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In this paper we develop a microscopic foundation for the Murata-Doniach model of spin Quctu-
ations which has been widely used in connection with band-structure calculations. The main result
of the paper is the formulation of the partition function of an itinerant system as a functional inte-
gral over magnetization modes, and an explicit formula for the energy functional appearing in the
exponent of the Boltzmann factor. Such a derivation is made since former theoretical investigations
focus on the interaction part of the partition function ZjZO, whereas the Murata-Doniach model is
formulated in terms of a functional integral for the complete partition function Z. We start with an
approximate description of magnetic excitations of noninteracting fermions within collective modes,
and derive a bosonlike partition function for these magnetization modes. This is combined with the
well-known result for the interaction part of the partition function in the Hubbard model obtained
by functional-integral theory. The leading term of the energy functional appearing in the exponent
of the partition function agrees with that of the Ginzburg-Landau expansion for the energy of a
classical magnetization 6eld. In the course of the transformation to a bosonlike system we predict
that the cutoff wave vector q, which must be introduced in the classical model is temperature de-
pendent with q, ~ T . It is shown that the frequencies of the collective modes are reduced by the
Stoner enhancement factor compared with the one-particle excitation energies of Stoner theory.

I. INTRODUCTION

The importance of spin fluctuations for the magnetic
properties of itinerant metallic systems at 6nite tempera-
ture has been shown by extensive investigations since the
late 1960s. Several approaches to the theoretical treat-
ment of spin fluctuations have developed so far.

The most recent approach was made by Pindor et
at. , Oguchi et al. ,

2 and GyorfFy et at. , essentially
inspired by the availability of sophisticated computa-
tional techniques. Following an idea of Hubbard ' and
Hasegawa the authors allow for magnetic fluctuations
within the frame of the Korringa-Kohn-Rostoker (KKR)
band-structure formalism by admitting local magnetic
moments with randomly distributed signs on the lat-
tice sites. The coherent potential approximation (CPA)
provides a method to calculate the absolute value of
the randomly distributed, disordered local moments self-
consistently.

Moriya and Kawabata expressed the correction to
the Hartree-Fock free energy in terms of the dynami-
cal and wave-vector-dependent susceptibility. Neglecting
the &equency and wave-vector dependence of the inter-
action contribution to the irreducible susceptibility, and
assuming a &ee-electron-like band, they obtain an im-
plicit equation for the static, uniform susceptibility for
a given temperature. As the main result of the self-
consistent treatment the theory predicts a Curie-Weiss
law for weakly correlated itinerant magnets.

The theory which has been most extensively investi-
gated and widely used in calculations of real systems
starts with a representation of the partition function of

the system in terms of a functional integral. These inves-
tigations focus either on the complete partition function
Z or on the interaction part Z/Zp, Zp being the partition
function of the noninteracting system.

Discussions belonging to the latter category
are microscopically well founded, making use of the
Hubbard-Stratonovich technique. 2 Most of these pa-
pers deal with fluctuations localized in real space and
treat the random potentials on the lattice sites with
the CPA technique. In the opposite limit Hertz and
Klenin~s ~s developed a theory for long wavelength fluc-
tuations, yet difBcult to apply to systems of practical
interest.

On the other hand Murata and Doniach24 used a clas-
sical functional integral representation for the partition
function

Z= 'Vm exp — 'Rm

'R[m] being the energy functional of the system in
terms of the magnetization field m(r). Originally 'R

was given as a Ginzburg-Landau polynomial, the ex-
pansion coefficients being calculated &om the Stoner-
Wohlfahrt theory. In this form the Murata-Doniach
(MD) model was applied to study the magnetic equa-
tion of state of weak ferromagnets, ' to calculate the
Curie temperature and its pressure dependence of itin-
erant metals, to investigate magnetoelastic anoma-
lies and the Invar problem, 3 and to explain anoma-
lies in the temperature dependence of the susceptibil-
ity and metamagnetism. With the availability of
spin-polarized band-structure methods Q could be de-
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termined from a polynomial fit of the calculated energy
functional. ~

The theory has recently been generalized to arbitrary
energy functionals, ' ' which offers the possibility to
cover arbitrary fluctuation amplitudes of realistic sys-
tems. Although phenomenologically well justified, a mi-
croscopic foundation of this approach would be desirable.

