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We investigate a number of issues related to the application of the envelope-function method to calcu-
late confined-state energies and subband structure in quantum-well structures. We first consider zone-

center confined-state energies and show how the explicit elimination of spurious solutions from the
envelope-function band structure leads to a slightly modified form of the standard result through which

the conduction-band confined-state energies are calculated using a one-band model and an energy-

dependent effective mass. We show that the effects of nonparabolicity can be predicted directly from the
bulk band structure in an infinitely deep quantum well, and demonstrate how the bulk band structure
can also be used to predict the errors in calculated confinement energies in wells of finite depth. The
correct choice of boundary conditions still remains controversial for the calculation of valence-subband

structure using the Luttinger-Kohn Hamiltonian. We compare the valence-band structure calculated
with the lowest conduction band included either explicitly or treated as a remote band, using perturba-
tion theory. We demonstrate that the boundary conditions recently derived by Burt and Foreman are
correct. Finally, we compare the valence-band structure calculated using the 4X4 and 6X6 Luttinger-
Kohn Hamiltonians. We show how the warping of the highest valence band is markedly different at
both intermediate and large wave vectors when the spin-split-off band is included. The use of the axial
model to calculate valence-band density of states is therefore questionable with the 6X6 Hamiltonian.
The calculated warping is very sensitive to the values of the Luttinger y parameters used, indicating the
importance of investing more effort to determine these parameters accurately.

I. INTRODUCTION

The envelope-function method is widely used to calcu-
late confined-state energies and subband structure in the
lowest conduction and highest valence bands of III-V and
other semiconductor systems. ' There are several
different formulations of the envelope-function method,
each differing in terms of the number of bulk bands
which are included and the boundary conditions which
are used to describe the continuity of the envelope func-
tions across the interfaces between different materials.
An overview of these different formulations is provided in
the recent paper by Winkler and Rossler. The most gen-
eral form of the envelope-function method used in the
literature includes the lowest conduction band and the
three highest valence bands, namely the heavy-hole,
light-hole, and spin-split-off bands. ' When electron
spin is included, these bands are doubly degenerate at the
zone center, so that a total of eight bands are then includ-
ed in the general model. Calculations using this eight-
band model are difficult, due in particular to the presence
of spurious solutions. ' As a result, most calculations
generally invoke a number of simplifications, for instance
by including only heavy-hole, light-hole, and split-off
bands, ' ' or often only the heavy- and light-hole
bands. ' The results obtained vary according to the
prescription used, but there are few guidelines given in
the literature as to how to choose an appropriate model

for a given problem. We demonstrate here that the accu-
racy of the calculated zone-center energies and subband
dispersions can be predicted by plotting the equivalent
bulk band structure under various approximations.

A number of authors have derived how conduction-
band confined-state energies can be accurately calculated
in semiconductor quantum wells (QW's) by using a one-
band model with an energy-dependent effective
mass. ' We present here an alternative derivation of
this result which explicitly considers the role of spurious
solutions in the band structure, and then use this result to
make a number of general comments on the influence of
nonparabolicity on confined-state energies.

There are a number of formulations of the boundary
conditions describing the variation of the envelope func-
tion across an interface. The most widely used approach
assumes a "symmetrized" form of the Hamiltonian.
Burt has recently presented an exact derivation of
envelope-function theory, whose specific form for the
boundary conditions is different to the conventional con-
ditions. Foreman has derived explicitly the form of the
Burt boundary conditions for the valence-band Hamil-
tonian and presented a relatively subtle example from the
CxaAs/A1 Ga& „As materia1 system, which suggests that
it is most appropriate to use the Burt boundary condi-
tions. We present a more direct example here, by corn-
paring the valence-band structure calculated with and
without inclusion of the conduction band in the calcula-
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tion, and demonstrate that the Burt boundary conditions
give the more physically plausible results.

We also investigate the influence of the spin-split-off
band on valence-subband dispersion, and find that its
effects are much stronger than would be expected by just
considering its influence on calculated zone-center
confined-state energies. Further, the calculated subband
dispersion when the split-off band is included is particu-
larly sensitive to an input parameter which is not always
well known, namely the difference between the Luttinger

y2 and y3 values used in the valence-band Hamiltonian.
We begin in Sec. II by presenting the envelope-function

Hamiltonian. We demonstrate that the effects of nonpar-
abolicity on zone-center confined-state energies can be
predicted directly from the bulk band structure for an
infinitely deep quantum-well structure. In Sec. III, we
rederive the standard one-band expression for
conduction-band confined-state energies, emphasizing the

I

elimination of contributions from spurious bands. We
then use this expression to make general comments con-
cerning the effects of nonparabolicity on zone-center
confined-state energies in finite quantum-well structures,
and present calculations which support our conclusions.
We illustrate in Sec. IV the effects of different boundary
conditions on the calculated subband dispersion in the
quantum-well plane, and consider also the influence of
the spin-split-off band. Finally we summarize our con-
clusions in Sec. V.

