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A recent photorefiectance (PR) experiinent on a GaAs/Gai Al As modulation-doped quantum
dot array shows that at 77 K the quasi-two-dimensional "2C-2H" interband transition develops a
series of evenly spaced oscillations. Such features are due to the quantization of the energy levels
related to the in-plane paraboliclike potential for such reduced-dimensional systems, e.g. , evenly
spaced conduction and valence subbands. However, for the other dominant feature, i.e., "1t-
1H" / "1C 1L," no-fine structure is observed since the first electron subband is occupied. We present
a self-consistent field theory and numerical calculations for the intersubband absorption coefficient of
an array of GaAs/Gai Al, As quantum dots with lateral parabolic confining potentials for electrons
and holes. Our numerical results for the derivative of the absorption coefficient have features which
are quite similar to those observed in the PR experiment.

I. INTRODUCTION

There has recently been considerable activity in
the field of reduced-dimensional systems such as one-
dimensional (1D) quantum wires (QW's) and zero dimen-
sional (OD) quantum dots (QD's) from both fundamen-
tal and applied perspectives. Considering the huge
success of physics and devices based on two-dimensional
(2D) semiconductor systems (i.e., quantum wells, super-
lattices, heterojunctions), there has been a natural trend
to continue to reduce the dimensionality of these systems.
These reduced-dimensional nanostructures exhibit inter-
esting properties involving singularities in the density of
states and unique transport phenomena. i 2 For QD's, the
ultimate goal is an artificial atom with a tunable number
of electrons. In OD systems, evidence has been found for
a paraboliclike in-plane confining potential, as opposed
to the square well potential along the growth direction.
Interesting transport phenomena such as Coulomb block-
ade have been demonstrated in quantum dots. Op-
tical applications include low-threshold, high-yield laser
structures and photodetectors.

One- and zero-dimensional systems can be formed in
several ways. For example, 2D structures are easily
obtained in the growth direction by thin film methods
such as molecular beam epitaxy (MBE) or organometal-
lic chemical vapor deposition. Therefore an obvious way
to obtain QW and QD arrays is to pattern the usual
2D heterostructures such as QW's with nanoscale litho-

graphic techniques. More recently, quantum dots have
been made by placing tiny gate electrodes on top of a
buried layer that confines electrons in two dimensions.
The voltage of these electrodes squeezes the electrons
into regions of confinement. By varying this external
gate voltage, the shape and size of a quantum dot and
the number of electrons within the dot can be adjusted.
Large periodic arrays of quantum dots have been fabri-
cated using gridlike gate electrodes. When a voltage is
applied to the grid, a regular lattice of dots is formed
in the underlying material. The size, shape, and sym-
metry of the confining potential are determined by the
shape of the gate electrodes. The strength of the confin-
ing potential regulates the number of electrons in each
dot. However, the lack over control of the defects in the
underlying quantum well material and the imperfections
in the electrode grid makes it difBcult to produce an array
of identical dots.

Despite the proven value of modulation spectroscopy,
particularly contactless modes such as photore8ectance
(PR), in studying 2D systems, is is there has been very
little work done on either 1D or OD nanostructures. In
PR (a contactless form of electromodulation) modula-
tion of the built-in electric field in the sample is caused
by photoexcited electron-hole pairs created by a pump
source (laser or other light source) which is chopped at
frequency 0 . This procedure results in sharp deriva-
tivelike spectral features in the region of intersubband
transitions. In reduced-dimensional systems, it has been
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shown that PR produces a line shape which is the
first derivative of the unmodulated optical constants.
Photoreflectance has been used to study 1D SiGe/Si
quantum wires and the effects of reactive ion etching
on large ( 0.5 pm) GaAs/Gai Al As QD arrays. 2i