In this paper we use the Hubbard model to derive a
functional-integral expression for the complete partition
function Z. Our approach is intended to be applied to
weakly and nearly ferromagnetic metals with mainly de-
localized fluctuations. To this end we put all electronic
degrees of &eedom into a set of collective modes. This
is done within the static approximation for spin fluctu-
ations. Subsequent to our formalism this deficiency is
compensated in some sense by a proper temperature-
dependent cutoff wave vector. A transformation &om
a fermionic system to bosons was already proposed by
Tomonaga4r in one dimension and the essential approxi-
mation only holds in this case. In our approach a trans-
formation of noninteracting systems is made by means of
a variational principle. The boson states which we are
constructing presumably represent the fermionic system
only in a rough approximation, yet the quantities we are
really interested in, the frequencies of the bosons and the
&ee energy, match the true values much better. Includ-
ing the electron-electron interaction through the known
expression for Z/Zo, we arrive at a generalized formula
of the Murata-Doniach type.

To derive the MD model some serious approximations
have to be made. From a theoretical point of view more
rigorous approaches are available, e.g. , Korenman's rota-
tional invariant Green's function theory in the local band
limit which in principle includes dynamical effects4s so

or the SCR theory of Moriya and Kawabata for weakly
correlated systems. '

However, the generalized MD model benefits &om its
good applicability to realistic systems, because the en-
ergy functional can be calculated with electronic band-
structure methods. Thus a particular system is not char-
acterized by a few parameters like in other theories but
by the complete energy functional of the system. This
allows the model to be critically tested against exper-
iment. Such comparisons of experimental results with
predictions Rom the theory presented here have already
been performed by us for the case of PdAg and PdH
alloys. The sensitivity of the temperature-dependent
susceptibility on the composition of the alloys could be
reproduced in good agreement with experiment.

In this paper we derive the MD model &om first prin-
ciples for the first time, being aware of the approxima-
tions which are necessary in some steps. All these points
are discussed in the text. Although the MD model is
only valid in some qualitative sense, it is applied even
in its simpler form using a Landau expansion and a
temperature-independent cutoff wave vector,
and its extended version ' has turned out to be suc-
cessful for those systems which we have already investi-
gated.

Our paper is organized as follows: In Sec. II a set of
creation and annihilation operators for spin Buctuations

in a noninteracting fermion gas is introduced, which ap-
proximately obey the commutation relations of bosons.
By means of second quantization a Fock space for spin
fluctuations is constructed. An upper boundary for the
free energy of the noninteracting fermions in terms of
these spin fluctuation states is given in Sec. III. After
a minimization procedure with respect to the boson fre-
quencies this boundary is shown to have the form of the
free energy of a noninteracting boson system. It is used
as an approximation to the free energy of noninteract-
ing fermions. The corresponding partition function Zo
is written as a functional integral. In Sec. IV we com-
bine the functional integral of the interaction term Z/Zo
with that of Zo and obtain an expression for Z as indi-
cated in Eq. (1). In Sec. V the formalism is applied to
systems with a static magnetic field. A discussion con-
cerning the proper choice for the temperature-dependent
cutoff wave vector and a comparison between Stoner and
spin-fluctuation excitation energies follows in Sec. VI.