II. ENVELOPE-FUNCTION HAMILTONIAN

The envelope-function approach can be viewed as a
generalization of Kane's k p method to describe semicon-
ductor heterostructures. The second-order bulk eight-
band Hamiltonian quantized along the z direction is
given using the same basis states as in Ref. 11 by

ECB

EHH

&3T+ —&2U —U

&2L L—
Er.H Q T+

E o &2T+

ECB —~3T &2U

EHH

E

Eso

where the subscripts CB, HH, LH, and SO stand for the
conduction, hcavy-hole, light-hole, and

split-off

band, re-

spectively, and

ment. We have taken fi=m =1. The lower triangular
matrix elements (not shown) are obtained by Hermitian
conjugation. The parameters y; are related to the
valence-band Luttinger parameters y; by the relations
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(2)

p 2 1E
3 E E +ho

(3)

In the six-band model comprising the CB, HH, and LH
bands, we replace s by s', where

where E is the fundamental band gap and E is related
to the Kane matrix element P by E =2mP /R . The
coupling between the conduction and valence bands is ex-
plicitly included in the eight-band model, and the value
of the parameter s in the EcB is then obtained from the
experimentally determined conduction-band mass m,* us-

ing

where E,o and E,o are the 1"-point conduction- and
valence-band-edge energies, b,o is the magnitude of the
spin-orbit splitting at k =0, and P is the Kane matrix ele-

e —1 2 p

3 E
(4)
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so that we indirectly maintain the contribution of the
spin-split-off band to the conduction-band effective mass.
In the 4X4 and 6X6 Luttinger models, we replace the
parameters y; by y; in Eq. (1), and neglect coupling to (i)
the conduction band in the 6X6 model and (ii) the con-
duction and split-off bands in the 4X4 model. In both of
these models we use a parabolic approximation for the
conduction band, since this represents the conduction-
band dispersion to exactly the same order as the Lut-
tinger model represents the valence-band dispersion. It
should be noted that one advantage of the eight-band
model is that it treats equally all of the bands explicitly
included in the calculation.

To obtain the matrix eigenvalue equation for
quantum-well (or superlattice) subband dispersion, we in-
clude the explicit z dependence of the band-edge energies,
E p E„p and b,0, and the effective-mass parameters s and

y; which appear in Eq. (1). Taking growth to be along
the (001) direction, we replace k, by the operator
—iBIBz, and include the valence-band-edge offset at each
interface, either using an experimental result or a theoret-
ical estimate obtained, for example, by using the model
solid theory of Van de Walle. We assume similar values
for the parameter P in each layer, and utilize the value
corresponding to the material in the QW, although this is
not a necessary assumption.

In order to simplify the problem as far as possible, it is
common to block diagonalize the eight-band Hamiltoni-
an. We do this following the method outlined in Ref. 11.
We first ignore the warping part of the Hamiltonian
(terms involving p) and obtain a unitary transformation
which block diagonalizes the remaining terms. The same
transformation is then applied to the warping terms. Al-
though not exact, the resulting 4X4 Hamiltonians ap-
proximate well the correct in-plane warping of the full
8X8 Hamiltonian in a similar fashion to the Broido-
Sham transformation of the 4X4 Luttinger Hamiltoni-
an. ' Note, however, that the dispersion is in fact exact
for certain in-plane angles, namely 8=n rr/4
(n =0, 1,2, . . . ). The resulting transformed matrix is
then represented by

Hu Has
U HU=

lu 1

H„l=

0 0 0 0
0 0 —a —a
0 a 0 0
0 a 0 0

where

a=(&3/2)pk
~~

sin(48) .

The a terms then vanish at the zone center and increase
as the in-plane wave vector squared, so that the effect of
ignoring them is only significant at large values of in-
plane momentum k~~. Further, we choose here to solve
H„al nog k„ for which the term a is zero, so the results
presented below are identical to those which would be ob-
tained using the full eight-band model.

We consider below four different models based on the
Harniltonian of Eq. (6), namely (i) the four-band model,
with coupled CB, HH, LH, and SO bands; (ii) a two-band
model, with coupled HH and LH, and parabolic CB, with
the split-off band neglected; (iii) a mixed three-band mod-
el, with coupled CB, HH, and LH, and neglecting the SO
band; and (iv) a three-valence-band model, with coupled
HH, LH, and SO, and parabolic CB. In models (i) and
(iii), we use the valence-band effective-mass parameters
y;, whereas in (ii) and (iv) we use instead the Luttinger
parameters y; . These two sets of y parameters are relat-
ed by Eq. (2). Additionally, the conduction-band
efFective-mass parameter is given by s in model (i), while
it is obtained from Eq. (4) in model (iii).

