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An empirical tight-binding (ETB) approach combined with a Green s-function (GF) method has been
employed to investigate the electronic structure of the Si(111) and arsenic-passivated Si(111) surfaces.
An accurate silicon band structure has first been developed keeping up to second-nearest-neighbor terms
in the Hamiltonian. The ETB-GF approach has allowed the calculation of the local density of states
(LDOS) at various atomic layers of the semi-infinite samples. It has also been possible to calculate the
contribution of the individual atomic orbitals to the LDOS. The results obtained for the arsenic-
passivated Si surface provide the position and strength of localized surface states as well as the density of
the bulk states in the valence band, the band gap, and the conduction band. The calculated localized
states reproduce the existing experimental data and other partial calculations. Furthermore, this calcu-
lation predicts a localized state in the conduction band, which has so far not been studied experimental-
ly.

I. INTRODUCTION

Over the last two decades, a great deal of attention has
been focused on the electronic structure of Si and Ge sur-
faces, mainly because of their importance in the construc-
tion of modern electronic devices. The Si(111) surface
created either by cleaving or sputtering is known to have
2X1 or 7X7 reconstructions, respectively. It has been
found that the surface reconstruction of Si(111)can be el-
iminated by exposing it to arsenic, which replaces the
outermost atoms of the Si surface double layer by As
atoms, and the resulting surface structure is very close to
the ideal unreconstructed (1 X 1) surface. '

In this paper we have used the Green's-function (GF)
method to study the electronic structure of the As-
passivated (111) surface of a semi-infinite Si sample. In
conjunction with the semiempirical tight-binding
scheme, the GF method provides an efficient avenue to
obtain reasonably accurate numerical results not only for
solid surfaces, but also for more complicated cases, such
as interfacial systems, adsorption on surfaces, etc. In this
formulation the Dyson equation is utilized to calculate
the GF of a complex system in terms of those of simpler
components. One of the advantages of this method is
that it permits the calculation of the density of states
(DOS), both extended (bulk) and localized (surface), at
any arbitrary layer of the solid, and, if desired, the contri-
butions from particular orbitals (s,p, etc.). The GF
method yields the energy location and the strength of the
surface states, as we11 as the way they decay into the bulk.

In this work, we first generate an empirical tight-
binding (ETB) Hamiltonian for silicon which gives an ac-
curate description of its band structure. Then using the
GF-Dyson equation method for this Hamiltonian we
study the DOS at the Si surface layer, and at the I point
of the surface Brillouin zone (SBZ) with particular em-
phasis on the surface states. We next calculate the local
density of states (LDOS) of the more realistic unrecon-
structed (1X1) As-passivated Si(111) surface, and show

that our results reproduce all available experimental sur-
face states and are in basic agreement with several
theoretical results which individually show only some of
these surface states. We also predict a surface state in the
conduction band which has so far not been studied either
experimentally or theoretically.

II. MODEL

As a starting point, we consider a tight-binding (TB)
Hamiltonian similar to that of Chadi and Cohen (CC)
(Ref. 7) for the bulk bands of silicon. Silicon possesses di-
amond structure, so that each atom is tetrahedrally coor-
dinated and each primitive cell contains two Si atoms
(v=1 and 2), connected by the vector t=a(1, 1, 1)/4,
where a is the lattice constant. Hence two Bloch func-
tions can be constructed for each basis function (on the Si
atoms), of which there are four (s, p„, p, and p, ) per
atom in the CC model. In terms of Bloch functions then,
the Hamiltonian H(k) is block-diagonalized into 8X8
blocks, so that, for each k value, there is a corresponding
8 X 8 secular determinant to be solved, in order to obtain
the energy eigenvalues E(k). It is then straightforward'
to construct the bulk GF G(E, n, n', kii) in the mixed
Wannier-Bloch representation, where the wave functions
are given by ~n, kii), n being the index representing the
layer number, and kii the wave vector parallel to the sur-
face, from which the bulk DOS is calculated as

