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In this paper we present and discuss our results for the conductance and conductance Huctuations

of narrow quantum wires with two types of disorder: boundary roughness (hard-wall confiuiug

potential) and islands of strongly scattering impurities within the bulk of the wire. We use a tight-

binding Hamiltonian to describe the quantum wire, infinite perfect leads, a two-terminal Landauer-

type formula for the conductance, and the recursive single-particle Green's-function technique. We

find that conductance quantization is easily destroyed by strong scattering. We also find that
Anderson localization imposes a serious restriction on the high carrier mobility predicted in quantum
wires. Conductance nuctuations in narrow quantum wires are not, in general, universal (as in the
metallic regime), but can be independent of the wire length over a short range of lengths.

I. INTRODUCTION

Many unusual transport phenomena have been re-
vealed in mesoscopic low-dimensional structures. The
considerable interest in submicron electronic structures
has been motivated by the expectation that potentially
useful devices could be invented. Very sophisticated tech-
niques have been developed, such as the various types
of epitaxial growth, lithography, ion implantation, etch-
ing and cleaving, etc. , in order to make these small size
structures. However, none of them can produce perfect
quantum wires. For example, GaAs/A1As quantum well

wires grown on a vicinal surface using molecular-beam
epitaxy (MBE) (Ref. 1) have two characteristic types of
disorder. The interface between the GaAs and the A1As

regions is not smooth and, in addition, within the region
of nominally pure GaAs, there will be islands of AlAs.
The question of how compositional disorder affects the
transport properties of quantum wires is important.

The conductance of narrow ballistic channels, or quan-
tum point contacts in a two-dimensional electron gas

(2DEG) is quantized in integer multiples of 2e /6. 2 How-

ever, this simple steplike form for the conductance as
a function of the Fermi energy occurs when the tran-
sition between the wide leads and the narrow channel
is adiabatic. Nonadiabatic, i.e., mode-mixing transport
through the constriction produces some additional fea-

tures in the conductance diagram. ' The conditions
for adiabatic transport are readily achieved in the ex-

periments. Disorder, however, can quite easily destroy
conductance quantization. Poor quantization is believed
to be mainly caused by backscattering. Backscattering,
at low temperatures, is produced by the impurities within
the wire and/or by the rough wire edge. It can also be
caused indirectly through resonant states trapped in the
wire, which may be created by the random Beld of im-

purities outside the wire. However, forward scattering
does not generally harm the conductance quantization,
if all conducting modes are fully occupied. Small-angle

backscattering predominates in the highest subbands and
is usually considered responsible for the destruction of
the conductance quantization. When only the lowest 1D
subband is occupied, however, the number of states into
which an electron can be scattered by disorder is reduced.
This gave rise to the prediction of a large electron mobil-

ity in a confined electron system. s However, the conduc-
tance is very strongly influenced by the quantum inter-
ference effects which start to emerge as elastic scattering
is introduced in the ballistic regime. In the quasi-one-
dimensional case there is a much higher probability of
multiple scattering from the same site compared to the
2D or 3D case. This could cause Anderson localization
to become dominant.

The conductance fluctuations are expected to show

peculiar behavior in narrow quantum wires. ' "In the
metallic regime all the dimensions of a sample are much

larger than the mean &ee path I and the electron motion
is well defined in all directions. Hence, the perturba-
tion theory approach based on Feynman diagrams, which

yields universal conductance fluctuations (UCF), is valid.

However, the transverse quantization in quantum wires

gives well resolved 1D subbands if the width of the wire

(w) is smaller than the mean free path (1) and compara-
ble to the Fermi wavelength A~. Therefore, in general,
UCF's are not expected in quantum wires with weak dis-

order. On the other hand, we know that in the case of
strong disorder when the wire length L becomes greater
than the localization length A, subband mixing is very

strong and any quasi-one-dimensional feature of a per-
fect system is virtually destroyed. Then it becomes
essential to take localization effects into account. Again,
application of a perturbational method is inappropri-
ate.