& =&3y3k, k, +i (&3/2)y(8)k,

& = —(+3/&2)y3k~~k. +i «3/&2)y(8)k
~~~,

=& y, , —(1/&2)y, k
~)

—i (3/&2)y, k~~ k, ,

+k» y(8)=y., i—~ os(48)

8=tan '(k /k„) .

We can obtain H& from H„by replacing k~~ with —
k~~.

The warping terms in the 8X8 Hamiltonian which are
not fully diagonalized by this transformation are given by
the cross matrix

H„=

E, P) P2 P3

P) E~~ 3 8
P2 A * E~~ C

P3 8* C* Es~

(6)

where

P i
= —

( 1/+2)Pk

P2 = ( V2/V3 )Pk, + ( i I/6)Pk ~~,

P3 = —(1/+3)Pk, +(i l&3)Pk

where the H„are 4X4 block matrices, and H&„=H„&.
The upper-left 4 X4 block is given by

III. INFINITE WELL HAMILTONIAN

In this section, we apply the envelope-function Hamil-
tonian of Eq. (6) to demonstrate that the zone-center
confined-state energies in an infinitely deep quantum well
can be determined directly from a plot of the bulk band
dispersion along the growth direction. At the center of
the two-dimensional Brillouin zone, where k~~

=0, Eq. (6)
decouples into two independent matrices, a 1 X 1 matrix
describing the heavy-hole dispersion and a 3 X 3 matrix,
which needs to be solved to calculate the (mixed) CB,
LH, and SO confined-state energies.

Because of this decoupling, the heavy-hole zone-center
confined-state energies are identical in the four models
considered above. If we take E„D=O, the heavy-hole bulk
dispersion along k, is given by
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EHH(kz)= —
—,'(y, —2)'2)k, . (9)

If we define the quantum well between z =0 and L, and
apply the boundary conditions that the envelope function
f (z) goes to zero at the interfaces, we find that the
heavy-hole confined states are standing waves with wave
vector k, = n m. /L. The envelope functions are given by

where the well is defined between z =+a, the zero of en-
ergy is taken at the conduction-band minimum in the
well, and the conduction-band ofFset is set equal to Vo.
The band structure varies as E (k, ) in the well, while the
evanescent band in the barrier band-gap region varies as
Eb(~, ). For parabolic bands, Eq. (12) reduces to the
well-known form

f„(z)= (&2/i/L )sin(n mz/L), 0 & z & L

=0 otherwise, (10)

k,
tan(k, a) =

m~ m*
b

(12a)

and the confined-state energies are found directly from
the bulk band structure by replacing k, by no/L i.n Eq.
(9).

We can solve the remaining 3 X 3 matrix using an ex-
pansion in diagonal (uncoupled) states. ' We consider
the calculation of a confined-state predominantly of
light-hole character, for which the light-hole component
of the envelope function varies as fLH (z) =sin(mmz/L).
If we allow the split-off component of the wave function
also to vary as fso& (z) =sin(P m z /L ), then the off-

diagonal term involving k, introduces a direct mixing be-
tween normalized light-hole and split-off components
such that

(fso, ( )I
—d'/~ 'If ( )&=( /L)'S,

i.e., the only direct mixing between f„H and the split-off
band is with fso, and the magnitude of the interaction
is found by replacing k, by (m rr/L) in the 3 X 3 matrix.
Finally, the terms P2 and P3 linking the conduction band
to the light-hole and split-off bands are both of order k, .
The correct form for the conduction-band contribution to
the envelope function is fca~(z)=i c (oqsmz/L), so that

f„H and fso mix only with the conduction-band com-
ponent fca~, with the magnitude of the interaction
found by replacing k, in P2 3 by m n/L in Eq. (6). Hence,
the zone-center energy of the mth LH, SO, and CB
confined states in an infinite quantum well can be found
by replacing each occurrence of k, in Eq. (6) with m rr/L

The zone-center confined-state energies in an infinite
well of width L are then just equal to the bulk band ener-
gies at k, =m ~/L for each of the four calculation models
described at the end of Sec. II. We thus conclude that in
an infinite well the difference between calculated
confined-state energies using different models can be pre-
dicted directly from the differences in the bulk band
structures. We consider in Sec. IV how this conclusion is
modified in the case of finite wells.

—dk, iPk,
—iPk —E —bk 2

z g 2
(13)

This expression represents a single conduction band in-
teracting with a single valence band. Equation (6)
reduces to this form for k~I=0 in the case where the
spin-orbit splitting 6o tends either to zero or infinity.
The bulk band structure of Eq. (13) is plotted schemati-
cally in Fig. 1 for the case where b, d )0. It can be seen
that for small values of k the band dispersion does indeed
mimic that of a direct-gap semiconductor, but at large k
the on-diagonal terms in k start to dominate, giving a
second, spurious state at each energy E in the neighbor-
hood of the band gap. The spurious solutions arise due to
the inclusion of the two terms of order k, in Eq. (13):

A similar expression to Eq. (12) can also be used for odd
states, with tan(k, a) replaced by —cot(k, a). This
single-band expression has the advantage that it avoids
any reference to or use of spurious solutions to the band
structure which can otherwise be found in the full
envelope-function method. The elimination of spurious
solutions is often a concern in applications of the multi-
band envelope-function method. ' ' We consider here a
two-band Hamiltonian, including a spurious band at
large wave vector, and show how forced elimination of
the spurious bands from the allowed solutions does
indeed lead to an expression similar but not exactly iden-
tical to Eq. (12) for confined conduction states. We then
apply the one-band expression to analyze the efFects of
band nonparabolicity on confined-state energies.

We consider a two-band Hamiltonian which for kII =0
takes the form

IV. ZONK-CENTER CONFINED-STATE ENERGIES

A. Analytic results

E ~o —E
k,—tan(k, a) =a,

Z Kz
(12)

A number of authors have demonstrated that the even
confined-state energies for a nonparabolic conduction
band can be calculated accurately using the expres-

6, 23,27

-Imk 0 Realk-

FIG. 1. Schematic band structure of the two-band Hamil-
tonian of Eq. (13). Two eigenstates are found at each energy E,
the second of which (with wave vector k,p) is a spurious solu-
tion.
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Hf = 3 d fldz +Bdfldz+Cf . (14)

We see from Fig. 1 that at each energy of interest E,
there are two allowed k values in the well, k and k, (see

Fig. 1), as also in the barrier, ~ and k,b. We can calculate
the envelope function associated with each state at energy
