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Exciton binding energies in a dielectric quantum well in a magnetic field
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We study the effect of a magnetic field applied along the growth axis on exciton binding energies in

dielectric quantum-well structures, in which the dielectric constant of the confining barriers is

significantly smaller than that of the well material. The anisotropic electron-hole Coulomb interaction

potential is obtained analytically by solving the Poisson equation in the layered geometry of quantum

wells. Confinement is provided by the image charge distribution arising from the mismatch of dielectric
constants at the interfaces, in addition to that of the quantum-we11 potential and the applied magnetic

field. Exciton binding energies are calculated using the Gaussian-type orbital expansion method.

Significantly enhanced binding energies are obtained for the excitons in various dielectric quantum-well

structures and their behavior in a magnetic field is discussed.

I. INTRODUCTION

The enhancement of the Coulomb interaction in a thin
semiconductor layer sandwiched by insulators was first
pointed out by Keldysh in 1979.' A quantum well can
be called "dielectric" when the dielectric constant of the
barrier material is significantly smaller than that of the
well material, as in the case of a GaAs-ZnSe quantum
well (QW) and others constructed according to the same
principle. Image charges arise due to the mismatch of
dielectric constants at the interfaces. Dielectric quantum
wells have recently received increasing attention because
of their potential to sustain electro-optic operations with
greater range of applicable electric fields. Recent pro-
gress in the fabrication of such structures has prompted
further interest in studying properties of excitons and
their dependence on various material parameters and ap-
plied fields. ' Binding energies of excitons can be
significantly enhanced because of the additional
confinement effect produced by the image charge distri-
bution.

Calculations of the binding energies and their varia-
tions with the applied fields are needed to obtain accurate
values of the optical transition energies of excitons in
such quantum wells. Dielectric quantum wells differ
from the nondielectric quantum wells in one essential as-
pect, i.e., in addition to the usual quantum confinement
provided by the band offsets at the interfaces and possibly
also by external fields, confinement effect due to the im-
age charge distributions is also significant. The Coulomb
interaction between an electron and a hole is no longer
isotropic; it not only depends on z, —

zt, (where z is the
direction normal to the interfaces), but also involves

z, +z&. A comprehensive theoretical treatment of exci-
tons in dielectric quantum-well structures was given by
Kumagai and Takagahara, in the absence of external
fields. They used an image charge method to obtain the
Coulomb attraction between an electron and a hole in the
dielectric quantum wells. The image charge method, al-
though very simple and intuitive when there is only one
interface involved, becomes increasingly cumbersome to
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FIG. 1. Schematic band diagram for a dielectric quantum-
well structure. The dielectric constant of the well material is c„
that of the barrier material is c2 (c2 & c&). The magnetic field B
is applied parallel to the growth direction of the structure.

use in more complex geometries of quantum-well struc-
tures. For example, it would be practically impossible to
use the image charge method in the coupled double quan-
tum wells and superlattices.

We have developed a formalism for the calculation of
binding energies of excitons in the "dielectric quantum
wells, " in the presence of a magnetic field applied along
the growth axis. In this paper, we obtain the electron-
hole Coulomb potential analytically by solving the first-
principle Poisson equation in the layered geometry of
quantum wells, which, in principle, can be readily used in
the more complex dielectric quantum-well structures. In
the next section, we consider excitons in a dielectric
quantum well depicted in Fig. 1, and describe the varia-
tional formalism in which binding energies are calculated
with the Gaussian-type orbital expansion method. '

Several semiconductor quantum-well structures with
significant dielectric confinement are considered. In Sec.
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III, we give the results of the exciton binding energies in
some representative dielectric quantum-well structures
and discuss their variations as functions of the strength of
the magnetic field and the size of the quantum well. A
summary is provided in Sec. IV.
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II. FORMALISM
22 23

4(r) =f "dKf(z, zo , K)Jo(Kp)',
0

(2)

where Jo(Kp } is the Bessel function of the zeroth order,
f (z, zo, K) is a function to be determined from boundary
conditions on 4(r}, i.e., 4(r) and s;B4;(r)/Bz be con-
tinuous across the interfaces at z =+L/2. Since 4(r) is
uniquely determined by the function f (z,zp'K), we need
only to obtain its expression for possible combinations of
z and zo. For that purpose, we divide the quantum-well
structure into three regions for z and for zo, depending on
whether z(zo) is in the quantum well or in the barrier. A
schematic diagram is provided in Fig. 2. For zo locations
inside and outside the quantum well, we obtain expres-
sion of f(z, zo;K) as a function of z, and similar expres-
sions of f(z, zo', K) as function of zo if z locations are
specified instead.