Here we examine the inQuence of rough boundaries

(Sec. III), impurities (Sec. IV), and both types of disorder
combined (Sec. V) on the conductance and conductance
fluctuations of quantum wires at zero temperature and
zero magnetic field. All calculations were done using a
Landauer-type formula for the conductance.
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II. MODEL AND METHODS

Our calculations of the conductance, described below,
require detailed structural information about the quan-
tum wire. A direct way of describing such a system would
be by providing detailed geometric and structural infor-
mation about an actual wire. Such data can be repre-
sented in a convenient form as a set of probability distri-
butions and correlation functions of some basic parame-
ters of the wire (e.g. , the width, width fiuctuations, con-
fining potential, etc.). The detailed structure can be re-
covered, in a statistical sense, by generating wires using
an appropriate algorithm and the set of probability dis-
tributions and correlation functions as an input. In or-
der to examine the electronic properties of some realistic
structures we have used structural information obtained
in the Monte Carlo simulation of vicinal surface grown
quantum well wires by Hugill et al. 4

Quantum wires directly grown by epitaxial growth
of a heterostructure, usually (Al, Ga)As, by using more
or less controlled generation of terraces and steps (or
corrugations) on semiconductor surfaces, seemed very
attractive. ~ ~ r This process was at one time considered
very promising for the eventual realization of very nar-
row (about a few nanometers) quantum wires. ~s More re-
cently attention has shifted to other possibilities, such as
V grooves, but as the basic principles governing the elec-
tronic structure are connnon to different sorts of wires we
shall concentrate here on MBE grown wires. The kinetics
of MBE can be successfully simulated on a computer, ~4 ~P

provided that the values of the model parameters are
correctly estimated f'rom the experimental data. This
enables one to perform Monte Carlo simulations of these
wire structures and therefore, to define structural disor-
der in the system. ~2 s~ A section of a generated monolayer
wire with an average width of ten lattice sites is shown
in Fig. 1. The effects of the various types of composi-
tional disorder considered here have implications for the
electronic behavior of quantum wires fabricated by other
techniques.

For the purpose of transport calculations the quantum
wire is sandwiched between two perfect leads. The same
model using a tight-binding, nearest-neighbor Hamilto-
nian is used to describe both the quantum wire and the
leads:

t „= (U '(+)VGpl, +g[F '(+)
'Un

-F '(-)]U(+))-
where

F(+) = U(+)A(+)U '(+),

and v„is the longitudinal velocity in subband n. Gp I,+z
is the Green's function which couples the 0th and the
(I + 1)st slice in our system (i.e., the last slice in the left
lead and the first slice in the right lead). The matrices

U(+) = [u~(+) uM(+)] (4)

and

t' &~(+)

A(+) =

t.'M(+) )
contain the eigenvectors and eigenvalues, respectively, of
the eigenvalue problem

I'I (CJ
~~j

~
I 0~

The perfect leads extend to —ao and +oo along the z axis.
In these asymptotic regions the incident and transmitted
states obey the Schrodinger equation

est neighbors, when V~ = V (i.e., V defines our unit of
energy and the effective mass).

We define our lead-sample-lead system to lie along the
x axis. It can be divided into slices along that direction,
each of which has M sites (i.e., a cross section of the
quantum wire). The elastic scattering in the quantum
wire (which extends f'rom slice 1 to slice I) is described
by transmission probabilities T „=lt „l,which de-
scribe the probability that an electron incident in channel
(state) n on the left emerges in channel m on the right.
The amplitude transmission coefficients t „canbe cal-
culated by various means. Here the formulation due to
Ando~o is used

H=) li)s'(il+ ) li)V"(~l
(EI —H~ )Cg —VCg g

—VCg+g ——0,(~)
(6)

where li) is the localized "Wannier" state or atomic or-
bital on site i, c; is the "site energy, " and V;~ is the
hopping matrix element between sites i and j. We shall
assume that V~ is zero unless the i and j sites are near-

FIG. 1. Plot of a section of the generated (real) quantum
wire of average width 10, with island concentration p = 0.05.

where H& Is replaced by the Hamiltonian of an isolated
(~)-

ordered shee Ho . C~ is a vector describing the ampli-
(~)

tudes of the wave function on. the Jth slice. The super-
script designates the length of the system. Although V
is generally a diagonal matrix for the nearest-neighbor,
simple cubic model, in the case of purely diagonal disor-
der and zero magnetic field it reduces to a scalar. Due to
translational invariance along the x axis, the solutions of
Eq. (6) for the perfect leads, must be in the Bloch form,
j..e.,