E, and find for even states in a symmetric quantum well
that the general even solutions vary as

coskz

E+d„k'
sinkz

cosk,~z

2 E+d I 2

sink, z
SP

(15)

while in the barrier we have

f (z) =yiexp( —Kz)
Vo E+dbx—

Pz

cosk bz
+3'2 E+d k2 y

sink, bz
Pk,b

(16}

The two-component envelope functions must satisfy the
boundary conditions'

f continuous

A df /dz + ,'Bf continuous —.

(17a)

(17b)

We have four unknown quantities in Eqs. (15) and (16)
and, from Eq. (17}, four boundary conditions for even
solutions of the envelope-function equation. We can,
however, in principle add two further boundary condi-
tions for acceptable solutions to the Hamiltonian, namely
that x2 =y2 =0, so that there is no contribution from the
spurious bands. We adopt these two boundary condi-
tions, so that Eq. (17) then leaves us with four boundary
conditions for the two unknown quantities x, and y, . As
we are considering confined electron states, we choose to
solve the upper (conduction band) components of Eqs.
(17a) and (17b) exactly. We find for even solutions that

E —d k Vo —E —
dbmsk tanka =v

k 2
(18)

This expression is similar, but not identical to, Eq. (12),
as it contains extra terms involving d k and db~ . How-
ever, the dominant contribution to the zone-center

when bd & 0, the spurious band is at large, real wave vec-

tor, as in Fig. 1; if we had chosen bd &0, we would still
have obtained a spurious band, but in this case at large
imaginary wave vector in the neighborhood of the band
gap. We wish to eliminate the contribution of these
spurious states in quantum-well calculations.

Equation (13) is of the form

Hf =Ef,
where

kb =ka +nm /2, (19)

i.e., so long as

b =a+no. /2k . (20)

As k„&k, the excited states for the given k values are
then in narrower wells in the nonparabolic than in the
parabolic model (b„&b ). Equivalently, for a fixed well
width, we then expect the k vector for excited states in
the nonparabolic model to approach (from above) that of
the parabolic model, confirming the usual conclusion that
nonparabolicity can have a greater inhuence on excited

conduction-band dispersion in the direct-gap III-V semi-
conductors comes from the o8'-diagonal interactions of
order k, rather than these smaller on-diagonal elements
of order k . Also, although the conduction-band disper-
sion is most accurately described using a multiband Ham-
iltonian, it can usually be well approximated by a two-
band Hamiltonian such as Eq. (13). Equations (12) and
(18) should give very similar eigenvalues for the III-V
heterostructures considered here. We therefore now ap-
ply the previously derived Eq. (12) to analyze the effects
of band nonparabolicity on electron confined-state ener-
gies.

Consider first an infinite square well. In this case
~= oo, so that the right-hand side of Eq. (12) is infinite.
We therefore require that the left-hand side is also
infinite, so that for symmetric confined states we have
ka =m l2+nn, as also derived in Sec. III using the multi-
band Hamiltonian.

In a finite square well with parabolic bands, the terms
Elk and ( Vo E)la in —Eq. (12) are independent of en-

ergy and proportional to the inverse efFective mass in the
well and barrier, respectively. For k =0, the left-hand
side of Eq. (12) is always smaller than the right-hand side,
and the ground state is then found by increasing the
value of k until the two sides are equal. When band non-
parabolicity is considered, Elk decreases with increas-
ing E, while (Vo E)/a. in—creases with E. The ground
state in the nonparabolic finite well case will therefore al-
ways have a larger wave vector k associated with it than
in the equivalent parabolic band model, as previously dis-
cussed by Nelson, Miller, and Kleinman. We provide
examples below which show that the ground-state
confinement energy with nonparabolic bands remains
smaller than the parabolic case in deep wells, but can in
other instances be even larger than in the parabolic band
case, due to a significant increase in the ground-state
value of k.

For higher confined states, we can apply a similar argu-
ment to show that the k vector in the nonparabolic mod-
el, k„, remains larger than in the parabolic model, k .
However the difference between k„and k~ decreases
rapidly with increasing excited-state index. The follow-
ing argument indicates why this is so. Let k be the wave
vector in the well describing the ground-state solution to
the envelope-function equation for a well of width 2a.
We see by substitution in Eq. (12}that the same value of
k will describe an excited-state solution for a well of
width 2b, so long as
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state than ground-state confinement energies.
A two-band model such as Eq. (13) is generally not so

accurate for the determination of light-hold confined-
state energies, as the light-hole nonparabolicity has
significant contributions from two distinct bands, namely
the conduction band and the

split-off

ban. Nevertheless,
we demonstrate below that the overall conclusions we
derive concerning the influence of nonparabolicity on
confined electron states are also applicable to light-hole
states.

400

—300

E

200

100

B. Numerical results

We have argued above that the accuracy of the calcu-
lated zone-center energies using different models can be
predicted by plotting the equivalent bulk band structures.
We present here the results of calculations which illus-
trate this point. We calculate the variation of confined-
state energy with well width for two different material
combinations: GaAs/A1As, and then a lattice-matched
In„Ga& „AsSb/Al Ga& Sb structure, which illustrates
the effects of strong nonparabolicity and of large spin-
orbit splitting. The band-structure parameters used here
and in later sections are listed in Table I. The Hamiltoni-
an of Eq. (1) and the four models we are considering de-
scribe the band dispersion about the Brillouin-zone
center, near the I point, so do not include I -X interac-
tions. Thus, although the conduction-band minimum is
near the X point in A1As, we only examine here the
confinement of I electrons in GaAs by the I well in
A1As. It is beyond the scope of the present paper to con-
sider the incorporation of I -X interactions into the
envelope-function method; such a modification is in prin-
ciple possible, but in most circumstances has little
influence on calculated I well confinement energies.

Figure 2(a) illustrates the conduction-band structure of