II. CONVERTING
A NONINTERACTING FERMION SYSTEM

TO NONINTERACTING BOSONS

We define a set of creation operators for magnons of a
noninteracting fermion system by

f ~ x r t
q+ =

N ) ( (&+)q+ s—g s&+ ("—)q+ s+g,
q+ k

i-r t+q- = ~ ).( (&+)q— s—~. st+ (&-)q— a+»pa&&j— 'k'

Qq& =,, g c(Ie+)q& (a& q&a&t
—a& q&a&&)

2

+c(s )», (aayqgast —aa+qgasg)
2

2
C(k+) q

2
C(k —)q+

(k-)q-

2
C(k+)qz

2
C(k —)qz

fsg(& —fs ,t)-
~k-qg —~k4,

fs~(l —f~+»~)
~k+qg —~kt

f~t (1 —fs g )
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~k —qg
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f~~(& —f~+»~)

) - fa~(& fs »~)—-
cr
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)- fa (& —fs+q )
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Here +, —,and z indicate the three components of mag-
netization and q is taken from the positive half-space of
wave vectors. at and a denote creation and annihilation
operators of fermions. As will be shown in Sec. IIIB the
absolute values of the constants c(s )q„are given by
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with f~ being the Fermi distribution function for T = 0,
i.e. ,

system within collective modes, and we will treat the
spin-fluctuation states as bosons throughout the text.

Furthermore,

f( = O(es —ee ) .

.-' = ).~'(~-) q-~'

III. FREE ENERGY
OF NONINTERACTING FERMIONS

IN TERMS OF A FUNCTIONAL INTEGRAL

A. Variational approximation for the free energy

in order to normalize the singly excited state Dt„~ 0),
with

] 0) representing the ground state of the fermion
system.

Now we set up a set of wave functions each of which
represents a spin-Quctuation state with Nqv-fold occupa-
tion of the mode (qv):

Based upon the results of the last section, we will now
give an approximation of the free energy of noninteract-
ing fermions in terms of the well-known expression of
noninteracting bosons. The corresponding frequencies of
the boson modes are determined by a minimization pro-
cedure. An upper boundary for the free energy Fo of the
actual system is given by the Peierls inequality

., —".N." "))(,„,, , ...1.

(6)

It is easily seen from the definition of the coeScients
c(1, lq„ that the wave functions do not depend on the
order of the creation operators. For the moment we con-
fine ourselves to states whose total occupation number

&p „Nq„ is small compared with the average num-
ber of one-particle excitations X of the fermion system
at temperature T (see Fig. 2, Appendix A). In good ap-
proximation these states form an orthonormal set, and
the Bose commutation relations

X'q- &q-] = Pq'. &,'. ] =o

leading to the partition function

ZQ ) exp[—Purq„(n + —,')]
e.», n

V

and the &ee energy

Fb = ——) ln ) exp[ —P~q„(n i —,')]
ez &o n

V

The Hamiltonian of the fermion system,

Fp & Fs+ ('Rp —'Rs)s.

Here 'Rb is the Hamiltonian of the boson system,

Rs = ) ~q„(Ot„nq„+ —,'),
ez &o

V

(io)

(i2)

[Oq„, O,„,] = bqq b„„t 'Rp ——) ) e(, a& a(,~ — ) el,~(1 —a& al, ~)

ekcr &eF ekcr +eF

hold in the subspace spanned by them (see Appendix A).
Clearly, the total number of fluctuation modes which

are necessary to give a reasonable description of the
fermion system amounts to N, as mentioned in Appendix
A. As an approximation we also apply our results for
these physically relevant occupation numbers and take
the set of wave functions (6) as a basis for the Fock
space of spin fluctuation states. Nevertheless, we per-
form the calculations in Sec. III as if the total number of
Buctuation modes, P &p Nq„, were much smaller than

q )O, v
the number of one-particle excitations N. This approx-
imation is a part of our model to describe the fermion

measures the energy of excited states relative to the
ground state, that is,

x.
~

o) =o. (i4)

( )q denotes the statistical mean with respect to the boson
states (6).