(C~—i = C~,
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where ( = exp(ika) and o, is the lattice constant. The
eigenvalue problem, Eq. (5), is a combination of the
Schrodinger equation (6) and Eq. (7). The 2M eigen-
values (() and eigenvectors (u) can be separated into
two groups: left-going, ((—) and u( —), and right-going
waves, ((+) and u(+). If ( ( 1, then from Eq. (7) the
solution is exponentially decaying in the positive x di-
rection and describes right-going evanescent modes. The
( ) 1 solutions describe left-going evanescent modes. If
( is a complex number then the classification is done ac-
cording to the sign of the matrix element of the current
density operator (j) (see Appendix B in Ref. 21):

j = . CJCJ+z —CJCJ+, + CJ,CJ —CJ zC~t t t t
2ih

= —[C,
l

rmq
2c

since [(l = 1. If Im ( ) 0 then j ) 0 and the wave
is propagating to the right, and if Im( ( 0 then it is

propagating to the left.
The Green's function Gp L,+z is calculated by using the

recursive method

(N) (N+X)
1,N+1 1,N»N+& N+x, N+x ~

(N+1) (1) t (N)
N+i, N+i — E& —&N+i —

N, N+i N, NV N, N+~

Note that the result is not affected by the normalization
of U(k). This formulation for t „easily yields transmis-
sion probabilities for the case of a perfect wire of length
L between two perfect leads of the same cross section:

T- = lt-I' = lC-(+)I"~- . (14)

The conductance G, given by the two-terminal Lan-
dauer formula, 5 for spin-degenerate states is

rms(G) = ((G ) —(G) ) (16)

where () denotes averaging over an ensemble of samples,
with difFerent realizations of disorder. In our calcula-
tions all the quantum wires have a hard wall confining
potential. Also for the site energy of islands e;,i ~ oo is
assumed. The temperature of the system is always T = 0
K.

Nl. NR

G= 2—) ) [t
n=1 m=1

The summations run over the open channels, of which
there are XL, in the left lead and NR in the right lead.

The conductance fluctuations are quantified by the
square root of the variance

Iterative calculations are performed by successively
adding slices to the end of the bar. This numerical tech-
nique has proved very reliable for the Anderson local-
ization problem. 2s 24 The initial conditions reflect the
environment into which the wire sample is embedded.
The first slice of the quantum wire (slice 1) is coupled
to the end (slice 0) of the left hand lead, i.e. , to a semi-
infinite perfect wire. So the initial condition for calcu-
lating [Giviv in Eq. (10)j is given by the diagonal block

of the Green's function (Gz ) at the end of a perfect
bar that extends from —oo to 0 (see Ref. 22):

Goo ——G& (I-lead) = U(+)A(+)U '(+)V ' . (ll)

Similarly for the right hand lead

G~~ i i(B-lead) = U(+)A( —)U '(+)V ' = S ', (12)

where S is the self-energy matrix, which helps us to
couple the right hand lead to the other end of conductor.
The efFect of adding the whole right hand lead can be
represented by the Hamiltonian

H = Hp+S

in the final iteration of Eq. (10). Iterations of Eq. (9) for
C qN begin with the unit matrix.

The formulation (2) can be further simplified. If F(k)
is substituted by Eq. (3) and since the same eigenproblem
(5) describes both left-going and right-going solutions, we

get our final result:

III. THE INFLUENCE
OF BOUNDARY ROUGHNESS

For the investigation of the transport properties of
quantum wires with rough edges we use the geometry
of the system which is shown at the top of Fig. 2. The
average value of the width is taken to be (m) = 10 and
the width of the leads will be fixed at W = 20 through-
out this section. Here we shall analyze results for four
types of calculation: conduct, ance of a single quantum
wire and ensemble average quantities related to the con-
ductance, as functions of Fermi energy E and wire length
I, . First, we discuss the results for the conductance of a
single quantum wire sample, presented in Fig. 2.