bulk GaAs calculated using models (i) (solid line, CB,
LH, SO mixing at zone center), (ii) the parabolic band
model (dotted line, CB only), and (iii), with coupled CB
and LH (dashed line). The bulk band structures calculat-
ed using models (i) and (iii) are virtually identical up to
about 200 meV above the band edge, and we find that the
calculated coniined-state energies for GaAs/A1As quan-
tum wells [Fig. 2(b)] are also in close agreement in this
energy range. It can also be seen from Fig. 2(b) that the
difference between the calculated parabolic and nonpara-
bolic confinement energies increases with confined-state
index, approaching the difference in bulk band energies

0
0.00 0.04

kz (k )

0.08
I

30 60 90 120 150
WELL WIDTH (A)

FIG. 2. (a) Conduction-band structure of bulk GaAs calcu-
lated along the (001) direction, using three different Hamiltoni-
ans, as described in text. (b) Electron confined-state energy as a
function of well width in a GaAs/A1As quantum well, using the
three different Hamiltonians.

for the highest confined states. The ground-state
confinement energy in the thinnest wells is higher in the
nonparabolic models than in the parabolic case, even
though V0=967 meV here. We have confirmed by tak-
ing a very large conduction-band offset that the
confinement energy in the nonparabolic models drops
below the parabolic band value as one approaches an
infinite square well.

Turning to the valence bands, Fig. 3(a) shows how the
light-hole dispersion varies between the four different
models, where we have now also included model (iv), with
coupled LH and SO bands (dot-dashed line). We see that
the interactions with both the conduction and split-off
band increase the light-hole band nonparabolicity. This
may initially appear surprising: the light-hole band is
surrounded by the conduction band and the split-off
band, so it might be expected from perturbation theory
that the influence of these bands would balance each oth-
er. However, the zone-center interaction Pz between the
conduction and light-hole bands is of order k, : this con-
tributes in second-order perturbation theory to the para-
bolic (k,2) dispersion of the light-hole band; the subpara-
bolic dispersion then arises from higher-order interac-
tions. By contrast, the zone-center interaction C between
the light-hole and split-off bands is of order k„which
from second-order perturbation theory then leads to the

TABLE I. Material parameters used in the band-structure calculations (from Refs. 40 and 41).

m,*

71
r2
y3
E (me V)
~o (meV)

E~ (eV)
hE, (meV)
aE„(meV)

GaAs

0.0665
6.85
2.10
2.90

1519
341
25.7

AlAs

0.150
3.45
0.68
1.29

3130
275
21.1

967
644

Alo. 2Gao. 8As

0.083
5.644
1.565
2.318

1746
328
24.8

136
91

Alo. 4Ga0. 6Sb

0.099
6.70
1.91
2.89

1239
660

18.4
520
94

Ino. 16Gao.84Aso. 14Sbo.86

0.043
12.65
4.52
5.61

626
647

18.4
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O
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FIG. 3. (a) Dispersion of the light-hole band in bulk GaAs
calculated along the (001) direction, using four different Hamil-

tonians, as described in text. (b) Energy of the light-hole states
as a function of well width in a GaAs/A1As quantum well, using
the four Hamiltonians.

observed repulsive interaction (initially of order k, ) be-

tween the light-hole and split-off bands.
We see in Fig. 3 how the strongest nonparabolicity is

obtained in the two models which include the split-off
band, and that the calculated confinement energies in
these two cases always lie below those from the other two
models. Even for the ground state, the calculated
confinement energies are reduced in the nonparabolic
models here compared to the parabolic case, although it
is interesting to note that the ordering of the LH-CB-SO
and LH-SO ground-state curves are reversed compared
to that found in the bulk band structure. We again see
how the difference between the calculated confined-state
energies becomes more marked with increasing confined-
state index. Overall, the differences between the various
bulk band structures of Figs. 2(a) and 3(a) provide a good
guide to the resulting differences in calculated confined-
state energies.

Similar conclusions are obtained for the other materi-
als systems which we have studied. Figure 4(a) shows the
calculated conduction-band dispersion for a particular
In„Ga& AsSb alloy lattice matched to GaSb. The non-

parabolicity is now considerably stronger than in GaAs,
and the energy of the lowest confined electron state in-
creases by about 10 meV in the narrowest wells in the
nonparabolic compared to the parabolic models [Fig.
4(b)]. The excited states, however, follow the same band
ordering in the quantum well as in the bulk case, and it is
again clear that the differences in the confined-state ener-
gies approach the differences in bulk band structures with
increasing confined-state index.

Figure 5(a) shows the light-hole band dispersion for the
same In Ga, AsSb alloy as in Fig. 4. In this case, the
dispersion curves are plotted over a smaller energy range
than in the previous figures, because the valence-band
offset relative to A104Gao 6Sb is calculated to be only 94
meV. Due to the large spin-orbit splitting, a very similar
band dispersion is found in models (i) (LH+ CB+SO)
and (iii) (LH+CB). We would thus predict that the cal-
culated light-hole confinement energies should also be

FIG. 4. (a) Conduction-band structure of bulk

Inp ~6Gap g4Asp ~4Sbp g6 calculated along the (001) direction

using three different Hamiltonian models. (b) Electron
confinement energy as a function of well width in

Inp &6Gap g4Asp &4Sbp g6/Alp 4Gap 6Sb quantum wells, using the
three Hamiltonians.

virtually identical in the two models, and this is indeed
found to be the case [Fig. 5(b)].

Overall, we conclude from Figs. 2—5 that the accuracy
of the calculated zone-center energies under different ap-
proximations can be well estimated by using the different
models to plot the bulk band structure along the growth
direction. We have only considered structures here
where the zone-center electron and hole quantum wells
are both in the same material layer, giving a type-I quan-
turn well at the I point. We found in this case that we
could ignore the behavior of the bands in the barrier lay-
ers. We expect, however, that for structures with type-II
or other staggered I -band alignments, it would be neces-