In Appendix B we use the approximation of small oc-
cupation numbers discussed in Sec. II to derive the fol-
lowing explicit form for the Peierls inequality (9):

Eq & — ln 2sinh " +P~q - exp( 2 ) +I ]c(1 &q~] +e(~ )q
~qvP, ,; ( ) . .. 2sinh;" ( g„~ (g )q. ~'

~qv (15)
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Setting the partial derivatives of Fp with respect to the
u~„equal to zero we get for the frequencies

2
c(acr) qv I +e(acr) qu

hlqv =
2

Ei, Ic(s &~ I

Inserting Eq. (21) in (20) and comparing the form of

(0 I
O~+O + I 0) of (19) with (20) we immediately find

that the particle-hole excitations contribute to the mode

(q+) with the relative probability given in Eq. (3).
With these coefficients the &equency ~q+ is written as

In what follows, we identify the optimized right-hand side
of (15) with the free energy Fp. This leads to

Fp ———) ln ) exp( —P~~„n)
ex&o n

(17)

with the corresponding partition function

Zo = ) exp( —P(u~„n) .
~ ~ ~ h

es&o n
V

It is remarkable that the correction term ('Rp —Rs)s van-
ishes and that Fp takes the form of the free energy of a
noninteracting boson system without zero point fiuctua-
tions. In this sense Fp has been approximated up to first
order in gp —gs, by one order better than the approxi-
mation of the states themselves (2).

B. Speci6cation of Ic&s~~~„I*

It is clear from the definition of the operators O~„ that
only the relative values of Ic~s l~„I are important. We
will discuss the case v=+.

The square of the norm of the wave function of a singly
excited mode is given by

(o I O.+O,'+ I o) =
z ).Ic(s-&~+I' ~

&+ a~

According to the principle of spectral decomposition of
a wave function, Ic&s i&+I gives the relative probability
that the one-particle excitations (k J.) -+ (k —q t) for
n = + and (k g) ~ (k+q $) for 0 = —can be mea-
sured for the singly excited mode (q+). We construct
the mode (q+) as a composition of a right-handed and
a left-handed helical magnetization wave with opposite
wave vector. Thus

C. Zo in terms of a functional integral

In the next step we reformulate the partition function
(18) as a functional integral. To this end we use a con-
tinuous function set (I az„))

Nq„

I ac ) =e ' ): '",
I &e ) (24)

which satisfies the closure relation

1
d(Reaq„) d(lmaq„)

I aq„) (aq„ I

= 1.

Inserting the closure relation twice into the equation

Zp ) (&a~ I exp( &~~~O&t~O—~ ) I &a~) (26)
~.&o N, „=O

V

we get

1
Zp —— — d(Rea&„)d(lma&„)

ez &o
V

This determines the spin-Huctuation &equencies which
may be compared with the Stoner excitation energies.
Apart from the factor 4 the numerator denotes the total
number of particle-hole excitations contributing to the
mode (q+) relative to the number of atoms in the macro-
block. The graphical representation of the contributing
states in k space is shown in Fig. 1 of Appendix A.

For convenience we introduce the abbreviation pq+ for
the numerator of Eq. (22):

9q+
x+ (q)

(0 I O~+Ot+ I 0) m+(q) + m (—q)

=&+ (q)[B+(q)+B (-q)]. (20)

x exp( —[1 —exp( —P~~„)][(Rea~„) + (Ima „) ])
(27)

without further approximations. We then replace 1—
exp( —P~~„) by its high-temperature limit Per~„ in the
exponent of (27). This procedure requires the introduc-
tion of a cutofF wave vector q, to ensure that Zo remains
finite. A more detailed discussion of this problem is given
in Sec. VI.

In our model each q mode is represented by exactly
one basis state. However, the number of collective states
generating a classical q mode should increase with the
number of particle-hole excitations contributing to this
mode, i.e., with the size of the hatched region of Fig. 1 in

The second identity indicates that the magnetic excita-
tions arise from fiuctuating magnetic fields B+(q) and
B ( q) with which th—ey are connected by a response
function, the transversal susceptibility given by

(2i)

In (21) N is the number of atoms in the macroblock.

x iqj = +4 fag(1 fa g)fag(1 f—a+'g).
N~ E'Ic qg

—
67zg E'&+qg —E'I g
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Appendix A. We therefore define the amplitudes of the
classical magnetization modes by

2 2
lmq& I

=
&q& l~q& I

and apply the functional integral technique in the
rotational-invariant treatment of Hubbard and Prange
and Korenman o to get the following expression for Z/Zo.

