interaction processes at a given
time, whereas the interaction HI itself is treated within
perturbation theory. The stationary states of the decou-
pled systems are characterized by two electron tempera-
tures Tq~, T2~ and two quasichemical potentials pq„p2, .
Strictly speaking, a chemical potential is not defined in
this case, but this parametrization appears to be con-
venient for the numerical calculation. It is straightfor-
ward but cumbersome to derive the steady state energy-,
force-, and particle-balance equations for the two types
of carriers. We obtain
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(P2a) v2 eE+ F2(V2) + Fpk(V2) Vl)

(H2e) = —V2 F2(V2) W2(V2) + Wpk(V2, Vl) = 0)

(Pl ) = Al eE + Fl (Vl) + Fp~k (Vl V2) = 0

(IIle) Vl Fl(vl) Wl(vl) + Wpk(vlf V2) —01

(N) = N(vl, v2) = 0,
(,) II (q((, ur)(1)

1 —
V(qadi q. ) 11(

(3.3)

ing, which is taken into account fully quantum mechani-
cally via the random-phase approximation (RPA) for the
density-density correlation function II. Assuming a pe-
riodic potential and neglecting image contributions, we
have for type 1 electrons

where F; denote the &iction forces, W; the energy losses,
v; the drift velocities, and n; the particle numbers. The
index i = 1 refers to 2D and i = 2 to 3D types of carriers,
respectively.

Electron-electron interaction processes within each of
the two subsystems give rise to dynamical screening
of the electron-impurity and electron-phonon scatter-

where the matrix element V(qI, q, ) of the Coulomb po-
tential has been calculated in Ref. 16. The dynamical
RPA screening is also included in the density-density cor-
relation function II( l of type 2 electrons.

The frictional forces F and energy loss rates W of the
two electronic subsystems are calculated from the follow-

ing equations:

(
op

P ) I Ml(q&) I'
I 1.(iq. ) I' ~2"(q~~ q. , » + ~ i) ~B

IqA T ) ( Tle )qA

(3.4)

FoP = 2). IM2(q&) I' 112"(q, 2+ i) '~B
I

&"
I

—~B
I

qA

(3.5)

where A)12 ——q v12 and nB is the Bose distribution function. II2 ' are the imaginary parts of the 2D and 3D
density-density correlation functions and Io denotes the form factor of the matrix element

sr 2 sin(y)
Io(iq, )=,y = aq, /2.e

(
2 2) ) e (3.6)

Rxrthermore, the force contributions and energy loss rates of the transfer processes are given by

(
F12
~» = 4~II(o) I' 0.') . I

M»(q «) I',;, )g) +(q~ ~ii),
p qA k

II

II

(3.7)

(
F21
g 21 4~

I
I(&) I' ) ) . I M»(q &) I', ;z ) &(q&, &~~),

p e2g+~)'5
qA kll

(3.8)

where
I I(0) I

= 8a/(lr d) and

U('Q~ k[[) = &F((2k+q/+2e) &F((lk(I/~le) ( B(aqua(/d~) & (B(2 kq+/T e 2(1k[[/Tle) b(@2k+q @lk[J (LqA)

+ aB(~q&IT) 11B(~lkll/Tle ~2k+q/T2. ) ~(&2k+q —&»ii + ~q~)) I~.=() (3.9)

The function U depends on the following energy variables:

(lk(( Slk)) )ale ) (2k S2k P'2e r (3.10)

1 2
E1kll &1kll + k~ v1+ v»

2
(3.11)

m2 2E2k = 82k+ k~'U2+ V
2

(3.12)

The restriction concerning the k, dependence of the 3D subensemble in (3.9) is a direct consequence of our model
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assumptions for the electrons in the superlattice potential. This dependence is in accordance with a qualitative
discussion of the main k, transfer contribution published by Lent, Liang, and Porod.

Our main theoretical result refers to the microscopic description of the particle exchange which is calculated from
the following illustrative equation:

X(v„v,) = —4~
I S(O) I' ) ) I

M»(q &) I'
qA kII

absorption(1 -+ 2)

absorption(2 -+ 1).