sary to consider the variation in band dispersion in each
layer in order to identify the most appropriate Hamiltoni-
an for the particular problem.
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FIG. 5. (a) Dispersion of the light-hole band in bulk
Inp &6Gap g4Asp ~4Sbp g6 calculated along the (001)
direction using four different Hamiltonians. (b) Energy of the
light-hole states as a function of well width in
Inp &6Gap s4Asp &gSbp s+Alp 4Gap 6Sb quantum wells, using the
four Hamiltonians.
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V. VALENCE-SUBBAND DISPERSION

While the effective-mass Hamiltonian of Eq. (6} has
been widely used to study the valence-subband dispersion
in quantum wells and heterostructures, the correct
boundary conditions to connect the envelope functions
across an abrupt interface still remain the subject of de-
bate. Most authors have followed the approach of Al-
tarelli and co-workers, ' ' who argued that the envelope
function and the probability current density must be con-
tinuous across each interface. When directly applied to
Eq. (6), this leads to boundary conditions of the form of
Eq. (17). Such an argument does not, however, provide
the only possible set of boundary conditions. The main
problem arises in choosing how to write terms like yk, or
Pk, when the scalar k, is replaced by the operator
—iB/Bz. The Hamiltonian for instance remains Hermi-
tian when yk, is replaced by —y 8/Bzy~B/Bzy so long
as 2u+P= 1, but the boundary conditions and hence cal-
culated subband dispersion change as a and P are
varied

Until recently, there was no a priori argument as to
how the Harniltonian should be modified to incorporate
the operator i d/r}z —The s.ituation has now changed
with the development by Burt of an exact envelope-
function theory for semiconductor micr ostructures.
This gives a general solution for the effective-mass Hamil-
tonian, which applies even at an abrupt interface. This
theory can be applied to derive interface boundary condi-
tions which then include correctly the effects of remote
bands on the bulk dispersion and at the interfaces. Fore-
man has applied Burt's prescription and derived a
modified form of the valence-band part of the Hamiltoni-
an in Eq. (6), treating the conduction band as a remote
band. He then presented a relatively subtle example to
support his boundary conditions, based on the behavior
of the HH2 zone-center effective mass under different
boundary conditions.

We present some more direct examples here, based on
material systems similar to those discussed in Sec. IV
which confirm that the Burt boundary conditions are the
correct ones to use at heterostructure interfaces. We
compare the valence-subband dispersion when we explic-
itly include the conduction band in the Harniltonian and
when we treat it as a remote band, using the standard
symmetrized boundary conditions and the Foreman
boundary conditions. The reader is referred to the paper
by Foreman for the explicit form of the two sets of
boundary conditions. We keep the Kane matrix ele-
ment P constant between the well and barrier material, so
that it is then trivial to extend Foreman's three-band
boundary conditions to the four-band case.

We also investigate a second issue, namely the
inAuence of the spin-split-off band on the bulk valence-
band structure, and hence on subband dispersion. In
both the two-band (HH, LH) and three-band (HH, LH, SO)
valence Hamiltonians, the bulk heavy-hole band has a
warped dispersion, with the inverse effective mass along
the (001} direction given by m HH

' =y, —2y2, while
mHH' =y, —2y3 along the (111)direction. We illustrate
how the band warping can, however, be markedly

different in the two models along other, lower-symmetry
directions, and demonstrate the consequences of this for
valence-subband dispersion calculations.

A. Influence of boundary conditions

(a)
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FIG. 6. Valence-subband dispersion of a 100-A
Ino l6Gao84As014Sbo86/A104Ga06Sb quantum well, calculated
with the following bands included explicitly in the calculation:
(a) CB, HH, LH, and SO; (b) CB, HH, and LH; (c) HH, LH, and

SO; and (d) HH and LH only. In each case, solid lines using
Burt-Foreman boundary conditions; dotted lines using sym-

metrized boundary conditions.

Figure 6(a) shows the valence-subband dispersion of a
100-A, In„Ga& AsSb/Al Ga& Sb quantum-well struc-
ture, calculated using the full four-band Hamiltonian of
Eq. (6), with Burt boundary conditions (solid lines) and
symmetrized boundary conditions (dashed lines). Figure
6(b) includes the CB, HH, and LH bands (model iii). We
find when the lowest conduction band is explicitly includ-
ed in the calculation that the calculated valence-subband
dispersion is always very similar for the two sets of
boundary conditions. This is because the lowest conduc-
tion band is the dominant remote band contributing to
the three-band Luttinger-Kohn valence Hamiltonian.
Figures 6(c) and 6(d) show the dispersion calculated using
the three-valence-band (HH, LH, SO) and two-valence-
band (HH, LH) models, respectively. It is immediately
apparent that the dispersion calculated using Burt bound-
ary conditions (solid lines) in Fig. 6(c) is in excellent
agreement with that of Fig. 6(a}, and likewise when com-
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paring Figs. 6(d) and 6(b). By contrast, the symmetrized
boundary conditions show a much flatter band dispersion
in several regions, with the difference being particularly
marked around E = —60 meV and at larger values of k.
Figure 6 thus provides direct confirmation of the correct-
ness of the Burt-Foreman boundary conditions for
valence-subband calculations. Gal „In„AsSb is a useful
material system to demonstrate the effects of different
boundary conditions, as the Luttinger parameters are
markedly different in the well and barrier layers (Table I}.
We would also expect, because of the large spin-orbit
splitting, that the calculated subband dispersion should
only vary weakly depending on whether the split-off band
is included [Fig. 6(c)] or not [Fig. 6(d)] in the calculation.
We see that this is indeed the case with Burt-Foreman
boundary conditions (solid lines), but that more marked
and unintuitive changes occur with the symmetrized
boundary conditions (dashed lines).

Figure 7 presents the calculated subband dispersion in
a 100-A GaAs/AIO2GaosAs quantum well. There is a