In the CC model, seven parameters were used to obtain
a good fit to the valence bands of Si, as calculated by the
empirical pseudopotential method (EPM).9 However, the
model gave a poor fit in the conduction band. In this pa-
per, we use nine parameters which give a much better fit
to the lower conduction bands. The additional two pa-
rameters used here represent second-nearest-neighbor in-
teractions for the diagonal 3s and 3p matrix elements.
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Two other parameters representing second-nearest-
neighbor interactions for the off-diagonal 3s and 3p ma-
trix el@ments were also considered. The improvement of
the band structure by adding the latter two parameters
was only slight and, for the sake of simplicity, they are
not used in the present calculations. The resultant band
structure and numerical values of the parameters (in
Slater-Koster notation) used are shown in Fig. 1 and
Table I, respectively. The eigenvalues obtained here are
in good agreement with the EPM calculations. For com-
parison, in Table II we show the eigenvalues obtained in
this analysis along with the results of the EPM and other
TB calculations. The top of the valence band is chosen at
0 eV and the bottom of the conduction band is found to
occur at 3.43 eV. This is consistent with Harrison' who
shows a band gap of 3.4 eV at the I point. Note that the
experimental indirect band gap of —1.1 eV between the
I' and X points is maintained in our calculation. Howev-

er, the differences in the eigenvalues between the EPM
and TB calculations result in corresponding differences of
the band edges. Of particular interest is the bottom of
the conduction band (2.23 vs 1.60 eV) and the bottom of
the first valence band ( —1.23 vs —1.79 eV) at the L
point. They are used to aid in making comparison with
presently available experimental and theoretical data.
Figure 2 shows the LDOS of bulk silicon (111) at the I
point of the Brillouin zone for the energy range of —13
to +8 eV. The contributions of the s and p orbitals are
shown by the dotted and the dot-dashed curves, respec-
tively. It should be mentioned that, in this and subse-
quent figures, due to the complex nature of the computa-
tions, some extraneous oscillations in the density of states
occurred in areas where there is an overlap of several
bands. The calculations were done in several different
ways, and although the oscillations persisted, their nature

For silicon: E„(000)
E„(110)
E„„(000)
E„„(011)
E„„(110)

&r 222

0.0
0.0945
7.03

—0.375
0.181

—2.0575

1.00
0.428 75

1.35

For the As outer layer: EE„(000)
AE„„(000)

—3.78
—2.46

'These values are within the range of values given in Refs. 10
and 14.

varied leading to the conclusion that they are an artifact
of numerical approximations. Therefore, in those areas
the curves were smoothed to eliminate the extraneous os-
cillations.

In order to compute the surface GF, g, for the (111)
surface of Si, we adopt the Dyson equation approach,
wherein g is related to the bulk GF, G, by

g =G+GVg,

where the scattering potential Vis

V=A H, —

(2)

(3)

with H (h) the corresponding Hamiltonian for the bulk
(semi-infinite) system. While the model, in its present

TABLE I. Tight-binding parameters for Si and As [using the
notation of Ref. 6, and (000) data from Ref. 10].

Parameter Value' (eV)

10— TABLE II. Comparison of eigenvalues in eV at three points
in the Brillouin zone.

-6—

-8—

-10—

-12—

-14—
I

FIG. 1. Silicon band structure calculated by using the enIpir-
ical tight-binding Hamiltonian developed in this paper. Note
that this band structure has a much better agreement in the con-
duction band with the pseudopotential calculation than that of
CC.