The derivation of the expressions for ( izo ~

& L /2 ) is
provided as an example; other expressions for zo outside
the quantum well can be obtained similarly. f(z,zo;K) in
the quantum well and the barrier regions can be written
as

We consider a dielectric quantum well of width L de-
picted in Fig. 1, with the magnetic field B applied along
the growth direction (chosen as the z axis). The origin is
chosen at the center of the well. The dielectric constant
in the well is s„ that in the barrier is E2 (s2 & s, ).

Because of the difference in the dielectric constants, the
electron not only sees the hole, but also its image charge
distribution, and vice versa for the hole. In what follows,
we solve the first-principle Poisson equation in the lay-
ered quantum-well geometry to obtain the expression of
the potential between the electron and the hole, with the
effect of image charge distributions properly accounted
for.

The electrostatic potential 4(r) produced by a unit
charge at (p=0, z =zo) satisfies

sP' 4(r) = —4n.5(z —zo),

the solution of which in the cylindrical coordinates is in-
dependent of the azimuthal angle y. We therefore can
write 4(r) in the general form, '

31

L/2

FIG. 2. Schematic diagram for regions in a dielectric quan-
turn structure. z, is the z coordinate of the electron, zz the z
coordinate of the hole. The first index denotes the region for
the electron, the second index that of the hole.
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and at z =L /2 )zo,
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which lead to a set of linear equations

(4.1)

(4.2)

A +Be' —C = —e (5.1)

A —Be' —Cc= —e (5.2)

Ae' +B—D= —e (5.3)

Ae' —8+Dc, =e (5.4)

where Z=E2/s, &1. We obtain the following expression
of the electron-hole Coulomb interaction after substitut-
ing the solution of the above equation into Eqs. (3) and (2)
(in units of the effective Rydberg),

HC = —2 f dK V ( 11zzh, )JK( p0»K (6)

—~lz —zol
f22(z, zo;K)=e '+He "+Be"'

( ized & L /2, i zo & L /2), (3.2)

f32(z, zo', K)=Ce "' (z )L/2, izo~ &L/2),
—~lz —zol

where the term e ' would be the expression for the
isotropic Coulomb interaction; the first index in f; indi-
cates the region for z, the second index the region for zo,
A, B, C, D are constants to be determined. At
z = L/2 &zo,—

f12(z,zo,'K)=De" (z & L/2, izo~ &L/2)—, (3.1) where

]c(,L+z +z~ )
1 —~li, —~~l e ' " sinh~Lv„(K)=—e

sinh(KL +g)
(z, & L/2, zh & L/2), — —
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e ' cosh[azh —(tcL +r})/2]
(z, & L—/2, izh i

&L /2),
sinh(~L +ri )

QL+z —
ZI, )+g

2 e
(z, & L—/2, zh &L/2);

(1+g) sinh(KL +g)

e " cosh[hz, (aL—+g)l2]
(~z, ~

&L/2, zh & L/2—),
(1+X) sinh(hL +ri)
2 cosh[~z & (aL—+ ri) /2]cosh[az & + (rrL + ri) l2]

( z, &L/2, zh &L/2),
sinh(aL + r})

e " cosh[~z, +(~L+g)/2]
(~z, &L/2, zh &L/2);

sinh(aL +g )

2

(I+X)
v, 2(a) =

v, 3(~)=

vz)(a) =

v22(a ) =

2
v23(z) =

(1+8)

2
v3z(h) =

( 1+7)

]c{,L —z +z~)+g
v3)(gc)= . (z, &Ll2, zh & L/2)—,

(1+g)2 sinh(aL+ri

e ' c osh[ sz h+(~L+g)/2]
(z, &L/2, zh &Ll2),

sinh( hL + rI )

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

4L —z —
zl, ) .

e ' " sinhKL
v33(h) =—e

sinh(aL+v])
(z, &L/2, zh &Ll2); (7.9}

H =He +Hg +Hex

where

a ~0 aH + VQw(z, )+ VsE(z, )
Ze me Ze

(9.1)

where g=ln[(1+8)/(1 —Z)], z & =max(z„zh ), and z &
=

min(m„zh). It is easy to see that if the dielectric con-
stants were the same across the interfaces (normal
quantum-well case), then rI~~ and v(z„zh ', K)

-Klz, -z„ I~e ' ", one recovers the usual expression for the
Coulomb interaction Hc = 2lr. It is a—lso easy to verify
that a power-series expansion of the function
1/sinh(aL+7I) in terms of e "" (n =1, . . . , ~ ) leads to
the image change summations of the various terms in H&.
At this point we would also like to compare our expres-
sion for v(z„zh, a) with that derived by Jain and Allen
for a structure consisting of a film containing a finite
number of equally spaced layers of two-dimensional gas.
Even though the structure we consider is different from
that studied by Jain and Allen, our expression for
v(z„zh, h) goes over to their expression in the limit
L ~~ in our case and d (spacing between two adjacent
layers} goes to infinity in their case.