The edge roughness destroys the conductance quan-
tization steps, first near the band center for very small
disorder (see case I = 5 in Fig. 2). The deterioration of
the quantization spreads towards the band edge both as
the disorder and as the length of the wire is increased.
In the mesoscopic regime, when l ( L ( A, the con-
ductance curve shows sample specific fluctuations as a
function of energy and length. However, the amplitude
of these fluctuations is of order e /6, independent of en-

ergy (Fig. 2, I = 10, 30) or length (see inset of Fig. 2).
This is a quantum interference effect similar to the uni-
versal conductance fluctuations observed in the meso-
scopic regime of other systems. The particular value
for the conductance is determined by the electron wave-

length (i.e. , electron energy), the length of the quantum
wire and the actual realization of the disorder in a sam-
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en theonant tunneling through the quantum wire.
energy of an electron coincides with an eigenenergy of the
wire the electron can be transmitted through the wire via
this localized state. The height of the peak of G depends
on the overlap between the wave functions of this spa-
tially localized state inside the wire and the propagating
states in the leads. As the length of the wire is further
increased, the number of peaks and their amplitudes re-
duce and their positions change. The highest such peaks
are probably due to tunnelling through multiple resonant
states, so-called "necklace" states.

Next we discuss the results for the ensemble aver-
age conductance and for the conductance Quctuations.
F' ure 3 shows results for (G) and exp((ln G)). Con-

i j.rou hductance quantization disappears very quickly, a t oug
the presence of a short plateau for the first subband
can be observed for the shorter wires. The bound-
ary roughness has less impact for longer wavelengths
(smaller energies) and hence the average conductance
tends to decrease with increasing energy. As the length
of the wire increases there is a rapid decrease of G near
the band center. In the strong localization regime, a
broad peak emerges near the band edge (see Fig. 3 for
L = 100), which corresponds to the peak in the local-
ization length. In this regime, the average conductance
of quasi-one-dimensional systems falls off exponential y
with the length:

FIG. 2. G as a function of energy of a single sample of
quantum wire wi rougth ugh edges and no island disorder, for
wire lengths: L = 5, 10, 30, and 200, and average wire width

(is) = 10 and leads width W = 20. Reference step functions
are the conductances of the perfect wire of the width m = 10,
l th L = 5 and leads with W = 20 (full line), and W = 10
(i.e. , no difFerence between leads and wir- broken hne). e
inset is the conductance of a quantum wire sample as a func-
tion of the wire length. The top picture shows the geometry
of the lead-wire-lead system used in the calculations.

G(E, L) exp ( —2L/A(E)) .

The conductance Quctuations for the case of the quan-
tum wire with boundary roughness only, calculated for
the examples from Fig. 3 by using definition Eq. (16),
are presented in Fig. 4. Three characteristic regimes are
shown.

(1) The quasiballistic regime —the wire length is com-
paraarable with the mean free path length, L / (e.g. ,

pie. The conditions for the destructive or constructive
interference of an electron wave &ont are, generally, very
sensitive to all of these parameters. The scale of the
sensitivity to energy, however, differs with the length of
the wire (which is evident &om Fig. 2 for L = 10 and
30) or with the level of disorder. This observation sup-
ports the idea that the Quctuations do not arise &om
classical scattering &om the rough boundary but &om
the phase modulation of the electron wave function due
to multiple elastic scattering in the wire. ..e estiWe estimate
that the typical spacing between peaks and valleys in the
conductance as a function of energy depends on the wire
length as E, 1/L. This is a weaker dependence on the
wire length than in the case of the universal conductance
fluctuations in the metallic regime, where E 1/L2
(Ref. 27). It should also be noted that the conductance
falls faster near the band center than elsewhere (this wiwill
be clear from the results for the average conductance).
When the system is in the strong localization regime,
the conductance is reduced to a set of peaks of different
amplitudes, with maximum value of 2e /h (see Fig. 2,
I = 200). The mechanism of electron transport is res-

4.0

3 0

I
Qg 2.0
tO

V

ca 1.0

0.0
-4.0 -3.0 -2.0 -1.0 0.0

FIG. 3. Average conductance as a function of energy,
for quantum wires with rough boundary and no island
disorder, for different wire lengths: 10 20 50,
and 100. Number of samples taken for calculating aver-
age values are N = 1000, 1000, 3000, 4000 for wire lengths
L = 10, 20, 50, 100, respectively.
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FIG. 4. Conductance 6uctuations which correspond to the

case in Fig. 4 for the wire lengths: L = 10, 50, and 200

(three bold lines). Two thin lines are the localization length

and the density of states (both rescaled: A -+ A/100 and

DOS —+ DOS s5) for quantum wires with boundary roughness.

L = 10 for most of the energies and for the level of dis-

order assumed in our samples);
(2) the mesoscopic regime where the wire length is I &

L & A (e.g. , L = 50);
(3) the strong localization regime —L ) A (e.g. , L =

200).