Location

X

Chelikowsky
and Cohen

(EPM)

—12.36
0.0
3.43
4.1

—7.69
—2.86

1.17

—9.55
—6.96
—1.23

2.23
4.34

This paper
(ETB)

—12.36
0.0
3.43
4.1

—7.99
—2.13

1.17
8.7

—10.12
—5.52
—1.79

1.6
5.33
7.04

Chadi
and Cohen

(ETB)

—12.26
0.0
3.42
4.1

—7.7
—2.88

5.38
12.14

—9.44
—7.11
—1.44

3.2
7.6

10.2
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Geometrically, in the surface layer of Si(111), each
atom is surrounded by a hexagonal arrangement of six
other atoms, and this pattern is repeated in successive
planes parallel to the surface [i.e., the (111) direction].
Moreover, the stacking of the planes is such that of the
four nearest neighbors (nn) of a particular atom, three are
located in one of the adjacent planes, and the fourth in
the other one. Thus, in principle, there are two possible
ways to form the surface, namely by cutting either one or
three nn bonds per atom. In practice, however, only the
former situation occurs, which is what we consider in this
paper. The other properties represented by V in (3) are
the surface perturbations, which are of two types. First,
the shift in the energy levels of the surface atoms is an ad-
ditive term 5 (independent of k), which affects only the
atoms in the surface layer. Thus

V(0 0) 0 0=5
FIG. 2. Bulk Si LDOS/eV-cell at I given by the band struc-

ture of Fig. 1. The s-wave contribution is given by the dotted
curve, the p-wave contribution by the dot-dashed curve, and the
total by the solid curve.

form, does not include surface reconstruction, V, in prin-
ciple, can incorporate two important features: (1) the
breaking of the bonds across the cleavage plane (i.e., be-

tween layers n =0 and —1); and (2) the perturbation of
the atoms in the surface layer due to the formation of the
surface. The first of these features can be represented
mathematically by writing

6 (0, —1)=A ( —1,0)=0, (4)

l.e.,

V(0, —1)= —H(0, —1), V( —1,0)= H( —1,0) . —(5)

with a=s, x, y, and z, an orbital index. Second, the sur-
face relaxation is modeled by scaling the nn [and second-
nearest-neighbor (2nn}] terms, between the surface and
first interior double layers, by a factor d (d'), which is the
ratio of the new interaction to the old one; i.e., for V(0,0}
we obtain

V(0,0) „.=(d —1)H(0,0), „ for vAv' . (7)

Because of the inclusion of 2nn in this paper, additional
matrix elements are present for V( —1,0). Furthermore,
V(1,0) and V(0, 1) are nonzero and must also be deter-
mined.

It is now a straightforward, but tedious, procedure to
calculate, in mixed basis representation, the matrix ele-

ments of V required in (5) and (7)." With these in hand,
it is possible to calculate the surface GF, g, from the
Dyson equation (2). For the scattering potential used

here, (2) leads to the 8 X 8 matrix equation

g (n, n')= 6(n, n')+ [G(n, —1)V( —1,0)+G(n, O) V(0, 0)

+G(n, l)V(1,0)]g(O, n')+G(n, O)V(0, 1)g(l, n') (n, n'~0) . (8)

p„(E,kii
—Im Trg(E, n n k1

(9)

III. RESULTS

Turning now to some numerical results, we first exam-
ine the density of states in the surface layer, at the SBZ
center I (k~~ =0), in the case of an unreconstructed sur-

Once the relevant matrix elements of the bulk GF, 6,
and potential V are calculated, it is a simple matter of
matrix algebra to calculate the GF, g, for the cleaved
crystal at any desired double layer n. The corresponding
I.DOS for that layer and for a particular k~~ is then given

by

face (5=0,d =l,d'=1) shown in Fig. 3(a). A surface
state corresponding to the dangling bond created when

the crystal is cleaved perpendicular to the (111)direction
is found in the band gap. Figure 3(b) shows the same cal-
culation with a 0.33-A relaxation of the surface atoms
(6=0,d =1.08,d'=1. 145) as predicted by Appelbaum
and Hamann (AH). ' The surface state is found at 0.98
eV above the valence band. This is in close agreement
with AH and Pandey and Phillips (PP), ' who showed the
surface state at 0.88 and 1.04 eV, respectively, above the
valence band. Table III shows the location of the surface
state and two other localized states below the valence-
band edge found in the present paper and compared with

those of AH and PP.
Calculations were performed for the arsenic-passivated
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TABLE III. Comparison of the energy levels of a surface
state in the band gap and two localized states below the
valence-band edge, in eV, at the I point in the SBZ of relaxed
(0.33 A) Si(111).