Within the framework of an effective-mass approxima-
tion, the Hamiltonian of an exciton in the quantum-well
structure is written as

Hh =— + VQw(zh )+ V$E(zh },8 Po 8 h

zh mh zh
(9.2)

Po

p(z„zh )

a a a

P~p ~P p ~p
P

+yL, + +Hc(z„zh;p);rc
4

(9.3)

p =Q(x, —xh )2+(y, —
yh ), rn, is the effective mass of

the electron, p(z„zh ) is the reduced mass of the exciton
defined by

p, '=m, '+ —,'[(2T-1}m„z'+(2+1)rn&h'], (10)

where the upper sign denotes the heavy-hole exciton, the
lower sign the light-hole exciton; m hs (m &h ) is the
effective mass of the heavy (light) hole in the growth
direction; po is the reduced exciton mass inside the quan-
tum well. In Eqs. (9), all the lengths have been scaled in
terms of the effective Bohr radius az =s,R /p~e and all
energies in the effective Rydberg R =e /2E, a~;
y=keB/2pocR is energy of the first Landau level, L, is
the z component of the angular momentum (in units of
R); and Hc is the term describing the anisotropic
Coulomb attraction between the electron and the hole in
a dielectric quantum-well structure. VQw(z, ) (c =e,h) is
the confining potential profile for the electron (hole), and

sintucL —2w Iz, I

—I l2), L
e ~z, & — c=e,h,

V;,(z)=f" .
o sinh(zL+q)

cosh2zz, +e ~ z ~z ~

& L
( e h
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is the self-polarization energy from the interaction be-
tween the electron (hole) and its image charge distribu-
tion.

Next we write the wave function %(z„zi„p,g) in the
following form

'P(z„z~ ', p, p) =F, (z, )FI, (zh )P(p, y; z, —
zh ) . (12)

F, (z, ) and Fz(zi, ) are subband wave functions for the
electron and the hole, respectively, that satisfy the follow-
ing two equations:

H, F, (z, ) =E,F,(z, ),
HqFq(zq ) =E~Fq(zh ),

(13.1)

(13.2)

where E, and EI, are the subband energies of the electron
and the hole, respectively. It has been shown that the
effect of the self-polarization energy can be satisfactorily
accounted for by a shift in the subband energy, without
significant modification of the subband wave functions.
Since such shifts are canceled out in the results for the ex-
citon binding energies, VsE(z) will be replaced by the cal-
culated shifts in the subband energies in the Hamiltonian
in the rest of this paper. P(p, y;z), as a function describ-
ing the binding between the electron and the hole, is ex-
pressed as an expansion in Gaussian-type orbitals,

P(p, p;z)= —e ~~ gc;e
&Zm.

(14)

where P is a variational parameter and a; are the
Gaussian-type orbital expansion coef5cients adopted
from the variational results of Huzinaga. The total en-
ergy E for the exciton is obtained from the Schrodinger
equation H%=E% and is subsequently minimized with
respect to the variational parameter P. The remaining
expansion coeScients c, are also determined from the
minimization of the total energy. The binding energy of
a exciton state is defined as

and R =3.4 meV. For the lh exciton,
go=0.05mo, a~ =135 A, and R =4.2 meV.

Before proceeding further, we would like to comment
on the origin of the discrepancy between the results for
exciton binding energy obtained for a GaAs-Alo 3Gao 7As
dielectric QW in Ref. 4 Kumagai and Takagahara (KT)
and Ref. 6 Tran Thoai, Zimmermann, Grundmann, and
Bimberg (TZGB). The result given by KT does not ex-
hibit a maximum in the binding energy at small QW
sizes, which contradicts an earlier theoretical prediction
by Greene, Bajaj, and Phelps. On the other hand, the
exciton binding energy calculated by TZGB has the pre-
dicted behavior as QW size gets smaller; these authors
tentatively attribute the difference to the inclusion of con-
Uergent self-polarization energy terms in their calculation.
However, a careful comparison of the Coulomb potential
terms given by KT with our analytical expressions in Eqs.
(7) reveals two sign errors in their Eqs. (C20) and (C21).
The exciton binding energy has the correct behavior
when these errors are corrected, irrespective of the con-
tribution from the self-polarization energy terms. %e
have therefore convincingly shown not only the merits of
the first-principle analytical approach to obtain the ex-
pression for the Coulomb interaction, but also the
insignificance of the contribution from the self-
polarization energy to the exciton binding energy.