much smaller step in Luttinger parameters between the
well and barrier here, and it can be seen that although the
Burt boundary conditions give better agreement with the
full calculations, the differences are not as marked as in

Fig. 6, so that use of the symmetric boundary conditions,
although wrong, should be sufficiently accurate for many
applications. By contrast, the spin-orbit splitting is ap-

proximately halved compared to that in Fig. 6, so we ex-

pect a greater difference between the calculations with

[Figs. 7(a} and 7(c}]and without [Figs. 7(b} and 7(d)] the
SO band included. This is indeed found to be the case. In
particular, the inclusion of the SO band makes the
highest valence band heavier at large in-plane wave vec-
tor, and its dispersion appears to be almost linear be-
tween 40 and 140 meV. It can be seen from Figs. 7(a}and
7(b} that this behavior is independent of the boundary
conditions used, and must therefore be a consequence of
the change in bulk band structure when the split-off band
is included.

B. InSuence of SO band

Figure 8 shows the valence-subband dispersion along
the (10) direction in a 100-A GaAs/A1As quantum well,
calculated using each of the four band-structure models.
The valence-band quantum well is considerably deeper
here (644 meV) than in Fig. 7, so we can plot the band
dispersion to higher energy. We again see that near the
valence-band maximum the Burt boundary conditions in
Figs. 8(c) and 8(d) give better agreement with the calcu-
lated band structures in Figs. 8(a} and 8(b), respectively.
This is no longer the case, however, at higher energies
( —150 meV and more from the band edge). There are re-
gions at intermediate wave vector in the subband struc-
ture of Fig. 8(a) where the dispersion is relatively fiat. By
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FIG. 7. Valence-subb and dispersion of a 100-A
GaAs/Alo 2Gao, As quantum well, using the same models and
line types as in Fig. 6.

FIG. 8. Valence-subband dispersion of a 100-A GaAs/A1As
quantum well, using the same models and line types as in Fig. 6.
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contrast, the equivalent regions in the band structure of
Fig. 8(c) have a downwards dispersion with Burt bound-
ary conditions and an upwards dispersion when sym-
metrized boundary conditions are used. We attribute this
to a breakdown in the assumption that the conduction
band can still be treated as a remote band at larger wave
vectors and energies.

There is again a marked difference between the calcu-
lated band dispersion when the split-off band is included
in the calculation [Figs. 8(a) and 8(c)] compared to the
cases where it is omitted [Figs. 8(b) and 8(d}]. With the
split-off band included, the highest valence bands have a
considerably heavier, almost linear, dispersion at large
wave vector and, as remarked above, there are also re-
gions with fiat or even electronlike dispersion at inter-
mediate wave vector.

We saw earlier how the zone-center confined-state en-

ergies in an infinite well of width L can be predicted from
the bulk band structure E(k„k1) by taking k~ =0 and

k, =no IL,n =1,2, . . . . The situation is more compli-
cated when considering valence-subband dispersion, be-
cause of interactions between different subbands, which
lead to band mixing effects. It is nevertheless instruc-

tive to compare the bulk in-plane band dispersion in
different models. We plot the bulk band structure of
GaAs as a function of E(nmlL. , k„) in Fig. 9, with
L =100 A. The main differences found between the sub-
band dispersions of Fig. 8 are also observed here. In par-
ticular, the higher bands are heavier at large wave vector
k, and electronlike dispersion is also observed at small
and intermediate values of k.

The zone-center dispersion of the highest valence band
is identical in the two- and three-valence-band models for
all directions in the x-y plane at finite k, . The bulk in-
verse effective mass in this plane, m [001~, is given by

~(001) 71+V2 3V3~r2 .
—1 2 (21)

(22)

For an isotropic band structure (yz=y3=y, „},the in-
verse effective mass in Eq. (21) is then equal to the zone-
center heavy-hole inverse mass y1

—2y,„. However,
when the band warping is taken into account, Eq. (21)
can become negative, and for GaAs is equal to —3.06„us-
ing the Luttinger parameters of Table I. We note that
this warping of the bulk bands is also responsible for the
zone-center electronlike dispersion of the higher heavy-
hole subbands in Fig. 8.

The dispersion of the highest valence band in the two-
and three-valence-band models is also identical, even to
large wave vectors, along the (001) and (111) directions,
with the inverse effective masses along the two directions
equal to y, —2y2 and y, —2y„respectively. Along other
directions, the effective mass is heavier at large k in the
three-band compared to the two-band case. This can be
seen by comparing the dispersion of the highest hole
band in the xz plane in the two-band model and in the
three-band model, assuming 5=0 in the latter case so
that a simple analytical expression can be obtained. The
dispersion in the two-band model is given by

E(k k )= ——'y k +Qy k +3(y y)k k—
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FIG. 9. Valence-band structure of bulk GaAs, calculated
along the (100) k„direction, for fixed values of k„namely

0

k, =n~/(100 A), n =1,2, . . . . The following bands are in-

cluded explicitly in each case: (a) CB, HH, LH, and SO; (b) CB,
HH, and LH; (c) HH, LH, and SO; and (d) HH and LH only. It
can be seen that the main differences between these bulk band

0
structures are also observed in the 100-A quantum-well subband
structures of Fig. 8. Solid {dotted) lines indicate bulk heavy-

hole (light-hole) bands.

while it is given in the three-band case by

E (k„k„)= —
—,
' (y, +y~ )k

+ —'Qy k +4(y —y )k k (23)

where k =k„+k, . The heavy-hole inverse effective
mass along the (101) direction is then, for instance, given

by y& (3y3+y—z)' and y&+yz —3y3 in the two- and
three-band models, respectively. Using the GaAs param-
eters in Table I, the heavy-hole (101) inverse effective
mass is then equal to 1.4 in the two-band case, intermedi-
ate between the (001) and (111) values of 2.65 and 1.05,
while it is reduced to 0.25 in the three-band case. This
enhanced warping in the three-valence-band compared to
the two-band case is then responsible for the greater up-