Appelbaum
and Hamann

0.88
—1.95

—12.90

This work

0.98
—1.82

—12.40

Pandey
and Phillips

1.04
—1.71

—12.87

20-

V)
V

15—
rf&

0
10—

t7)
C
V
A

5

(Si (1 1 li surface)

( a ) No relaxation

silicon (111) surface, an example of an unreconstructed
surface, which permits direct comparison with experi-
mental results. The tight-binding parameters for the As
atom were determined from data given in Ref. 10 and are
shown in Table I. Since the presence of the As at the
outermost layer is treated as a surface perturbation in our
formulation, we can still use Eq. (8) with a different set of
nonzero V(0,0), V(1,0) and V(0, 1) for the GF of the
combined As-Si(111) system. Various authors' ' have
found different values for Ez and E~ for silicon and ar-
senic. The 5, and 5 parameters used for our calculations
(5, = —3.78 eV and 5 = —2.46 eV, as shown in Table I)

are within the variation given in Refs. 10 and 14 and pro-
vide a good fit to the two experimental states below the
valence-band edge and to the state in the band gap.

The scaling parameters d and d' used in calculating the
scattering potential are obtained from the following argu-
ment. It has been noted that the expansion of the As
layer at the surface is 0.24 A. This implies that the As-Si
nearest-neighbor distance is h'=2. 44 A, compared to the
Si-Si distance h =2.35 A. According to Harrison, ' all
the bond strengths should go as 1/h, so the ratio of Si-
As to Si-Si should be d =(2.35/2. 44)2=0.928. Similar-
ly, d' is determined to be 0.904. All matrix elements of
the scattering potential for the As surface layer may thus
be calculated.

The LDOS calculated for the As-passivated Si surface
layer at the I' point is shown in Fig. 4. For comparison
of the results, it is appropriate to relate the surface and
localized states to the nearest band edges. A surface state
(S1 ) occurs in the band gap at 0.76 eV below the conduc-
tion band. This checks with Becker et al. , who show a
state at about 0.6 eV below the conduction band. Two
other localized states appear in the valence band. As
shown in Fig. 4, the first state (S2) is located very close
to the valence-band edge and the second state (S3) is lo-
cated -0.3 eV below the bottom of the first valence
band. These correspond to the two states in the valence
band observed by Uhrberg et al. at -0.3 eV below the
valence-band edge and -0.1 eV below the bottom of the
first valence band. In our calculation we find another lo-
calized state (S4) at 3.06 eV above the bottom of the con-
duction band. It appears that the previous investigators
have not studied the conduction band of this system in

20-

0
I

-10
I

-5 0
Energy ( eY )

20—

N
V

15-
N

0
10—

fh

07
A

5
0

(Si il 1 1) surface~

( b ) 0.33 A relaxation

15-
5
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0
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I

-10
I I
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Energy ( eY )

p
I

-10
I

-5 0
Energy ( eY ) Cpm

C.

5

FICx. 3. (a) LDOS/eV-cell of Si(111) surface layer at I for
the unperturbed and unrelaxed ideal 1 X 1 surfaces
(5=0,d =1,d'=1). (b) LDOS/eV-cell of Si(111) surface layer
at I for the 0.33-A relaxed surface (5=0,d =1.08,d'=1. 145).
Note that a gap state appears at 0.98 eV above the valence-band
edge in both cases, and two localized states appear below the
valence-band edge in the latter case, in agreement with Appel-
baum and Hamann and Pandey and Phillips.

