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Density of states for double-barrier quantum-well structures under the infiuence
of external fields and phase-breaking scattering
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The one-dimensional (1D) density of states (DOS) is calculated self-consistently for double-barrier
quantum-well structures in the presence of a perpendicular Inagnetic field. With the apphcation of a
magnetic field, there is a redistribution of the 1D DOS along energy and distance. Contrary to this, an

applied electric field results in redistribution mainly along the energy axis. The inclusion of the phase-

breaking scattering mechanism diminishes the first peak of the 1D DOS along the energy axis. The total
number of states is constant, irrespective of any external (electric or magnetic) fields or phase-breaking
scattering.

INTRODUCTION

With the advent of a variety of exotic devices using
quantum wells, the various aspects of the tunneling
through semiconductors have been studied extensively
over the past few years. In this context, the use of mag-
netic field proves to be a very powerful probe in the un-

derstanding of a host of different physical phenomena,
e.g. , the density of states (DOS), capacitance, conduc-
tance etc. The role of the DOS is fundamental' in un-
derstanding the transition probabilities, dielectric func-
tions, and absorption and luminescence characteristics in
semiconductors. The local DOS provides information
about resonant states and gives one a measure of the ex-
tent to which the dynamics of transport are dimension
dependent. Moreover, DOS is a much better charac-
teristic of resonant states than transmission coeScient,
and it can be applied to more general quantum struc-
tures. Several theoretical and experimental studies have
been reported on the DOS of a double barrier quantum
well (DBQW). Bahder et al. showed a smooth transi-
tion of DOS from the three-dimensional (3D) square root
of energy behavior to the 2D steplike behavior as the
height of the barrier is increased. In their formulation,
they assumed barriers as delta functions in space. Bruno
and Bahder analyzed 1D DOS with finite barrier width
in the absence of any bias voltage. They showed that 1D
DOS goes to E ' as the height of the barrier goes to
zero and to a series of 5 functions in the limit of infinite
barrier height. Pandey, Sahu, and George discussed the
effect of bias voltage on the global DOS of the quantum
we11. It was observed that the maxima of the DOS near
resonance gets shifted towards low energy as the bias is
applied. This is similar to the transmission coefficient
behavior, although the two need not be identical.

The fact that the oscillation of the capacitance as a
function of magnetic field is directly connected to the
DOS at the Fermi energy has stimulated the experimen-
tal determination of the DOS of the quantum structures.
Wiess reported the measurement of the DOS in the pres-
ence of a parallel magnetic field. However, to the best of
the author's knowledge, the topic of the perpendicular

magnetic-field-induced DOS has not been addressed yet.
The present paper presents the calculation of the DOS
which may be of great interest in interpreting capacitance
and absorbance measurement in quantum structure.

In this paper, the exact space charge distribution of
electrons is used self-consistently to calculate quasi-1D
DOS in a double-barrier quantum well in the presence of
a perpendicular magnetic field. In our model, the barrier
is not a delta function in space, rather it can be of any
width. ' The contribution of a perpendicular magnetic
field appears in the total Hamiltonian as an effective po-
tential and thus the solution of the Schrodinger equation
becomes enormously simplified. The formulation of the
1D DOS follows the scheme proposed by Khondker and
Alam. In the present paper, the main emphasis will be
on the effect of the perpendicular magnetic field on the
quasi-1D DOS in a DBQW. The e5'ect of phase-breaking
scattering is also studied within a first approximation.
The total number of states is almost invariant with
respect to any perturbation.

THEORY

In the context of DBQW, 1D DOS refers to the num-
ber of states available corresponding to a given transverse
momentum k~. 1D DOS of a DBQW is given as

N(x, E, )= — Im[G (x,x,E—„)j,2

where G "(x,x,E„) (Ref. 8) is the retarded Green's func-
tion. 6"(x,x,E„) is the solution of the following
Schrodinger equation:

E Ho+ —6"(x,x, ,E )=5(x —x, ) .
2~~(x,E„)