Zp
~ ] Plmo„l'

dm0„exp

The factor g~„allows for a q-dependent scaling of the
magnetization amplitude of a classical mode. We believe
that the deficiencies arising &om the incompleteness of
the basis (6) can be compensated with this step.

From Eqs. (27) and (28) we then get the desired
functional-integral representation of the partition func-
tion of a noninteracting fermion system,

x exp ——) I(q I

—P&I& (31)

Equation (31) has been written in the static approxima-
tion and in wave-vector-dependent notation. The func-
tional 4 can be expressed with the noninteracting Mat-
subara function G and the Quctuating potential V:

4'[(r] = ——Tr[ln(1 —G'V)].

In (29) we used a convenient notation for the integra-
tion variables and made a continuous extension to q = 0.
From now on the components +, —or x, y may be used
alternatively in all equations.

IV. PARTITION FUNCTION
OF AN INTERACTING ELECTRON SYSTEM

Let us now turn to the question of how the electron-
electron interaction modifies formula (29). We consider
this interaction in the kame of the Hubbard Hamiltonian

'8;at ——U ) n;tn;g

= U) (2n —slS;I')

(30)

The matrix representations of these one-particle quanti-
ties are given by

(mk'(r'
I

G
I

mk(T) = b««b G

1

(rrrk'rr'
~

v
~

rrrkp) =
( ) ) &r —r (P'

I

+
I

rr)
a

V

(34)

where

x(d~ —t-'g~ + 6F
(35)

and the ur are the fermion Matsubara frequencies (2m+
l)vr/P. We then expand the logarithm in Eq. (32) in
powers of G V, confining ourselves to the component v =
z for simplicity. Inclusion of other components would mix
the terms of all components with rather involved notation
following. With this restriction we obtain

rnk
&1 &&2n —1

&&&«ql P&&& « —q1 — —q2 1 ~ ql ''' q2rr —1

The equation holds for paramagnetic and for ferromag-
netic systems. The eI, are the one-particle energies of
the noninteracting electron system; that is, they are in-
dependent of the spin index, while all interaction efFects
are included in the Hubbard parameter U. The notation
for 4 can be simplified with the abbreviation

(e, . . . , v2- —i)(2n)

G' «G' « „G'«-„--„„, (»)

In the special case n = 1 this is the noninteracting sus-
ceptibility

@'"(v) = —-x(v) . (38)

In order to get the complete partition function Z, Eqs.
(29) and (31) have to be multiplied. In evaluating (31),
terms of &I& containing the same (q more than once will
be neglected for the moment since their number is small
compared with the number of completely mixed terms.
For a given q the whole exponent in (31) may then be
divided into terms containing l(ql, gq, ( q, or neither (q
nor ( q. Thus a quadratic form of (q in the exponent
results leading to a Gaussian integral with respect to the
integration variables (q and ( q. The integrations over fq
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and f ~ in Z/Zp as well as the integrations over m~ and
m ~ in Zp can be performed analytically. The resulting
product is rewritten as one gaussian integral over the
variables mq and m q. We thus get one integral over the
magnetization mode q with an integrand similar to that

I

of Z/Zp, however each term in the exponent containing

m~ or m p multiplied by [P/aery(q)]
~

With this transformation for each q all integrations in

Zp can be eliminated. Our 6nal result is

Z = —dmqdm q exp — 'R m
qx)0

&[m] = -) h '(q) —&lima['

U C ('"l (qi, ",q2„ i)+N. ) mqq ™qp —"—q& vs„...„„,[x(qi)" x(—qi —".—q2--i)]'

This is the desired form for the complete partition
function. Note the remarkable fact that the quadratic
term in the spin Buctuations of the energy functional
Q equals the first term of the corresponding Ginzburg-
Landau expansion, since y i(q) —U is the inverse en-
hanced susceptibility.