Several authors have measured the electrotransmission
spectra of CdS Seq nanocrystals embedded in a glass
matrix. A preliminary PR investigation of modulation-
doped GaAs/Gap ysAlp 27As QD arrays (lateral dimen-
sions of 60 nm and 100 nm) at 77 K and 300 K has been
reported. Even at room temperature, it was possible
to detect the effects of the lateral quantum confinement,
e.g. , a 2 meV blueshift of the spectral feature 2C-2H of
the smaller sized QD array in relation to the 100 nm QD
sample. At 77 K this resonance in the 60 nm array ex-
hibited a series of evenly spaced oscillations. This effect
was interpreted in terms of the quantization of the en-

ergy levels related to the in-plane paraboliclike potential
for such reduced-dimensional systems, e.g. , evenly spaced
conduction and valence subbands for a paraboliclike in-

plane confining potential on the sxnaller QD array.
In this paper, we present a self-consistent field theory

for the absorption coefficient of an array of modulation-
doped GaAs/Ga Ali As QD's at arbitrary tempera-
ture. We simulate the confining potential due to the
surface charge on the QD's by lateral parabolic confining
potentials for the electrons and holes. When the deriva-
tive of the absorption coefficient is taken with respect
to the photon energy, the details of the spectral features
are greatly amplified. This model gives a quantitative
way of determining the confining environment associated
with the QD's. These calculations are compared with
the recent PR experiment of Ref. 23. By using this theo-
retical approach, Gumbs, et at. 24 were able to accurately
obtain a number of important parameters, i.e., the 2D
electron gas density, quantum well width, alloy compo-
sition, built-in electric fields, and strain, in pseudomor-
phic Gai Al As/In„Gai „As/GaAs modulation-doped
quantum wells (MDQW's) that form the basis for high
electron mobility transistors. The numerical results of
Ref. 24 compared well with the contactless electrore-
fiectance (CER) data for the intersubband transitions of
a pseudomorphic Gap sxAlp iQAs/Inp 2oGap spAs/GaAs
MDQW over a wide temperature range (17 K( T (351
K). Furthermore, the low-intensity light used in this
method reduces the possibility of any spurious effects
on the evaluation of the electron density due to pho-
toexcited carriers. The simple one-electron line shape
fit to the spectr»m is found to be reasonable only for
the peaks observed at high temperature for which many-
body effects are small. The Fermi edge transitions at
low temperatures cannot be modeled by the one-electron
theory. The theory which we present in this paper for
the interband absorption characterization of quantum
dots includes the depolarization shift due to the electron-
electron interaction, impurity scattering, and the effect
due to interface imperfection.

The PR data at 77 K for the 60 nm dot array of Ref.
23 showed that a major spectral feature, i.e., the quasi-
2D "2C-2H" transition, develops a number of evenly
spaced secondary peaks associated with the discrete en-

ergy levels in the QD's. However, no such oscillations

are observed for the other dominant feature, i.e., "1C-
1H" / "1C-1L," since the first electron subband is occu-

pied. The line shape of this resonance suggests a screened
exciton associated with the electrons and holes in dif-

ferent subbands. In such a OD system with cylindrical
symmetry, the electron (hole) energy levels will be char-
acterized by three quantum numbers, i.e. , n, C[H(L)],
n„C[H(L)] and n C[H(L)]. For example, n, C[H(L))
corresponds to the conduction (C) or heavy (H)/light (L)
hole subbands along the growth (z) direction, while the
other two quantum numbers specify the in-plane quanti-
zation. The notation m, C-n, H(L) denotes a transition
between the m, th conduction and n, th valence subbands
of heavy (light) hole character. Rigorously speaking, the
notation should include three quantum numbers for both
the electrons and holes because of the effects of the lat-
eral confinement. In this paper, we use "m,C-n, H(L)"
to indicate the quasi-2D transitions.

The rest of this paper is organized as follows. In Sec.
II, the experimental details and results are given. In Sec.
III, we present an analytic result for the absorption coef-
ficient in a quantum-dot array when a dynamic dipole in
the system is induced by an external electric field. This
formalism includes the polarization angle and tempera-
ture dependencies. Section IV contains numerical results
for the absorption coefficient of unpolarized incident light
and its ft.equency derivative for a square array of quan-
tum dots. A summary of our results follows in Sec. V.