1+naI T'"
I n~I T"

I
1 —n~I T+'

I /i(E2k+q

Eikf/+Aqua)

emissio n(1~ 2)
(ii,„l / t„,~

l t'(,„„l
&' ).

( ii l (( ((
l (

+nal T InFI ~,
"

I
1 —nFI ~ I ~(E2k+q —Eik(( —flqi)

+ 1+»I '"
I n~I '""

I
1 —"FI '""

I ~(&»ii —&»+. +f1 ~)

+n&
I T I

nI"
I 7;,

'
I

1 n+
I 7;, I ~(@i&f[ E2&+q ~q&)

/(. a+, &

j ( ') (3.13)

In our approach the complex nonlinearity of the
hot-electron transport in the two-carrier system is
parametrized by characteristic electron temperatures,
drift velocities, and chemical potentials. According to
this approximation, the electrons and phonons are still
distributed via Fermi and Bose functions, respectively.
Therefore, the particle number of each subsystem is ob-
tained &om

1
n2 ——2 ) exp[(s2k —p2, )/T2, ] + 1' (3.i4)

1
7l I 2

exp (~1k~~ yl )/Tl + 1
(3.i5)

IV. NUMERICAL RESULTS AND DISCUSSION

In order to elucidate the various in8uences of micro-
scopic scattering mechanisms on the behavior of such

With (3.2) and (3.14), (3.15) we have a complete set of
seven equations to determine the steady state values of
Ti„T2„vi, v2, pi„p2„and ni (n2 is given by the
total carrier number then).

I

a coupled two carrier system numerical calculations are
performed for a rigid periodic square wel potential. A
barrier width of 100 nm and a well width of 10 nm are as-
sumed. A donor concentration of 5x10 cm per well
and 10 cm in the barrier space are chosen. Such a
structure is similar to a MQW system created by doping
layers in GaAs, while the interlayer space is not inten-
tionally doped. Only one quantized level is assumed in
the wells at a depth of 18 meV (cf. Fig. 1) and conse-
quently a very small energy difference between the Fermi
level in thermal equilibrium and the top of the barriers
is obtained. Furthermore, no backcoupling of the charge
transfer from the wells to the extended states is regarded
with respect to the shape of the MQW potential. De-
spite these simplifying assumptions we believe that the
essential features of the coupled system of electron gases
in confined and extended states are represented. The
parameters for n-type GaAs incorporated in the calcula-
tions are summarized in Table I.

Due to the small energy difference between the equi-
librium Fermi level and the top of the barriers, a carrier
exchange between the two electronic subsystems is ob-
served already at weak fields. Figure 2 shows the field
dependence of the relative electron densities for the two-
carrier systems (the inset displays the dependence at low
electric fields). At E = 0 all electrons are confined within
the wells, of course. With increasing electric fields the

TABLE I. Parameters for n-type GaAs.

Effective mass m /mo
Density p (g cm )
Sound velocity v, (10 cm/s)
Optical dielectric constant K

LO phonon energy hers (meV)
Static dielectric constant K

Acoustic deformation potential Eq (eV)
Piezoelectric constant eq4 (10 V/cm)
Transverse sound velocity v, & (10 cm/s)

0.067
5.36
5.29
10.8
35.4
12.9
7.0
1.41
2.91

With respect to the deformation potential constant, we use the value for bulk GaAs as in Ref. 21,
too, in contrast to the enhanced values obtained in Refs. 20 and 22.
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FIG. 2. Density of confined (2D, solid lines) and extended

(3D, dashed lines) electrons normalized to the total electron
density n as a function of the electric field. The inset shows

the dependence at low electric fields. For comparison we

show the result of our former approach (dotted line). The
dash-dotted lines are obtained if we add all 2D electrons above
E, to the 3D carrier reservoir.

