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Charged spin-texture excitations and the Hartree-Fock approximation
in the quantum Hall effect
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We develop a Hartree-Fock approach to the charged spin-texture excitations (CSTE’s) of the
ferromagnetic incompressible ground state, which occurs in the quantum Hall effect at Landau-level
filling factor » = 1. The CSTE’s are the appropriate generalization of skyrmions to the situation
when there is a nonzero Zeeman coupling. We find for Coulomb interactions that the charged
spin-texture excitation energies are always smaller than the excitation energies of localized spin %
quasiparticles and quasiholes. However, the amount by which the energy is lowered is quite small for
typical experimental situations. The net spin of the CSTE’s is always much larger than %, suggesting

that adding or removing charge from a filled Landau level rapidly degrades its spin polarization.
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The properties of two-dimensional electron systems in
strong magnetic fields exhibit a great richness when dis-
crete degrees of freedom are possible beyond the orbital
degrees of freedom of the electrons. For example, sys-
tems in which the Zeeman coupling is not so strong that
the spin degrees of freedom are completely frozen out
exhibit the fractional quantum Hall effect (FQHE) with
unusual, two-component ground states.! Double layered
electron systems are similarly interesting, since these may
be exactly mapped to the spin system by identifying the
layer index as a pseudospin. However, there is a further
richness in these systems because they allow one to vary
the relative interaction strengths between electrons with
different pseudospins, leading to interesting phase transi-
tions, even-denominator FQHE’s, and a possible Joseph-
son effect.?

Beyond these interesting ground state properties, it
has also been observed that both the spin and layer sys-
tems should exhibit, at appropriate filling fractions, un-
usual charged excitations. In particular for the spin sys-
tem the Hamiltonian is spin-rotationally invariant and
at v = 1 the ground state is ferromagnetic. (Here
v = 2nl2p = 1, where 12 = hc/eB, B is the mag-
netic field, and p is the two-dimensional electron den-
sity.) In the absence of Zeeman coupling the lowest en-
ergy charged excitations at ¥ = 1 have been shown to
be skyrmions.3 5 Skyrmions are the lowest gradient en-
ergy O(3) spin textures with a unit winding number in
two dimensions, and they play an important role in field-
theoretic descriptions of two-dimensional ferromagnetic
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systems.® Most theoretical studies of skyrmions in the
quantum Hall effect have relied on the ability to map the
spin-polarized quantum Hall system to appropriate field
theories.®® These mappings, however, do not permit an
accurate description of the excitations in the presence of
a Zeeman coupling,® which we will see is important in
experimentally relevant magnetic fields.

In this paper, we derive a Hartree-Fock (HF) descrip-
tion of the charged spin-texture excitations (CSTE’s)
which are the appropriate generalization of skyrmions
for nonzero Zeeman coupling. These excitations will
have the same topological winding number and charge
as skyrmions, but the precise spin textures will depend
on the strength of the Zeeman coupling. Our approach
allows us to compute both the spin textures and the
energies for experimentally accessible magnetic fields.
Since we are essentially dealing with a strong field phe-
nomenon, and we are interested in states for which the
Zeeman splitting is much smaller than the cyclotron gap
hw,, where w. = eB/mc, and m is the effective electron
mass in the host crystal, we will only consider states con-
tained completely in the lowest Landau level (LLL). In
the presence of a Zeeman field the spins in the ground
state are uniformly aligned. It is convenient to consider
charged spin textures centered on the origin and to use a
symmetric gauge for which the single particle states are
i by om () = = 2me~™ /4 with Iy = 1 as our
given by ¢m, T ,
unit of length. The key element in the HF description of
the excitations is to consider states of the form
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[-) = H (umal, + ”mb:rn+1)|0>,
m=0
[Y4) = H (_umajn+1 + vmbln)a:)‘())’ (1)
m=0

where |um|? + [vm|? = 1, af, creates a spin up electron
in the mth angular momentum state in the LLL, and b,
creates a spin down electron. (We take the fully polar-
ized ground state of the system to be |1o) =[], b},/0).)
We seek the lowest energy single Slater determinants of
this form for which u,, is nonzero at m = 0, and de-
cays to zero as m increases. The spin polarization then
is directed upward at the origin, downward at infinity,
and the projection of the spin-polarization onto the £ —g
plane rotates by 2w along any path winding once around
the origin; i.e., the spin-texture has a unit winding num-
ber. Note that the single-particle spinors in the single-
Slater determinant state have spin up and spin down or-
bitals with angular momentum differing by a single unit.
One can see explicitly that the transfer of weight from
the mth spin up state to the (m £ 1)th spin down state
as m — oo guarantees that there will be a total particle
number difference from the ground state of +1, which
will be localized around the origin. It is interesting to
note that the standard HF spin % quasihole excitations”
can be written in the form of Eq. (1), by setting u,, = 0
for all m. This state may be regarded as the zero-size
limit for the spin texture.