II. EXPERIMENTAL DETAILS AND RESULTS

The PR apparatus has been described in the
literature. xs'xs The pump beam was the 6328 A. line of
a He-Ne laser chopped at 200 Hz. The sample used in
this study was grown by MBE on a (001) semi-insulating
GaAs substrate with a 1 pm not-intentionally-doped
GaAs buffer. The active region was a 0.58 p,m thick
xnultiple quantum well (MQW) structure which consisted
of the following layers repeated ten times: a 30 nm
Gai Al As layer, a Si h-doping layer (2 x 10 cm ),
20 nm of a GaAs (0.85 nm)/A1As (0.85 nm) superlattice
structure, and an 8 nm GaAs QW region. There was a 17
nm GaAs cap on top of the entire structure. Shubnikov-
de Haas measurements indicated that the electron gas
(EG) density in the GaAs QW's corresponded to a "two-
dimensional" concentration of 8.5 x 10 cm . Thus the
Fermi energy is about 20 meV above the first conduc-
tion subband. The 60 nm QD arrays formed a square
lattice pattern, with the separation between neighboring
dots being four times the individual dot diameter. The
lateral dimension of this QD array is sufficiently small to
produce an observable lateral quantum confinement ef-
fect. In Ref. 23, a blueshift of 2C-28 of the 60 nm array
in relation to a 100 nm array was observed at 300 K. The
magnitude of the shift was consistent with the effects of
the lateral confinement.

Displayed in Fig. 1 is the PR spectrum of the QD ar-
ray at 77 K. The structure around 1.5 eV is from the
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FIG. 1. Experimental photoreaectance spectrum at T =?7
K for a 60 nm quantum dot array as a function of the inci-
dent photon energy. The 2C-2H transition at about 1.7 eV
from the second heavy-hole subband to the second electron
subband develops a series of oscillations corresponding to the
excitations between the discrete energy levels of lateral con-
finement.

direct gap Eo of the GaAs buffer/substrate. The sig-
nal around 1.6 eV is quite unusual for modulation spec-
troscopy from a QW system. Such traces generally ex-
hibit sharp, derivativelike features (i.e. , positive and neg-
ative lobes) associated with excitons, even at 300 K. In
addition, these reported line shapes are symmetric.
The 1.6 eV trace of Fig. 1 lies on only one side of the base-
line and corresponds to the screened 1C 1H/1C 11 -exci--
tonic transitions. The screening is due to the presence of
the EG. Yin et gl. ' and Dimoulas et g/. have recently
observed similar signals in PR associated with the 2D
EG in Gaq ~AI As/In„Gaq „As/GaAs MDQW's. Such
lineshapes were accounted for on the basis of the first-
derivative of a broadened steplike 2D density of states
(due to the screening of the exciton) times a Fermi level
filling factor.

The onset of the feature around 1.7 eV corresponds
to 2C-2H. We note the series of evenly spaced oscil-

T=77K

FIG. 3. Plot of the extrema positions above the 2C-2H
transition of Fig. 3 as a function of the extrema index. This
straight-line plot supports the model of in-plane harmonic
lateral confinement for each quantum dot.

lations extending for about 100 meV. These resonances
have been found to be reproducible. Displayed in Fig. 2
is an expanded version of the spectrum in the region of
2C-2H. The various peaks have been labeled with index
number E = 1 —1?. In Fig. 3 is plotted (Er —E2c 2H)
vs index E, where Eg is the energy of the 8th resonance.
Note the linear relationship.

There are a number of significant aspects of the spec-
trum of Fig. 2 such as (a) the spacing between successive
resonances (i.e., the slope of Fig. 3), (b) the relative in-
tensities of the various peaks, and (c) the small feature
between 8 = 4 and E = 5, labeled "sf". As we shall
demonstrate below, our calculations will be able to ac-
count for all of these aspects of the PR spectrum. For
example, these small features (such as "sf") are related to
the depolarization shift which is found to be anisotropic
in different directions of the wave vector. In the absence
of the Coulomb interaction, some excited states are de-
generate due to the square symmetry of the lattice struc-
ture and we do not observe these small features in the
derivative of the absorption coefIicient. However, the
Coulomb interaction between electrons depends on the
direction of the wave vector which lifts the degeneracy in
this system and produces these small features as a result
of the splitting of the absorption peaks. The strength of
the small features is determined by the optical broaden-
ing parameter.

III. OPTICAL ABSORPTION COEFFICIENT
FQR QUANTUM-DDT ARRAYS

1.70 1.75

Energy (eV)

1.80

FIC. 2. Experimental photoreBectance spectrum at
T = 77 K for a quantum-dot array showing the oscillatory
features above the 2C-2H transition in Fig. 1 on an expanded
scale.