initial moderate rise of n2 is replaced by a rapid increase
of the density of electrons in the extended states. This
real-space transfer of carriers tends to saturate at about
10 V/cm. Such a saturation of nz had also been obtained
in our former approximate treatment of the carrier trans-
fer. Evidently, this dependence seems to be general and
not connected with special approximations used for the
particle balance. In order to elucidate this problem we
summarize the items: We had supposed that the pre-
vious approach, 9 which demanded only a constant total
particle number using a single Fermi level for both sub-
systems, might be valid for small particle redistribution
only. Therefore, we now extended the system of equa-
tions describing the transport properties for two sepa-
rate entities of carriers by including the particle transfer
balance explicitly and introducing separate quasi-Fermi
levels in order to obtain information on a larger electric-
field scale. While in detail the results of both procedures
differ and this is true with respect to all calculated func-
tions further on as they all are connected one with an-
other, the general features are similar, for instance, the
resulting tendency toward saturation of the repopulation
between the subsystems already at comparatively weak
electric 6elds. In Fig. 2, results are also shown that were
obtained previously (dotted line). As no microscopic
transfer balance had been included in that approach we

proposed that all electrons with energies above the top of
the barrier be denoted as 3D carriers, whereas now they
remain 2D carriers unless they are scattered into the ex-
tended states. Therefore, the number of electrons in the
3D ensemble is smaller now. To illustrate the inQuence of
this circumstance an additional result is presented (dash-
dotted line) which is obtained including the detailed par-
ticle balance as applied in the present approach but artifi-

cially denoting all carriers with energies above the top of
the barrier as three-dimensional ones, delivering a similar
amount as earlier (cf. dotted line). The physical back-
ground of the saturation effect appears to be determined
by a sufEciently strong carrier heating in both subsys-
tems, allowing appreciable intersubband transfer in both
directions. This resembles the repopulation in the case of
transfer between nonequivalent valleys, which increases
with enhanced energy gain &om the 6eld up to a cer-
tain amount, for which the cooler subsystem becomes
sufficiently heated by phonon emission, too, leading to
a decrease of the repopulation. The situation differs in
the presently considered case, because the 2D electrons
are transferred to extended states with a higher mobility
yielding a stronger energy gain Rom the 6eld. As a conse-
quence, these carriers have a high probability of phonon
assisted backscattering. Consequently, one can imagine
an only weakly pronounced dependence on the applied
field for the region of high carrier heating in contrast to
an expected further increase. Of course, the details de-
pend on the energetic distribution of the carriers in each
subensemble and the transfer processes considered. First,
a Fermi-type distribution overestimates the emission of
optical phonons in the case for which electron-electron
interaction no longer dominates the scattering on high-
energy phonons, as probably realized for the compara-
tively low carrier density in the extended states. Further-
more, one should remember that only transfers assisted
by acoustical phonons on account of deformation poten-
tial and by optical phonons for polar interaction are in-
cluded. Scattering on ionized impurities strongly deHects
the carriers from the planes of the wells into the inter-
layer space and, consequently, should play a remarkable
role, however, with a probability that becomes less effec-
tive with increasing 6eld strength. Concerning electron-
electron collisions between the two-carrier subsystems,
their impact on the particle balance cannot uniquely be
predicted (see the discussion in Ref. 15).

It is interesting to compare these results for the parti-
cle numbers with the quasi-Fermi energies as functions
of the field strength shown in Fig. 3 and with the
6eld dependence of the electron temperatures, depicted
in Figs. 4(a) and 4(b). The circumstance that the den-
sities of electrons in the subbands remain almost con-
stant over a wide range of the electric field, for which
the emission of optical phonons by the 3D as well as
the 2D carriers is the dominating interaction mecha-
nism, is mirrored in the quasichemical potential. Con-
sequently, for the 2D carriers, in accordance with the
estimate nq TJ, log[exp(pJ, jTJ~) + I], a field inde-
pendent p, ~ is predicted if the density nq is constant
(and pq, ) TJ,), and vice versa. This is a peculiarity of
the two-dimensional electron system that the quasichem-
ical potential p~ is proportional to the electron density
nq and independent of the electron temperature, as long
as pq, ) Tq, holds. Therefore, the field dependence of
the electron density determines directly the quasichemi-
cal potential.