V. APPLICATION
TO A UNIFORM EXTERNAL FIELD

In order to obtain the partition function of an inter-
acting system in the presence of an external field we have
to calculate

Z
Z(H) = exp[ —PFp(H)] —(H),

Zp
(40)

with Fp(H) being the field-dependent, noninteracting
free energy. We show in Appendix C that the variational
scheme of Sec. III yields

In this section we apply our formalism to the case of
an external magnetic field and derive a result for the
field-dependent partition function consistent with linear
response theory. The treatment parallels that of the zero-
field case in most aspects.

I

Fp(H) = Fp(0) — y(0)H' (41)

up to order H2.
The field-dependent expression for the functional @

[Eq. (32)] is

(~ ~i" ~n-i)~

~pg g ~Ocr
~nak(ai ' ' ' ~mt —qq —"—q„q~ Qx '" Qn —i

with GP
& from (C3). In each term of the expansion of (32) n different terms with the same numeric value may be

obtained by cyclic permutation of the factors G (. We write only one representative term of the set of permuted
elements denoted by (A: qi. . .q i)&. The power of this set cancels the factor 1/n from the expansion of the logarithm.
In fact, different terms are generated by permutation only unless the term itself is constructed by repetition of the
same sequence. We will not treat this special case here. In terms of the form

".(&' i,4)'~' gk-a

we will expand (G i, ) in powers of H. Collecting proper terms for different j we can use the binomial formula to
get all terms

1/2

0 — 0 G'»-, ---, n = O, i, "-, & —I' O.

In this way the expansion (42) can be transformed into a representation which contains only the zero-field Green
functions:
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(& &x" &2n —x)~

with

for qgO,
(0 —( &~) H for q=O.

Dropping the notation with representatives and changing the integration variable $0 yields

1

)(exp — & 0+ + gO H + — 1 —Ug q

OO

+N $ ( ) ) O (a Vq —q)qq, $—q, —.. .—q,„, j,
(e "a~-)

(44)

where we have written only the quadratic term in H from the series of Eq. (43). Following the derivation of Sec. IV
we get for the field-dependent partition function (40)

(H) = —dm~dm ~ exp P'R(H, (—m~))
dm, (-. I l t

- X/2

'R(H, (m, )) = N N H2
Hm, + + -) [y '(q) —U]fm, f''q

U" c'""'(qi, , q2.-i)
&o" „.. .„„,[x(qi)" x(—qi — "—q2. i)]

(45)

It can be shown by a shift of the integration variable mo that the energy functional is given by

'R(H, pm~)) = —) (y ) '(q) fm~f' — y H' (46)

up to order U with y as the enhanced susceptibility. Thus the external field contribution to the energy functional
agrees with the result of linear response theory.

VI. DISCUSSION AND SUMMARY

The intention of this paper is to derive the partition
function of an itinerant magnetic system in the form of a
functional integral over magnetization modes. This pro-
vides a microscopic foundation of the Murata-Doniach
model for spin Buctuations which has been employed by
several authors to investigate the magnetic properties
of itinerant electron systems based upon spin-polarized
band-structure calculations. Now it is possible to write
the phenomenological energy functional in terms of the
parameters of the Hubbard model. Assuming the nuxnber
of excited modes to be small compared with the num-
ber of thermally excited electrons we find the best ap-
proximation for the partition function of noninteracting
fermions by a quadratic energy functional. In defining
the amplitudes of the classical magnetization modes we
have to introduce a q-dependent weight factor to com-

pensate for the incompleteness of the basis states of spin
fluctuations. In the course of the transformation to non-
interacting bosons all effects of the band-structure are
included in an energy functional of quadratic order. On
the other hand with the use of functional-integral theory
we are able to allow for interaction contributions to the
energy functional in all orders. In this way we obtain the
fundaxnental form of the classical partition function as
well as the leading term of the Ginzburg-I andau expan-
sion for the energy of magnetization modes.