In this section, we present a model for an array of
quantum dots in the x-y plane and a self-consistent field
theory for the in&ared absorption coefIicient. We carry
out a detailed calculation of the in&ared absorption spec-
tra as a function of the incident photon energy. Here, the
many-body depolarization effect is included.

When the electron gas with a positive jellium back-
ground is perturbed by an external electric field, the in-
duced density distribution of the electrons will-oscillate
with a normal mode frequency. The resulting density
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fiuctuation will introduce an effective dynamic dipole in
the system. Since the wavelength of the incident rnid-

in&ared light is much larger than the size of the sample
being measured, we assume that the electric field which
is propagating along the z direction and polarized in the
x-y plane is uniform within the sample. In a quantum
dot array of thickness L„ the coupling of the induced
dipole to the external electric field gives rise to energy
absorption. which is represented by the absorption coef-
ficient we now derive. In our calculations, since we are
interested in modeling the dominant 2C-2H transition
features in Fig. 2, we only include excitations &om the
second electron to the second heavy-hole subbands with
envelope functions (z (z), (2HH(z).

In linear response theory, the induced electron density
of frequency cu due to an external electric field Eo" e'~'
is given by

&Aj~& (r, z;ur) = 2(2 (z)(2 (z) ) ) vP„', , (r) vj„(r)
nm nlml

X IINM N M' (K) (nmlHi ln'm')

where r is a 2D vector in the x-y plane,

fo (ENM) —fo (EN'M')
~ —(EN'M' EN M) + &&/7

valence and conduction band offsets,

&@- = 2ma~e
I

—'
IE2)

, (1.,1'
E, = -'me~a

E2)
where the quantum well is simulated by a truncated
parabolic well of width L,. The eigenfunctions are given
by Q„(r) = P„(x)P (y), where

(4)

d~, N~ and d„,N„are the lattice spacings and the number
of unit cells in the x and y directions, respectively, and

pN (z), QM (y) are the harmonic oscillator eigenfunctions
in the x-y plane. For the Bloch wave functions in Eq.
(4), the form factor in Eq. (3) is given by F„„(q)=.
F„„(q )F (q„) with

fo(E) is the Fermi distribution function, w is a phe-
nomenological optical broadening parameter, and the
matrix element of the perturbed part of the Hamiltonian
consisting of the external and induced potentials due to
density Quctuations is

(nmlHiln'm') = «o"' r; ' + ) v(q)F„.„(q)

F„„(q ) = bs i.+~.gc.

x dxe-'q-* "'x ",'x,
F~~ (qs) = bs s„+q„+c„

x dye-'q y (')
y ('), y (5)

OO

x dz" e ~' ' ~('(z")

x(, "(z") bJV;„g (q;ur),

where we have assumed that the wavelength of the inci-
dent light is much larger than I,. In this notation, v(q) =
2vre2/e, q where e, = 4vreoes with es denoting the aver-
aged optical dielectric constant of the system. The form
factor is defined as F„,„(q) =( nmle 'i'ln'm' ),
the dipole transition matrix element is er„
(nmlerln'm'), the envelope functions in the z direction
for an electron and a hole are (; (z) and ( (z), respec-
tively, and (rlnm) = g„(r) is the Bloch wave function
for electrons or holes within the 2D plane, where n =
(N, k ), m = (M, k„) are composite indices labeling the
eigenstates of the harmonic oscillator potential and the
Bloch state wave vectors within the first reducible Bril-
louin zone. We take the envelope functions for an electron
and a hole as (; (z) = (2tcc/vr) ~ exp( —ecz )H;(tccz)
and (HH(z) = (2+Nz/m)i~+exp( +2Hz )H;(ecz)—, where