Our main results for the physically realistic Coulomb
interaction between the electrons are summarized in
Figs. 1 and 2. Figure 1 illustrates the energy of the
CSTE'’s (in units of e?/kly, where & is the dielectric con-
stant of the host material for the two-dimensional elec-
tron gas) as a function of the (unitless) Zeeman energy,
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FIG. 1. Solid lines: energy of CSTE’s as a function of re-
duced Zeeman coupling, § = gupB/(e?/klo). Limiting values
of the energies of § — 0 are —%\/—g— for the skyrmion and

%\/g for the antiskyrmion. Dotted lines: energy of introduc-

ing a spin 1/2 quasielectron or quasihole.
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FIG. 2. (a) Spin and charge densities as a function of r
for charge +1 CSTE: § = 0.001 (solid lines), g = 0.005 (dot-
ted lines), § = 0.01 (dashed lines). (b) Same, for charge —1
CSTE.

§ = gupB/(e*/kl). Here pp is the Bohr magneton, and
g is half the Landé g factor. For comparison, the ener-
gies of the spin 1 quasiparticles are illustrated as well.
The size of the stable spin texture decreases as the Zee-
man coupling is increased, since the energy cost of hav-
ing many reversed spins becomes prohibitive. For g = 0
the system possesses large spin-texture excitations which
are exactly skyrmions.? At general values of § the spin-
textures may be regarded as distorted skyrmions whose
size is determined by a competition between the Coulomb
interaction and the Zeeman coupling, the former trying
to minimize the spin by having a small size, the latter
favoring a uniform charge density and a large size.> The
solutions to the HF approximation compromise between
these competing effects. Several conclusions immediately
follow from our results.

(1) The energy difference between spin texture and
spin 3 charged particles is small once Zeeman coupling
is included. Indeed, even for a magnetic field of 0.5 T,
and a Landé g factor of 0.5 (appropriate for GaAs), we
find that spin-texture particle-hole pair energies are only
~ 15% smaller than the spin 1/2 particle-hole pair en-
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ergies. This contrasts with the limit ¢ = 0 where the
spin texture is a skyrmion whose energy can be evaluated
exactly,® and the particle-hole creation energy is reduced
by 50%. We find that one has to reduce the magnetic
field to values smaller than those for which the QHE ex-
ists in real systems in order to obtain substantial reduc-
tions in the particle-hole pair energies. Experimentally,
this means that transport measurements of the activa-
tion energy? — which essentially measure the energy to
create free charged particles in the system — will show
little effect due to the spin texture of the quasiparticles.

(2) The dependence of the energies on the parameter
g are identical, up to an overall energy shift. This is a
result of particle-hole symmetry: under the transforma-
tion af, — bm,b, — al , the Hamiltonian is invariant,
except for an overall constant. This means that Egs. (1)
are particle-hole conjugates, the values of u,, and v, are
the same in both equations, and their energies are the
same, up to an overall (§-independent) constant.

(3) While the energy difference between spin % quasi-
particles and CSTE’s is small for experimentally relevant
magnetic fields, it is always energetically favorable to
form the latter over the former. In particular, this means
that the total spin of the quasiparticles in this system will
be much larger than % Figure 2 illustrates both typical
spin textures and charge densities for different values of
the Zeeman coupling. From direct integration, we have
found that the total spin of the CSTE'’s is approximately
9.0 for § = 0.0044 (B = 2 T if Landé g = 0.5), and is
3.5 for g = 0.014 (B = 20 T if Landé g = 0.5). The
very large spin associated with these quasiparticles im-
plies that the spin polarization of the v = 1 state rapidly
degrades as charge is added or removed from the system.

The fact that CSTE’s are always lower in energy than
the corresponding quasiparticles, even for large values of
g, may be understood as follows. The chemical poten-
tial to add or remove charge from the system psiT may
be written as®?® ;L:SET = 2¢yg + ex £ Est, where ey and
ex are the Hartree and exchange energies per electron
in the single-Slater determinant ground state, and Est
is the neutral spin-texture energy where the number of
electrons is held fixed and the charge of the texture is
absorbed by expanding or contracting the area occupied

by the system.!! These should be compared with the
J

H = —gugB Z[b;‘nbm — ainam]

1
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chemical potentials for spin % quasiparticles at v = 1:
pop = 2¢n + gupB/2 and Hop = 2€H +2ey — gupB/2.
It follows that both the positively and negatively charged
spin-texture charged excitations are thermodynamically
stable when ex + Est — gugB/2 < 0.

To motivate our use of Eqs. (1) as appropriate CSTE
wave functions, we first observe that the single-particle
states going into the HF wave function should be eigen-
states of a unitless Hamiltonian of the form

Ho, = —B(7) - §(7), (2)

where S () is the spin density, appropriately projected
into the LLL, and B(f") must be determined self-
consistently. E(F) represents an effective magnetic field
proportional to the average spin density of the electron
state, and we note that Hy favors the local spin §(7‘")
of an electron to point parallel to the local field; this
arises due to the exchange interaction between electrons.
To see what kind of single-particle states are relevant
to the skyrmion, consider the single-particle problem
in which B'(i") is proportional to the spin texture of a
skyrmion, as derived from the nonlinear O(3) model of a
ferromagnet.®6 In unitless form, this is given by

. (4)z, £4dy, r? — 4)?)
B(F) = T4 40 .