VBM

FIG. 4. LDOS/eV-cell of As-Si surface at P. There is one
state (S1) in the band gap and two resonance states (S2 and S3)
below the valence-band maximum (VBM). Another state (S4)
is shown above the conduction-band minimum (CBM). Also
note the modification of the bulk states from the pure silicon
cases shown in Fig. 3.
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FIG. 5. LDOS/eV-cell of Si(111j surface layer and subsur-
face layer at I for the 0.33-A relaxed surface near the band gap,
showing how the localized states decay into the bulk.

IV. DISCUSSION

In this paper we have extended the silicon empirical
tight-binding Hamiltonian of CC by incorporating two
extra 2nn terms. The band structure obtained by using

detail and thus do not report this state. All of the states
mentioned exhibit a p-like character except the state in
the gap (S1 ) which is predominantly s like at the surface.

Since our method allows us to calculate how the local-
ized states decay into the bulk, we have calculated the
strength and position of the gap state of the relaxed sil-
icon surface in the first interior layer, which is shown
along with the nearby bulk states in Fig. 5. As anticipat-
ed, the strength of the surface state is indeed significantly
lowered in the first interior layer. A similar calculation
of the gap state in the first and second interior layers for
the As-Si sample has been carried out. We find that the
strength of the gap state in the first three layers varies ap-
proximately as 1.0:2.0:0.5, which implies that the gap
state in the As-passivated sample first grows in strength
in the first silicon interior layer before decreasing in the
second and subsequent inner layers. The reason for the
enhancement of the gap state in the first silicon interior
layer can be understood on the basis of the larger contri-
bution of the p states in the subsurface silicon layer as
discussed by Seeker et al. This is consistent with our
findings that this state, which is predominantly s like at
the surface, becomes more p like in character in the inte-
rior layers.

this Hamiltonian has a much better agreement in the
conduction band with the EPM calculation of Chelikow-
sky and Cohen than that of CC. Then, using the
Green's-function method to this Hamiltonian, we have
calculated the LDOS of the bulk sample at the I point
[(111)direction] which showed the usual van Hove singu-
larities. Our method also allowed us to distinguish be-
tween the s and p contributions to the LDOS as shown in
Fig. 2. We next proceeded to calculate the LDOS at the
pure unreconstructed Si(111) surface layer of a semi-
infinite slab. We notice that the dangling bond at the sur-
face creates a state inside the band gap, the location of
which agrees well with that calculated by AH and PP.
Like AH and PP, we also observe two other localized
states at lower energies when the top layer of atoms is al-
lowed to have an inward relaxation of 0.33 A. We then
studied the more interesting case of the As-passivated
Si(111) surface of a semi-infinite sample which is experi-
mentally known to remain unreconstructed. Our calcula-
tion shows that arsenic produces an unoccupied surface
state in the band gap and two resonance states inside the
valence band. The locations of these states have a close
correspondence with those found in previous experimen-
tal studies. ' The two resonance states inside the
valence band were also verified by a pseudopotential cal-
culation. The state inside the gap and the resonance
state near the top of the valence band were calculated by
a self-energy method using a repeated slab geometry to
represent the surface. Our method reproduces all three
states, since to our knowledge it is the only calculation
which covers the valence band, the band gap, and the
lower conduction band. Furthermore, our calculation
predicts another localized state in the conduction band
which has so far remained unnoticed, since this region of
the conduction band has not been carefully studied either
theoretically or experimentally. Finally we would like to
point out that our ETB-GF method allows the study of a
truly semi-infinite sample (unlike most other theoretical
studies which usually deal only with finite slabs) and a
calculation of not only the positions of the localized
states but also their strengths and how they decay into
the bulk. This ETB-GF method can also be used to cal-
culate densities of the bulk states at each layer along with
the individual contributions of the various atomic orbit-
als, and how these bulk states are modified by the pres-
ence of the surface. To our knowledge, no other theoreti-
cal approach simultaneously addresses all three of these
features.
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