In order to see how the image charge contribution
would enhance the exciton binding energies, we consider
a GaAs-A1As quantum well, where the dielectric con-
stants of the well and the barriers are not very different.
Calculations are first performed with an isotropic
Coulomb attraction by using the dielectric constant of

35—

E~ =E,+E~+y —E . (15)

III. RESULTS AND DISCUSSION

%e have calculated the binding energies of the heavy-
hole and light-hole excitons in the GaAs-AlAs and
GaAs-ZnSe dielectric quantum wells, in the presence of
an applied magnetic field. The electron and hole masses
and other parameters used in our calculations are listed
in Table I. For the HH exciton, p0=0. 04mo, a~ =167 A,

2 5

1.5—

TABLE I. Material parameters used in the calculation.

m, (mo)
mhh(mo)
mph(mo )

V, (meV)
Vz (meV}
dielectric constant c,

'Reference 20.
Reference 4.

GaAs'

0.067
0.35
0.08

12.5

AlAs

0.15'
0.40'
0.18'

1060b
550'

10.1b

Znseb

0.17
0.76
0.16

340
960

7.6

{)

40 60 80 100 120 140 160 180 200

well width (A)

FIG. 3. Variation of the enhancement of the binding energy
of a heavy-hole exciton (hE) due to image charge contribution
as a function of well width in GaAs-A1As (dashed line:
———) and GaAs-ZnSe (solid line: ) quantum wells for

the magnetic field 8=0.
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FIG. 4. Variation of the enhancement of the binding energy
of a heavy-hole exciton (hE ) due to image charge contribution
as a function of magnetic field B in GaAs-A1As (dashed line:
———) and GaAs-ZnSe (solid line: ) quantum-well
structures. The width of the quantum we11 is chosen to be 100
A.

GaAs for both the well and the barriers (the normal
quantum-well case). Then the calculations are repeated
with the actual anisotropic Coulomb attraction by using
the different dielectric constants for the well and the bar-
riers. In Fig. 3 we display the variation in the enhance-
ment of the binding energy of a heavy-hole exciton ( hE)
due to image charge contribution in a GaAs-A1As quan-
tum well (dotted line) as a function of well width for
8 =0. The value of hE varies from about 1 meV for
wide wells to about 2.5 meV for narrow wells. We see
that contribution of the image charge distribution is
significant even in a quantum-well structure where the
dielectric constants of the well and barrier materials are
not too different. Physically, the electron and the hole
are compelled to the center of the quantum well by their
image charges, so the average electron-hole distance is
smaller in a quantum well when the dielectric constant of
the barrier material is smaller than that of the well ma-
terial. We also display the variation in hE as a function

of well width in a GaAs-ZnSe quantum well for 8 =0.
We find that in this structure the variation of hE is some-
what larger due to the larger difference in the values of
the dielectric constants of the well and barrier materials.

Aside from the expected increase in binding energies
due to smaller average electron-hole distance when the
quantum-well size gets smaller, we find that at zero-field
the exciton binding energies in such structures can exceed
the conventional two-dimensional limit, i.e., four times
the relative Rydberg. This unique property is attributed
to the dielectric confinement effect in such structures. In
Fig. 4 we show the variation of hE as a function of the
applied magnetic field in a GaAs-A1As quantum well
(dotted line) and in a GaAs-ZnSe quantum well (solid
line) for a well width of 100 A. We find that the magni-
tude of the variation in LE is larger in a GaAs-A1As
quantum-well structure due to the smaller value of the
exciton binding energy and hence the weaker Coulomb
interaction between the electron and the hole. We have
also calculated the variation of hE for the light-hole exci-
tons as functions of well width and magnetic field in
GaAs-A1As and GaAs-ZnSe quantum-well structures and
find a similar behavior.