3)

The parameter ) sets the size scale of the skyrmion, and
is a free parameter in the O(3) model. Writing the spin
raising and lowering operators S* = S, +iS,, and z =
T + iy, we have

22z 4 222" o r? — 42 s

S .
Fraes TrEiges TEigpe
Note that z acts as an angular momentum raising op-
erator, and, after projecting into the LLL, z* acts as a
lowering operator. The single-particle eigenstates of Hy
thus have the form

(umal, + vmbl,1)[0), (4)

which is precisely the form entering our Eq. (1).

We now proceed to describe in detail our HF treatment
of the full Hamiltonian. Working in the LLL, this is given
by

H, =

X [afnlam2 + bfnl bm, — dmima)[al, am, + bfnsbmq — dmyma] :

where the colons represent the normal ordering of the
operators, and

Vm1m2m3m4 - /dzrld2r2¢:nl (Fl)(bmz (Fl)
X brny (72) ., (T2).-

(A uniform neutralizing background is also explicitly in-

[
Iili“l - 7—"2|

[
cluded in H in the case of Coulomb electron-electron in-

teractions.) We employ a HF decomposition of H, al-
lowing the expectation values (a, am,) and (b}, bm,) to
be different than zero only if m; = m,. We also allow
an anomolous matrix element (af, bm,) to be nonzero if
my = mg + 1 for the case of charge 1 excitations, and if
my; = mgz — 1 for charge —1. The resulting HF Hamilto-
nian takes the form
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HYF = —gupBy [bl,bm — al,am]
m
+ Z UH(m)[al,am + b},bm]
= S U (m)atuam + Us™(m)bl,bm]
m

- Z[U;:k(m)ajnbm:bl +UE *(m)bin:tlam]’

where
UH(m) = Z melmml [(aInl am1> + (bln,l bm1> - 1]’
U*(m) = Z me1m1m(c:fn1 Cmy )5
my
Uf(m) = Z Vm,ml,mlil,mﬂzl(aimbm1i1>- (5)

where c is either a or b. From the form of HHF, it may
be seen that its eigenstates will be of the form in Eq. (4).

Having determined HYF it is apparent that its ground
state is of the form in Egs. (1), with

Ug(m)

T Jem) + U (m)

e(m)

JJelm)? + U ()2

(6)

Um =

4|U§:k(m)|2]1/2} and e.(m) = s.gupB + UH(m) +
Us*(m), with s, = 1 for ¢ = a, sc = —1 for ¢ = b.
Finally, we can compute the order parameters from the
U, and v,, by noting

where ¢(m) = 1{es(m) — e5(m) + [(ea(m) — e5(m))* +
b

(ajna'm> = |um|2’ <b1nbm> = |'Um:F1I2y

(ainbm:tl) = Uy, Um.

The HF approximation is accomplished by iterating
this with Eqgs. (5) and (6), until a self-consistent so-
lution is obtained. The spin and charge densities,
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relative to the ground state, are given by p,(7) =
3 Lom |9m (D [(alam) — (bhbm) + 1] and p(F) =
Yo |6m(P)?[(al,am) + (b],bm) — 1], respectively. Our
results are shown in Figs. 1 and 2, keeping angular mo-
mentum states up to m = 240, for § as small as 0.001.

Finally, it is instructive to contrast the results for
the Coulomb interaction with those of the hardcore!®
model. We find in our Hartree-Fock calculations that
skyrmion spin textures of any size, when appropriately
projected onto the lowest Landau level,® are solutions
of the Hartree-Fock equations at g = 0. (However for
any nonzero g the only stable solutions of the Hartree-
Fock equations correspond to spin % quasiparticles.) To
understand the degeneracy, it is helpful to note that®
Est =Yy Vm(=)M(2M + 1) for g = 0, where Vjs are
the Haldane pseudopotentials,'® independent of the size
scale of the spin texture. It may also be shown that
er =5V and ex = 3 ,,(—)M+1Vay, so that

pép — Har = pgr — Bgp = Y VM2M(-)MHD
M
— oV, —4Vy 4 .-

In the hardcore model, all the pseudopotentials except V,
are set to zero, leading directly to the degeneracy. Physi-
cally, the degeneracy arises from the fact that spins of all
the electrons in the spin-texture state point in the same
direction at all points in space, even though this direction
depends on position. In the hardcore model, only par-
ticles at the same position in space can interact. Since
Pauli exclusion forbids any two particles with the same
spin to be at the same position, there is no contribution
to the energy from the spin texture.
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