—:mCuC/5 and r~ —mNuN/5, with electron ef-
fective mass m&, the absolute value of the hole effective
mass denoted by mls, and H;(x) the ith Hermite poly-
nomial. The strengths of the quantum well potentials of
the electrons u~ and holes ~H are determined korn the

where G, G„are reciprocal lattice vectors. We have
assumed in Eq. (5) that there is no overlap of the wave
functions on different quantum dots corresponding to iso-
lated dots in the samples used in the experiment. If 0 is
the polarization angle which the external electric field
makes with the positive z axis and eo ——Eo" / lEo"

l
is a

unit vector in the direction of the external electric field,

n ~

rnm. nlml . eo ——Xn . l COSH+ ynm. nlml Sin8,

Where Xnm;n'm' —Xnn'+mml and ynm;n'm' —+nn'+mml ~

Invoking the same assumption as in Eq. (5), we obtain

X„„=br, S.+C. dx rtpN (z)zPN, (x)(o) (o)

+z dx ~ x ~l x

x ) jsinL'(k' —k )jd j,

X- = b', ~.+c. dy &M(y)&M (y)
(o) (o)

Ynn = bi~,I.+a. dx PN (x)PN, (x),(o) (o)
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= 4„,A„+a„dv 4M (u)v4M (u)
(o) (o)

+i ~"
y —oo

x ) j sin[(k„' —k„)jd„] . (8)

(V;~.;,. ((u) )
]E.„tI I

= 2).) ~M, N'M (&)
nm n'm'

V„',„»(cu) 5
&nm;n'm' ep +

e IEo 'I

x —) F.* . (q)+V .- (q)U(q)

(12)

The Fourier transform of the induced density fluctua-
tion is

Equations (1) and (3) jointly give the polarizability
nl, (od) of the 2D rectangular array of quantum dots. We
have

1
(~A a (q; ~) = — dr bed;„s (r; (d) e* ', (9)

V„,„»(cu) = ) U(q)F„,„(q)hler;„g (q;od), (10)

where U(q) = u(q)I(q) with

1(q)—:f dz f dz' q, (z)q,""(z)

where A = N~N„d~dy denotes the area of the sample.
By defining

—e
d bA;„(r; (u) r e

2c2 ) ) (r„',„, , eo) IInrM, m M (od)
ZLA

(V„,„(od)3" ('-;-- eo)+
I 'E... I (»)

Equations (12) and (13) are the two main results of this
section. They determine the absorption coefBcient of
light of frequency ~ which is given by

P b, (~) = [pph(~) + 1] Im nl. ((u), (14)
t"G'P 7l7 (d

we obtain

xe-~~ —'~q, (.')q,""(.'),
where p~h(~) = 1/ e" )'"~ —1 is the photon distribu-
tion function, and the re&active index is given by

1
7)q ((d)) = E'(q +

2

Re nl, (od) (
+ Eb+

E'p

- a/2
Re o.l, (ur) ) ' (Im o.L, (u)) )

+
) l so )

In the Appendix, we make use of the results in
Eqs. (5)—(8) to express the self-consistent equation for
V~,; ~ (ur)/e ]Eo"

I

in matrix form suitable for doing nu-
merical calculations along with the Lorentz ratio in Eq.
(»)

Assuming that the frequency of the incident light lies in
the interband excitation regime, we include only the tran-
sitions between electron and heavy-hole subbands in our
numerical calculations. Furthermore, the quantum-dot
array is buried in a symmetrical quantum well so that the
dominant transitions in this case are 1C-1H and 2C-2H.
The doping electrons occupy the first electron subband.
Therefore, the only observed electronic transitions within
the quantum dots at low temperatures are between the
energy levels superimposed on the second conduction and
heavy-hole valence subbands. In our numerical calcula-
tions, we only include the transitions superimposed on
the interband transition 2C-2H. If the incident light is
unpolarized, we must average over the polarization angle
8 between 0 and 2vr (see the Appendix).

IV. NUMERICAL RESULTS AND
EXPERIMENTAL DATA

In this section, we present numerical results for the
absorption spectrum of unpolarized incident light in a

L,

d~ =dy

80 A, es = 12.0, n2D = 0.8 x 10 cm

70 meV, AE, = 280 meV, 5/r = 0.75 meV,

150 A. , mc —0.067mp, mH = 0.48mp,

1.32 eV, E2 = 120 meV, E2 = 24 meV.