The field dependence of p2, is more complicated. From
the approximation n2 --T~~ exp( —

~
JJz, —E,

~
/Tz, ) it

can be estimated that for an initial moderate rise of n2
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maximum at field strengths where the optical phonon
scattering becoxnes dominant. This dependence was in-
vestigated both experimentally and theoretically on the
basis of our former approach in Refs. 9 and 10. Because
of this comprehensive discussion and the fact that all
these results are qualitatively reproduced by our present
approach, we skip the presentation of the corresponding
data here.
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FIG. 7. Negative frictional forces of confined (solid lines)
and extended (dashed lines) electronic states due to scattering
on impurities (i), polar optical (o), deformation potential (a),
and piezoelectric (p) phonons. (a) shows the dependence at
low electric fields. The dotted and dash-dotted lines are the
contributions Eph and Fpp respectively.

gain of the 3D carriers tends to become less pronounced
above 200 V/cm and because of the still high energy loss
rate the 3D electrons seem to become even cooler than
the 2D ones. This is a rather unexpected result, which
can be caused by the above mentioned overestimate of
the energy loss by emission of optical phonons when us-

ing a Fermi-type distribution function even if electron-
electron scattering does not remain the dominating re-
laxation mechanism in the case of the 3D carriers with
an order of magnitude less electrons than in the 2D case.
Furthermore, this result depends sensitively on the set of
paraxneters used. It should be mentioned that the slopes
of the 2D and 3D electron temperatures nearly coincide
above 20 V/cm.

The transfer energy-loss rates per electron —W h andph
W2&~ are shown in Fig. 5(b) by the dotted and dash-
dotted lines, respectively. They are always orders of mag-
nitudes lower than the dominating loss rates.

The 2D and 3D drift velocities and &ictional forces are
shown in Figs. 6 and 7, respectively. As a consequence of
the higher doping concentration, the ixnpurity mediated
2D force contribution dominates over the entire electric-
field region. Therefore, the corresponding drift velocity
is much lower. Above 100 V/cm, the &ictional force due
to the scattering of 3D electrons on polar optical phonons
dominates the 3D force contributions. This gives rise to
a slower increase of v2. A comparison of the v2 data
with the values obtained in Ref. 9 (which are about two
times higher) shows that even the drift velocity of the 3D
electrons depends sensitively on the details of the electron
transfer.

The fictional forces connected with transfer processes
shown in Fig. 7(b) by the dotted and dash-dotted lines
are very sxnall and can therefore be neglected in the bal-
ance equations. The differential conductivity exhibits a

V. SUMMARY

We have applied the balance-equation approach based
on the separation of the center of mass &om the relative
motion of electrons to the electric-field driven real-space
transfer of two groups of electrons in a MQW that ex-
hibits two- and three-dimensional features, respectively.
The balance equations for the energy, momentum, and
particle exchange include microscopic transfer processes
due to electron-phonon interaction and a full account of
dynaxnical screening effects. Explicit analytical expres-
sions for the particle exchange rates are given. This the-
ory gives the microscopic foundation of our forxner more
phenomenological approachs'~o and allows us to consider
the real-space transfer in a much larger electric-field re-
gion. We carried out numerical computations for multi-
ple quantum wells in GaAs with a lower impurity con-
centration between the wells than within them and com-
pare the results with experiments on multiple b layers in
GaAs. We assume that despite our restrictive model as-
sumptions concerning the true MQW potential, the main
physics is included in the theory presented here. The
field dependence of the particle nuxnbers, the electron
temperatures, and the drift velocities are thoroughly dis-
cussed, comparing it with the behavior of the quasi-Fermi
levels, the energy loss rates per electron, and the fric-
tional forces of all considered scattering processes. This
gives a detailed microscopic picture of how the numer-
ous scattering events in8uence the real-space transfer of
different groups of electrons. With regard to the elec-
tron repopulation between the confined and extended
states, only transfer processes via electron-phonon scat-
tering processes are taken into account; the quantitative
outcome of this restriction should be further investigated
by treating transfer scattering due to electron-impurity
and electron-electron scattering.

We believe that the present analytical Green's function
approach can be regarded as an effective tool for study-
ing hot-electron phenomena as observed in the real-space
transfer of semiconductor microstructures, too.
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