wards dispersion of the bulk bands in Figs. 9(a) and 9(c},
and is the cause of the linear dispersion at large k in Figs.
8(a) and 8(c).

The in-plane warping is often averaged over in QW cal-
culations by applying the axial approximation, ' which
eliminates the angular dependence of the matrix elements
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A and B in Eq. (6), by setting the terms involving
JM= —,'(y2 —y3) to zero. This is equivalent to calculating
the band dispersion along the [cos(m./8), sin(m. /8)] in-

plane direction. This should be a reasonable approxima-
tion in the two-valence-band model, as this direction is
midway between the (10) and (11) directions, along which
the heavy-hole in-plane effective mass is respectively min-
imized and maximized for large in-plane wave vectors.
We see, however, from Figs. 8 and 9 that the in-plane
heavy-hole mass along the (10} k„direction is
significantly enhanced in the three-valence-band model,
compared to the two-band case, due to the stronger
warping in the three-band model. This enhanced warp-
ing limits the applicability of the axial approximation us-

ing the three-band Hamiltonian.
It is also a cause for concern that the three-band warp-

ing is particularly sensitive to the input Luttinger param-
eters. The GaAs values in Table I were taken from
Landolt-Bornstein. If we had used more recently pub-
lished y values (y, =6.78, y2=1.92, and y3=2. 70),
these would change mt H(001), mHH(001), and mHH(111)
by factors of 5, 10, and 30%, respectively. However, the
value of y&+y2 —3y3, which can be regarded as a mea-
sure of the three-band warping, is increased from a value
of 0.25 to 0.60, i.e., by 140%. The (01) band dispersion at
intermediate and large wave vectors k will then be
modified, and the difference between Figs. 9(a) and 9(b)
would be reduced.

The band structure in Fig. 8 was calculated for a 100-A
unstrained quantum well. Figure 9 shows how the band
warping increases with k, . The effects of warping on sub-

band dispersion should therefore become more pro-
nounced as the well width L, is reduced, as the wave vec-
tor k, selected increases with decreasing well width ap-
proximately as k, -n/L, Str.ain .also infiuences the
warping: tensile strain increases its efFect near the
valence-band maximum, while compressive strain reduces
it. The warping also increases as the spin-orbit splitting
60 is reduced.

We suggest that a comparative plot such as Fig. 9
should serve as an adequate guide in selecting the Hamil-
tonian model required for a specific problem. We
reiterate, however, that the band warping calculated in-
cluding the spin-split-ofF band is strongly sensitive to a
combination of the Luttinger parameters which is gen-
erally poorly known, namely y, +y2 —3y3. This is a
problem particularly in phosphide-based material sys-
tems, such as Ga, „In„P/(Al Ga, )O~lno 5P, which is
of interest for visible laser applications and where the
spin-orbit splitting is only of order 100 meV. It may also
be of importance in tensile-strained arsenide-based ma-
terials, such as In„(Ga Al& „}& „As structures grown on
InP with x &0.53, because tensile strain enhances band
warping efFects near the valence-band maximum. More
experimental effort is required to establish accurately the
Luttinger parameters for valence-band modeling.

quantum-well structures, demonstrating how the accura-
cy both of the calculated zone-center confinement ener-
gies and also subband dispersion can be predicted by plot-
ting the equivalent bulk band structure under various ap-
proximations.

The effects of band nonparabolicity on zone-center
confined-state energy can be predicted directly from the
bulk band structure in an infinitely deep quantum well.
For finite quantum wells, we first showed how the elim-
ination of spurious solutions from the envelope-function
band structure leads to a slightly modified form of the
standard result through which the conduction-band
confined-state energies are calculated using a one-band
model, with an energy-dependent effective mass. We
then presented numerical results and arguments based on
the one-band model to show how the effects of nonpara-
bolicity on confined-state energies in finite wells can also
be predicted directly from the bulk band structure, par-
ticularly for the higher confined states, with the
difFerence in calculated confinement energies approaching
the difference in the bulk band structures at given wave
vector k, .

There continues to be controversy concerning the
correct choice of boundary conditions to describe the
continuity of the envelope function across an interface in
valence-subband calculations. The most widely used ap-
proach has assumed a "symmetrized" form of the Hamil-
tonian. More recent work by Burt and Foreman based
on an exact derivation of envelope-function theory has
led to revised boundary conditions. We have settled this
issue here by comparing the valence-band structure cal-
culated with the lowest conduction band included either
explicitly or treated as a remote band, using perturbation
theory. Our results demonstrated that the Burt boundary
conditions consistently give the more physically plausible
results.

Finally, we compared the valence-subband struc-
ture calculated along the (01) direction using the
4 X4 and 6 X 6 Luttinger-Kohn Hamiltonians. For
GaAs/Al„Ga& „As quantum wells we found marked
differences between the band structures calculated using
the two methods for energies about 100 meV or more
from the band edge. This difference arises because the
warping of the bulk valence bands increases significantly
at intermediate wave vectors when the spin-split-off band
is included in the Hamiltonian. This additional warping
will in6uence the band structure at even smaller wave
vectors in phosphide-based alloys, such as Ga, „In P,
where the spin-orbit splitting is only of order 100 meV.
The use of the axial model to calculate quantum-well
valence-band density of states is therefore questionable in
materials with a small spin-orbit splitting. The magni-
tude of the additional warping in the 6 X 6 Hamiltonian is
very sensitive to the values of the Luttinger parameters
used, indicating the importance of investing more effort
to determine these parameters accurately.

VI. SUMMARY AND CONCLUSIONS

We have investigated the application of the envelope-
function method to calculate confinement energies in
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