Since the elastic mean &ee path and the localization
length are both functions of energy, a particular wire can
move between these regimes as the energy is changed.
The fiuctuations for the case L = 10 in Fig. 4 show in-

teresting similarities with the density of states for the
same type of quantum wires. There is a peak near the
band edge which corresponds to the peak in the den-

sity of states (DOS), which is the last remaining feature
of the inverse square root singularities from the DOS of
clean quasi-one-dimensional systems (see Ref. 31). This
behavior can be explained in the following way. For short
wires (i.e., quasiballistic transport) the important length
is the elastic mean free path t. If t increases (as a function
of energy) in the quasiballistic regime, then the conduc-
tance fluctuations decrease —as the scattering in the wire

is reduced, and vice versa. Since l is roughly inversely

proportional to the DOS (when the DOS is increased the
scattering rate increases and therefore I decreases), then
the conductance fluctuations might be expected to mir-

ror the DOS. As L is increased with respect to t (and
still I, « A) then the fiuctuations will increase towards
their maximal value, which is reached in the mesoscopic
regime. The quantum wires of length L = 50 in Fig. 4

show a relatively wide region of energy in which the con-
ductance fluctuations are independent of energy, with a
value which is close to the universal value for quasi-one-
dimensional systems [rms(G) = 0.?29ez/h (Ref. 27)].

For long wires (L = 200) we have the strong local-
ization regime and rms(G(E)) follows the curve for the

localization length A(E) (see Fig. 4), i.e., the average con-
ductance, since these are related [Eq. (17)]. That rms(G)
and (G) are proportional can be understood by using the
picture of "open" and "shut" channels, or "maximal fluc-

tuations, " in a quantum wire in the strong localization
regime. This terminology is associated with the distri-
bution function P(r) for the eigenvalues 7 (0 & w & 1) of
ttt, where t is the transmission matrix: it has a peak at
v = 0, and a tail which extends to 7 = 1. Each eigen-

vector of tgt~& defines a conducting "microchannel" with
the corresponding conductance 7' in units of (2)e2/h. 32

As the size of the system is increased, the peak at v = 0
strengthens at the expense of the tail, but the shape of
the tail remains the same.

For long lengths, therefore, most of the microchannels
will have conductance of order 0 since the bulk of the dis-

tribution is around 0. Only a small fraction of the chan-

nels, with values for v of order 1 (roughly 0.1 & 7 & 1),
will contribute to the conductance. Such a distribution
of ~ implies that the fluctuations tend to the maximum

possible value consistent with their mean. However, the
moments of the conductance, ((Tr ttt)"), for 2D and 3D
cases do not show the same size dependence as the mo-

ments of Tr((ttt)"), within the metallic regime. Univer-

sal conductance fluctuations are affected by the corre-
lations between the vs rather than by the distribution
of the ws themselves. Universal conductance fluctuations
are restricted to disordered systems in the metallic regime
where perturbation theory is applicable. When localiza-
tion effects are important, however, the correlations be-
tween the microchannels change and a different sort of
fluctuations is observed. The statistics of a single mi-

crochannel were found to be crucial in the strong local-
ization regime.

The average conductance of the disordered quasi-one-
dimensional system shows an asymptotically exponential
decrease with the length. so This single parameter depen-
dence suggests that the conductance statistics of quasi-
one-dimensional samples, with a length much longer than
the localization length, is dominated by a single channel.
Hence a similar size dependence foi the conductance mo-

ments should be expected as for Tr((ttt)"), since the
distribution of ws is important, rather than the corre-
lation between them. This picture of the conductance
statistics in the strong localization regime shows that the
conductance fluctuations are proportional to the average
conductance.