In this notation, E~ is the intrinsic energy gap of the
material, and E2, E2 are the band edges for the sec-
ond electron and second heavy-hole subbands. We use
parabolic confining potentials of &equency O~ and O~,
respectively, for the electrons and holes. In our calcula-
tions, we have included three degenerate in-plane electron
energy levels. The in-plane quantum numbers are

(iV', M') = (1,0), (0, 1), (0, 3),

(1,2), (2, 1), (3, 0),

I

square array of quantum dots. In principle, our model
can be used in quite general cases. However, we do not
attempt to make a quantitative comparison with the ex-
perimental data since this would involve large-scale com-
puter calculations. Instead, we apply our model to an
example with a small number of electrons in each dot.
The parameters used in our numerical demonstrations
are as follows:
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whose energies are given by Eq. (A12).
In Figs. 4(a), 5(a), and 6(a), the absorption coefFicient

[in units of ne ——e /(~oao), where ao ——e,h2/(m&e )]
is plotted as a function of the photon energy Ru at tem-
perature T = 77 K for three pairs of values of O~ and
OH. There are two peaks which correspond to the transi-
tions between the discrete energy levels within a quantum
dot. The many-body depolarization shift depends on the
form factors and lifts the degeneracy to some extent.

In Figs. 4(b), 5(b), and 6(b), the derivatives of the ab-
sorption coefficient in Figs. 4(a), 5(a) and 6(a) are plot-
ted as a function of Ru. As in Fig. 2, we have labeled
the various peaks with index number f. The absorption
peaks arising &om the interband transitions produce the
sign changes in the derivative of the absorption coeffi-
cient. The zero in the derivative spectrum corresponds
to the peak or valley positions in the absorption coefFi-
cient. There are four peaks in the spectrum. The features
in the absorption spectrum are significantly amplified in
its derivative, thereby providing a way of determining the
confining environment &om the values of O~ and O~ by
fitting the line shape of the thermally broadened absorp-
tion spectrum.

The results in Figs. 4(b), 5(b), and 6(b) show that the
details of the derivative spectra, i.e., spacing and rela-
tive intensities of the peaks and valleys as well as small
features, depend sensitively on the values that we choose
for the parameters Ac and OH. For example, there is
clearly a reduction in the spacing of the extrema, i.e. the
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FIG. 5. (a) Calculated absorption coefficient at T = 77 K
with AQUA = 9 meV and MIH = 3 meV. (b) Calculated deriva-

tive of the absorption coefBcient as a function of the photon
energy.

slope of energy as a function of the index number E (such
as Fig. 3) as Q~ and O~ are decreased. The relative in-
tensities of the peaks/valleys also are controlled by these
quantities. In Fig. 4(b), structure E = 5/E = 6 has about
the same ainplitude as the leading feature E = I/E = 2,
while in Fig. 6(b) the relative amplitudes are more similar
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FIG. 4. (a) Calculated absorption coefBcient at T = 77 K
as a function of the photon energy. This calculation is based
on the full many-body theory for unpolarized incident light
with hQo = 9 meV and AQH ——6 meV. (b) Calculated deriva-
tive of the absorption coefficient as a function of the photon
energy.
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FIG. 6. (a) Calculated absorption coefficient at T = 77 K
with MIo = 4.5 meV and MI~ = 3 meV. (b) Calculated
derivative of the absorption coefficient as a function of the
photon energy.
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to the experimental data of Fig. 2. In Fig. 4(b) there is
no "sf" between features 4 and 5 while in Figs. 5(b) and
6(b) such a structure is clearly visible. Therefore, by the
appropriate choice of O~ and OH, it would be possible
to reproduce the details of Fig. 2. This means that the
effects due to the Coulomb interaction between electrons
are related to the degree of confinement within a quan-
tum dot. Our calculations also show that the derivative
spectrum depends on the temperature.

V. CONCLUDING REMARKS AND SUMMARY

In conclusion, we have used harmonic potentials to
simulate lateral confinement of quantum dots. We have
derived a self-consistent field theory for the infrared ab-
sorption of polarized or unpolarized incident light in this
system. The derivative spectrum depends on the values
of O~ and OH, thereby providing a means of simulat-
ing the confining environment due to the surface charge
on the quantum dots, by comparing with the photore-
flectance spectrum. Many of the observed features in the
experiments reported here are reproduced in our theory.
The features in the absorption spectrum are significantly
amplified. The thermal broadening of the peaks sensi-
tively depends on the electron density and the temper-
ature. Based on the known temperature in the exper-
iment, it gives us a convenient way of determining the
number of electrons in each dot by fitting the thermally
broadened line shape.