However, keeping an infinite nuxnber of integrals in Eq.
(39) causes divergence of the expression for the partition
function. This is a consequence of the high-temperature
approximation of the static theory, which has been ap-
plied in Sec. III C. Similar to the phenomenological the-
ory a cuto8' wave vector q, must be introduced to limit
the number of q modes that may be excited thermally.
This may be done by regarding I"0 as the &ee energy of
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k„

.;,;;;=,;,;;;--„-..ga k = k sT / k F

As a consequence of Eqs. (A2) and (A3) the action of a
creation or annihilation operator on a ket

~ Nq„) is given
by

I
'/

I
J/ /

l//
I //

I
// I' /l
l //

/i
/ / re / / / // /. P// // / / //// //Jv /V /, //C»/, /

C.

/4
/ /)
//
// ')
/ //1

// /r //
f///

1

// I
///

I
/I
I

k„

Ot ~!Nq„) = QNq +1~ Nq„+1),
Oq ~Nq„) = QN ~N„—1). (A4)

The operators Ot„and Oq obey the commutation rela-
tion

(Nq- I [Oq- 0,'.] I N.-) =1 (A5)

Since the states (6) do not depend on the order of the
creation operators the commutation relations

[Oq„, Oq „]= [0+„,0+„,] = 0 (A6)

FIG. 2. Fermion system with temperature T. The hatched
region marks the range in k space where thermal excitations
take place.

(0
~

Oq„"Ot
~

0) = n! . (A2)

states of a fermion system at moderate temperature, es-
pecially the smeared region of width b,k = k~T/k~ at
the Fermi wave vector k~. Since the occupation of one
(qv) mode corresponds to a statistical occupation of one
particle-hole pair, the N one-particle excitations in Fig. 2
have to be distributed among N fluctuation excitations.
Since many (qv) modes are available, the occupation n of
a particular mode is small compared with N. The wave
vector q of a typical mode and Ak are of the same order of
magnitude; that is, the numbers of states in the hatched
regions of Figs. 1 and 2 are comparable. This means that
the occupation number n of the mode is much smaller
than the number of nonvanishing terms in the creation
operator Ot„. Thus all terms of the denominator of (Al)
which are not fully mixed products are neglected. We
thus get

hold in the subspace spanned by (6).
A particular basis state is the sum of about

N~~~ &0 &" linearly independent terms, since N is
an estimate for the number of one-particle states in the
hatched region of Fig. 1. Moreover, the terms of other ba-
sis states either equal such a term (apart from a constant
factor) or are orthogonal to it. Looking for basis states
which contain as many terms of the given state as possi-
ble it is best to take the given state and to replace two
creation operators 0",„and Ot „by operators Ot, „and
Ot „with qi+q2 ——q3+q4. Then one-particle states k, k'

can be found with corresponding terms a& a~a&, ay~

and a&, ay~a& ag being identical. However, the num-
ber of these terms is smaller by at least a factor N com-

pared to the total number of terms, N ~~ &0 '" . We
can therefore assume that the basis states are orthogonal
in good approximation.

Now, assuming the total occupation number

&o „Nq„ to be small compared to N, a discussion

similar to that leading from Eq. (Al) to Eq. (A2) shows
the normalization of the states (6). Furthermore, the or-
thonormal property of these states and Eqs. (A4) can be
used to show that the commutation relations

We can therefore define a normalized state
~ Nq„) with

Nq„-fold occupation of the magnetization mode (qv) by
[O,„,Ot, , ] = 0 for (qv) g (q'v'),

[O,„,Ot„] = 1

(A7)

(As)

I N.-) =
, (0,'.)

'" I0).
qv'

(A3) hold in the subspace spanned by the wave functions (6)
with small occupation number.