In Fig. 5 results are given for the conductance as a
function of wire length, for a fixed energy. The results
for the average conductance are presented for two values
of the energy and two more examples of conductance fluc-

tuations are added. The decrease of conductance is more
marked in the quasiballistic (near ballistic) regime (short
wires), where the difference between (G) and exp((ln G))
is negligible. The difference between the two averages in-

creases as the disorder or length of the wire is increased

(Figs. 3 and 5). This shows that the average (G) is domi-

nated by a small number of samples with conductance of
order 2ez/h. The divergence of the two curves indicates
that the conductance distribution is transforming to the
form which has a peak for small conductances and a long
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perfect wire of length I = 4. Island disorder reduces the
conductance in a similar way in each subband. In the
mesoscopic regime, where t ( L ( A (examples L = 20
and 50 in Fig. 6), the conductance Huctuates as a func-
tion of energy. These Huctuations are of the order e2/h.
This is a quantum interference effect in which the scale
of the sensitivity to changes in the energy depends on the
length of the wire. We estimate that this dependence is
of the form E, I/L2, i.e., similar to UCF, and dif-
fers from that of the Huctuations in the quantum wire
with rough boundaries (Sec. III). E, is the change of the
Fermi energy needed to modify the relevant phase dif-
ferences across the sample by about 27r. The Huctuation
of the conductance between difFerent samples is also of
order e2/h. In the strong localization regime (e.g. , case
L = 300 in Fig. 6) the conductance is reduced to a set of
peaks of maximum amplitude 2e2/h. Each peak corre-
sponds to the occurrence of resonant tunnelling through
the wire. The localization length generally increases as
energy grows and therefore the peaks get higher towards
the center of the band.

The average conductance for the case of bulk (island)

I10

10

FIG. 7. Energy dependence of the average conductance and
conductance Quctuations of a perfect wire with islands. Wire
lengths are L = 4, 10, 20, 50, 100, 200. Island concentration
is p = 5'%%uo, W = 20 and wire width is ul = 10. Number of
samples taken for calculating average values is N. The uni-

versal value for UCF of quasi-one-dimensional metallic wires

is marked by a horizontal line.
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FIG. 8. (G(E)) and rms(G(E)) for a perfect wire with is-

land concentration p = 1/o. Steps represent the conductance
for the case of perfect wire. (Note the different units for (G)
and Quctuations. ) The histogram of the (rescaled) DOS for
this wire is also shown.

FIC. 9. Average conductance as a function of wire length
for perfect wire with islands (concentration p = 5%) for en-

ergies E = —0.5, —2, and —3.73—upper 6gure. The cor-
responding conductance Buctuations are shown in the lower
figure. The number of samples is N = 4000, W = 20, and
tu = 10.
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disorder is shown in Figs. 7 and 9. This type of disorder
has a similar efFect on each subband, un&ike the case of
edge roughness where higher subbands are more affected
than lower ones. The average conductance as a function
of energy exhibits local maxima near the energies of the
subband edges of the perfect wire (Figs. 7 and 8). This
becomes more obvious for the smaller concentrations of
islands (e.g. , the island concentrations are p = 5% in the
case presented in Fig. 7 and p = 1'%%uo in Fig. 8).

The behavior of the average conductance of a disor-
dered quantum wire modeled by the (Anderson) Hamil-
tonian with a uniform distribution for the site energies
of the wires4 is, to some extent, similar. Although the
general appearance of the curves differs (for the strong-
scattering regime it looks like a line with peaks, whereas
for the Anderson model it looks like a line with dips), in
both cases the DOS is connected to (G(E)) in the same
way. Electron scattering is proportional to the number of
available states into which an electron can be scattered,
i.e., to the DOS. Therefore the electron mobility and con-
ductance should decrease when the DOS increases and
vice versa, see Fig. 8.

The average conductance decreases exponentially with
the length of the wire, see Fig. 9, which is the expected
behavior for the localized states. The slope of the line

exp((ln(G))) for long wires determines the localization
length for any energy, as defined by the Eq. (18).

The conductance fiuctuations first increase in the qua-
siballistic regime (Fig. 9), go through a maximum in the
region / ( L ( A and then decrease as the length of the
wire increases. The decrease is slower for energies with
longer localization lengths. A short region of lengths,
where fluctuations are almost independent of the wire
length, can be observed for the energies E = —0.5 and
—2. The level of the fiuctuations in this universal region
depends on energy and it is not, in general, equal to UCF
value for quasi-one-dimensional metallic systems. How-

ever, by chance we have found a case (that is E = —0.5
in Fig. 9) where rms(G) 0.73. The conductance fiuc-
tuations (Fig. 7) increase with the energy and tend to
a sort of asymptotical value. This value is close to the
UCF constant for wires with lengths inside the region
l ( L ( A, and decreases as the wire lengths move out of
this region.
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FIG. 10. The average conductance and the conductance Suctuations as function of energy for real wire with islands, p = 5%
(black full line), for wire lengths L = 10 and 50. These results can be compared with the results for the case of real wire
without islands (i.e. , wire with rough edges), W = 20, (m) = 10, and perfect wire with islands of concentration p = 5% and
W = 20, m = 10. For wire length L = 10, (G) and exp((ln G)) are virtuaHy the same, so only (4) is shown, whereas for L = 50
both averages are shown. Number of samples are N = 1000 (L = 10) and N = 3000 (L = 50).
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V. REAL WIRES WITH ISLANDS