ACKNOWLEDGMENTS

The authors G.G. and D.H. acknowledge the support
in part from the City University of New York PSC-
CUNY Grant No. 662505 and the Office of Naval Re-
search under Contract No. N00014-93-1-0576 while the
authors H. Q. and F.H.P. wish to acknowledge NSF Grant
No. DMR-9120363, PSC-CUNY Grant No. 664239, and
NATO travel Grant No. 5-2-05/RG-920115. The au-
thors P.D.W. , C.M.S.T., and M.C.H. received support
from the U.K. Science and Engineering Research Coun-
cil Grant No. GR/H44714. They also acknowledge the
NATO travel grant. We benefited from several critical
comments by Joseph Birman and Norman Horing.

APPENDIX

In this Appendix, we simplify the results in Eqs. (12)
and (13) by making use of the results in Eqs. (5)—(8). In
a straightforward way, we have shown that as N m oo

rNM. ,z M eo ——X~~ XMM cos 6 + Y~N YMM sin 0 .

(A2)
Here,

X~~I = dX ~ Z Z NI X

XMMI =

« 6 (&)&N (&)
(o) (o)

YM M' (A4)

Also,

I NM;N'M'((d/) —= ) &(GII )FNM;N'M (Ger )
Ccc

XbJV;„d (GII, o/)

where GII = (2vrC/d, 27rC'/d„) with C, C' being integers
is a reciprocal lattice vector and

FNM NM (GII ) =. fNN (27rc/d~) fMM (27rc'/dy) . (A6)

In this notation,

fzz (2zd/d )=j dz e .' ' 'd'z (z)d~, (z),

/Mee (2 d /d )=ef edz 'e ' " ""dM (v)der, (ll) .

(A7)
The matrix equation determining VNM N M (o/) is

o'L((e/) = —e'~. ) . ). (rNM;N'M' . &o) IINM, N M ((d/)

NM NIM'

/ +NM;N'M'(o/) ~
(rNM;N M eo) +

I e @o

(Al)
where N, is the total number of electrons within the 2D
plane and

NM, N'M' ( +NM;N'M' (~) )) ) 4I~M J~N'I'()M' J' rd2D YIJ I' J' XNM, N M ((z/)

XM N'M'

NM, N'M'
n2D ) ) YIJ ['J' XNM, N'M'((d/) (rNM;N'M' eo), (A8)

NM N'M'

where

XNM, N'M'((d/) = [fo (FeNM) —fo (FeN M')] (~„

X
(FzN' M' @NM ) + i~/T M + (EN'M' —ENM) + ih/7

(A9)
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n2D is the areal electron density and E+~M I = (N' + M' + 1) hA~ +. E2 (A12)

(A10)

We replace r~ M~ M eo in (A2) by KXNN'+MM') +
(l'&&, AM )2]~I2/Q2 when we average over the angle 8.
The only nonzero contributions to (A8) come from the
terms with N+ N' even and M+ M' odd and vice versa.

We use parabolic confining potentials for the electrons
and holes and denote the frequency of the harmonic os-
cillator potential by O~ and OH, respectively. For this
model, the heavy-hole energy is

E~M = —(N+ M+ 1) hOIr —(E2 + Es), (All)

and the electron energy is

where N, M, N', M' = 0, 1, 2, . . . . In this notation, Ez is
the intrinsic energy gap of the material, and E2, E2 are
the band edges for the second electron and second heavy-
hole subbands with envelope functions f2+(z), (2HH(z).

Since the peak positions of the PR spectrum are
equally spaced, we conclude that only excitations Rom
the topmost heavy-hole level (N+ M = 0) are efFectively
excited in the experiment. This might be due to the
considerable overlap of the broadened heavy-hole levels
when the separation between these energy levels is small.
Consequently, we get E~ M~ —Eoo ——(E2 + E2 + Es +
M~) + (N' + M' + 1)hQ~ where N' + M' is an odd in-
teger. From the known values of Eg, E2HH, Es, and the
first peak position as well as the peak separation, we can
easily determine the values of O~, and OH, respectively.
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