APPENDIX B

The thermal expectation value of an observable A with respect to Bose statistics is defined by

P&.. .~ . ..&(
- N, ~

&exp( —P&b)
~

-. N,. )

E& N &
exp[—P Eq &o, ~q~(Nq + 2)]

where the occupation number Nq„of each mode runs from zero to in6nity. Clearly, 'Rp is diagonal with respect to
the basis states of (6), and we thus have
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(Rk)k =
+I".N.".} +q &0 v~qv(Nqv+ 2) XP[ ) E &0 ~qv( qv+ 2)]

}eXP[—Pgq &0 v eqv(Nqv + 2)]
(B2)

'Rp is diagonal in the subspace spanned by the basis states, yet the action of 'Rp on a basis state yields a wave
function that is not an element of this subspace. This is an eEect of the incompleteness of the Fock space, which was
constructed to describe spin-fiuctuation states but not any state of the fermion system. We get for ('Rp)k

(Rp)k =
E("N „"} Eq, )0, v(Nqv I Rp I Nqv) exp[ ~ E &o q ( q + 2)]

~I "Nq ".} P[ t Eq, &0, v qv( qv + 2)]
(B3)

Within the approximation discussed in Sec. II the matrix elements of Ro are given by

(Nq I R0INq ) = +(kv) g "g(«o)~ (IIi=i Ic(«cr), qvl ) E'=i +&(«of),qv.
(E«. Ic(«-),-l')

'"

2
P«cr Ic(«o') qv I +&(«v) qv= Nq„ 2

P« lc(,.)q„l
(B4)

To obtain the last expression the restricting conditions on the summation indices of the multiple sum have been
negiec«d. The be(«)q„denote the energies of the particle-hole excitations. From Eqs. (B2)—(B4) we get

' E« lc(k )q I +e(« )q
!

('Rp Rk)« = ) ) Nqv exp[ p(uqv(Nqv + —)]
ez&p pf „ E«. I (.-)q-I'

V

) exp[ ppiq '(Nq —+ 2)] ) exp[ purq (Nq + —)]

ql )pz
V

) ~ ldqv

ez &p
V

(B5)

The summations over the occupation numbers Nq„can be performed exactly, and Eq. (9) takes the form (].5).

APPENDIX C

The Hamiltonian of Eq. (13) was chosen for zero ground state energy. In fact, the total energy of a noninteracting
system increases as ~2y iM when a magnetic field H is applied. Therefore, in analogy to Eq. (29), we write for
finite magnetic moment M per atom

Fp(M) = ——) ln dmp„exp — "
) ——) in& — dmq„dm q„exp

Pimp I
1 - 1 &lmq I

y '(0)M'.N
(C1)

We only consider the component v = z. In Eq. (Cl)
the magnetization-dependent susceptibilities which re-
sult from the minimization procedure of Sec. III are given
by

Expansion of the &ee energy up to order H gives

Fp(M) = Fp(0)+ y '(0)M2

&M(~) = —
N ).).&'«&' k q-

cr rnk

Ocr 1G' a=-
tQJ~ —EI, + (TII + 6p

(C2)

(C3)

P2, ), NoX0(e)

The summation index in the last term of (C4) runs up to
the cutoH' wave vector q, and we substitute the summa-
tion by an integral in reciprocal space. For an estimate
we keep the integrand constant at the value for q =0. For
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a &ee-electron-like band we have
H

I '. Q a(G x) (G I. ~)
N xp(V)

and

1 0 4 5 N
2P) ( s) 64

m, k

(C6)

N.
576 Pe~

&-'(0)M'

N
y '(0)M'. (C7)

Thus the third term of Eq. (C4) will be neglected. The
6eld-dependent free energy is therefore given by

Since the integration volume in reciprocal space is smaller
than the volume of the Brillouin zone, we get as estimates

Fp(K) = Fp(M) —N MH

= Fp(0) — y(0)K'. (CS)
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