So far we have examined separately the effects of
boundary roughness and islands on the quantum wire

conductance. Real wires with islands have both types of
disorder. The geometry of the system used for the cal-
culation of the conductance is the same as in the case of
real wires without islands, shown at the top of Fig. 2.

Some results for the average conductance and fluctua-
tions as functions of energy are shown in Fig. 10 for two

lengths of wire, L = 10 and 50. The average conductance
for both regimes shows no features, just a monotonically
rising curve which bends and falls off near the band cen-
ter. The presence of both types of disorder causes a fur-

ther decrease of the conductance when compared with a
wire with only one type of disorder. One can say that
the influence of islands is dominant for energies near the
band edge, whereas the influence of edge roughness be-
comes dominant towards the band center. Any feature
of the conductance quantization for a single sample is

quickly destroyed by the presence of both types of dis-

order. The conductance fluctuations for nearly ballistic
samples (L = 10) have similar values to the fluctuations
for the case of a real wire without islands, except for ener-

gies near the band edge. However, as the wire length in-

creases the conductance fluctuations for a real wire with
islands decreases faster then for the case without islands.
This is because strong localization sets in sooner in the
presence of islands. It was found in Ref. 31 that the
localization length of real wires with islands is usually
about half of the localization length of real wires without
islands (case of p = 5/p island concentration).

The conductance fluctuations as a function of length
behave like the conductance fluctuations for the case of a
perfect wire with islands for energies near the band edge,
but for higher energies they are similar to the case of real
wires without islands.

VI. DISCUSSION AND CONCLUSION

The characteristic coherent transport regimes (quasi-
ballistic, mesoscopic —t & L & A and strong localization)
are each affected by disorder in a similar way. For bound-

ary roughness the influence is weak near the band edge,

and increases as the energy increases. However, the in-

fluence of the island disorder is strongest on the highest

propagating modes and does not depend on the mode

(subband) number. Since the total conductance increases
with the number of propagating modes, then, in general,
the average conductance increases with the energy. But
note that the average conductance, as a function of en-

ergy, always drops when a new subband opens due to
the enhanced intersubband scattering. This was not ob-

served for the case of boundary roughness only. For the
quasiballistic regime the conductance quantization dete-
riorates very rapidly as the number of scattering events

increases. The average conductance decays exponentially
as a function of wire length (for L ) A), for any kind

of disorder, which is considered as an additional confir-

mation of the exponential localization of electron states.
Anderson localization is very effective in reducing the car-
rier mobility in narrow quantum wires. This effect acts
strongly against the predicted high mobility for quantum
wires.

The conductance fluctuations of narrow quantum wires

depend, in general, on the length of the wire, and are
therefore not universal conductance fluctuations (UCF).
However, the case with rough edges can show a univer-

sal region, but only for energies in the first subband.
The value for rms(G) is not far &om the UCF value for
metallic quasi-one-dimensional systems (0.729e2/h) and
depends on the energy. An increase in the localization
length extends this region of constant fluctuations. Ando
and Tamura~~ have predicted that for wider wires than
we have, a much broader region of universal conductance
fluctuations will appear. We find, on the contrary, that
for island disorder short universal regions can exist only

for higher energies and the actual value for rms(G) ap-
proaches the UCF as the energy increases. The universal

region, if it exists, appears for wires of length / ( L & A,

and the fluctuations reach a maximum in this region.

Changing the cross section of the leads makes no qual-

itative difference to the conductance of a system consist-

ing of a disordered wire attached to two perfect leads. "

Some small quantitative changes are observed only when

W w (which will be reported elsewhere). In any

case, the conductance becomes independent of W when

&) m. This should be expected, since for large val-

ues of W, transverse modes in the leads are densely dis-

tributed, and there are many of them contributing to the
total conductance.
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