IV. SUMMARY

In conclusion, we have developed a formahsm for
studying the exciton states in a dielectric quantum-well
structure in the presence of a magnetic field applied along
the growth direction, and have obtained expressions of
the anisotropic electron-hole Coulomb interaction in the
dielectric quantum-well structures, by solving the Poisson
equation in the layered quantum-well geometries. We
have shown the merit of the first-principle analytical ap-
proach to obtain the expression of the Coulomb interac-
tion in a dielectric quantum-well structure, and discussed
the relevance of the self-polarization energy in the calcu-
lation of exciton binding energies. We have calculated
the binding energies of excitons in several dielectric
quantum-well structures and have discussed their
behavior as a function of well width and applied magnetic
field.

ACKNOWLEDGMENTS

This work was supported by the Air Force OfBce of
Scientific Research under Grant Nos. AFOSR-91-0056
and AFOSR-90-0118.

Present address: Fuji Pharmaceutical, 125 Hartwell Avenue,
Lexington, MA 02173.

L. V. Keldysh, Pis'ma Zh. Eksp. Teor. Fiz. 29, 716 (1979)
[JETP Lett. 29, 658 (1979)].

L. V. Keldysh, Superlatt. Microstruct. 4, 637 (1988).
L. Banyai, I. Galbraith, C. Ell, and H. Haug, Phys. Rev. B 36,

6099 (1987).
4M. Kumagai and T. Takagahara, Phys. Rev. B 40, 12359

(1989),and references therein.

5T. Ishihara, Jun Takahashi, and T. Goto, Phys. Rev. B 42,
11099 (1990).

D. B. Tran Thoai, R. Zimmerrnann, M. Grundmann, and D.
Bimberg, Phys. Rev. B 42, 5906 (1990).

7T. Ogawa and T. Takagahara, Phys. Rev. B 44, 8138 (1991).
X. Hong, T. Ishihara, and A. V. Nurmikko, Phys. Rev. B 45,

6961 (1992)~

N. Peyghambarian, S. H. Park, S. W. Koch, A. Jeffery, J. E.
Potts, and H. Cheng, Appl. Phys. Lett. 52, 182 (1988).



10 952 J. CEN, R. CHEN, AND K. K. BAJAJ 50

' G. D. Studtmann, R. L. Gunshor, L. A. Kolodziejski, M. R.
Melloch, J. A. Cooper, Jr., R. F. Pierret, D. P. Munich, C.
Choi, and N. Otsuka, Appl. Phys. Lett. 52, 1249 (1988).

'M. Averous et al. , in Wide Gap II-VI Semiconductors, edited
by R. Triboulet, R. L. Aulombard, and J. B.Mullin, Semicon-
ductors Science and Technology Vol. 6A {Hilger, Bristol,
1991),pp. A1 —A7.

' K. J. Han, A. Abbate, I. B. Bhat, and P. Das, Appl. Phys.
Lett. 60, 862 (1992).

'~K.-H. Pantke, V. G. Lyssenko, B. S. Razbirin, H. Schwab, J.
Erland, and J. M. Hvam, Phys. Status Solidi B 173, 69 (1992).

' S. Zhang and N. Kobayashi, Appl. Phys. Lett. 60, 883 (1992).
S. V. Branis, J. Cen, and K. K. Bajaj, Phys. Rev. B 44, 11 196
(1991).

' J. Cen, S. V. Branis, and K. K. Bajaj, Phys. Rev. B 44, 12 848

(1991).
'~J. Cen and K. K. Bajaj, Phys. Rev. B 45, 14 380 (1992).
'~J. Cen and K. K. Bajaj, Phys. Rev. B 46, 15 280 (1992).

J. Cen and K. K. Bajaj, Phys. Rev. B 47, 1392 (1993).
J. Cen, S. M. Lee, and K. K. Bajaj, J. Appl. Phys. 73, 2848
(1993).

~~W. K. H. Panofsky and M. Phillips, Classica/ Electricity and
Magnetism, 2nd ed. (Addison-Wesley, Reading, MA, 1962),
pp. 89 and 90.

~~J. Cen and K. K. Bajaj (unpublished).
~J. K. Jain and Philip B. Allen, Phys. Rev. Lett. 54, 2437

(1985).
~~R. L. Greene and K. K. Bajaj, Solid State Commun. 45, 831

(1983); R. L. Greene, K. K. Bajaj, and D. E. Phelps, Phys.
Rev. B 29, 1807 (1984).
Ronald L. Greene and K. K. Bajaj, Solid State Commun. 45,
825 (1983).
Ronald L. Greene and K. K. Bajaj, Phys. Rev. B 31, 913
(1985).
S. Huzinaga, J. Chem. Phys. 42, 1293 (1965).