The Hamiltonian Ho=( —irt /2m*)(d /dx )+ Vb(x) is
the unperturbed part of the total Hamiltonian and ~& is
the phase-breaking time. Here, Vb(x) is the potential due
to the conduction-band discontinuity of the DBQW, fi is
the modified Planck's constant, and I* is the electronic
effective mass. A numerical calculation of the retarded
Green's function 6"(x,x, ,E ) is profoundly intricate.
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However, the calculation of DOS necessitates the compu-
tation of only the diagonal elements of the retarded
Green's function [Eq. (1)] and the off-diagonal elements
are unimportant as far as the calculation of 1D DOS is
concerned. The diagonal elements of the Green's func-
tion can be computed by using the logarithmic deriva-
tives, Z(x, E„)and is expressed as

—i4 A'

G (x,x,E„}=
Z+(x, E„) Z—(x,E„)

where E„ is the longitudinal energy and x is the position.
Thus, the 1D DOS is expressed as

N(x, E„)=Im ig/A'ir

Z+(x, E„) Z(x—, E„)
(4)

where

Z(x, xi,E„)=
5G (x,x„E„/5x

im ' G"(x,x „E„)

= —j Z +—[V ir(x) E,]— (6)

where V,a(x)= V(x)+ V (x) is the effective potential.
Here, V(x) accounts for the algebraic summation of the
potentials due to applied bias V, (x), space charge V (x),
and V&(x}, V (x)=(m'/2)ro, (x —xo) is the potential
induced due to the application of a magnetic field,
xo=fik„/qB, co, =qB/m is the cyclotron frequency,
and q is the elementary particle charge. A value of k
which maximizes the transmission coefficient of the struc-
ture is used in calculating xo. The global DOS N(E„) is
obtained by integrating Eq. (4) along the quantum well

L
N(E„)=f N(x, E„)dx, (7)

0

where L„ is the length of the quantum well.
The solution of Poisson's equation requires the space

charge distribution n (x) inside the quantum well and is
given as

n (x)=f dE„+n (x E„),
0

By using logarithmic derivative Z=(2'/jm')(it//g),
where f is the electron wave function and g' is the first
spatial derivative, the one-electron Schrodinger in the
effective-mass approximation can be written as

The updated potential profile is obtained by solving
Poisson's equation and is given by

$(x)=P(0)—+f dx' f n(x")dx"
0 0

and V„(x)= —qP(x). Equations (6)—(11)are solved until
a consistent current is obtained.

RESULTS AND DISCUSSIONS

Results for a symmetric DBQW are presented in this
section. The barriers and the quantum well are each 50
A wide. The barrier height is assumed to be 0.275 eV.
The effective mass of the electron is 0.067m0 and
0.096m0 in the quantum well and in the barrier, respec-
tively, and m0 is the electron rest mass. The Fermi level

EF is assumed to be 0.03 eV above the bottom of the con-
duction band of the emitter contact. The calculations are
performed for a temperature of 4.2 K.

Figure 1(a) shows the local 1D DOS N(x, E„) along
the quantum well as a function of E„ in the absence of
any magnetic field. As observed, N(x, E„) is a strong
function of both x and E„. N(x, E„)shows a maxima at
the center of the quantum well corresponding to the first
eigenenergy, whereas there is a dip at the same location
for the second eigenenergy. The observation is reminis-
cent of the fact that the first and second eigenfunction (or
local velocity at those energies) behave accordingly. At
intermediate energies, N(x, E„) depends upon the joint
contribution of the first and second eigenstates. With the
application of magnetic field, some new features are ob-
served in the 1D DOS plot as shown in Fig. 1(b).
N(x, E„) at the first resonant energy shows, unlike the
previous case, a variation with x. The departure of the
behavior of N(x, E„) along the x axis can be explained
both classically and quantum mechanically. Classically,
the number of periods along the x axis is given by the ra-
tio L„/L~, where Lii =2fik~/qB, kF is the Fermi wave
number, and L~ is the length of the quantum well. With
increasing magnetic field, Lii decreases and hence L /L~
increases to introduce more oscillation. This is indeed
the case as shown in the figure. At 20 T, L /Lii =2 and
this equals the number of periods of N(x, E„}along the
distance at the first eigenenergy. A similar conclusion
can be drawn by applying the time-independent perturba-
tion theory to the present problem. Provided the pertur-
bation H' is relatively small (which is the case for small
magnetic field) the perturbed first eigenfunction can be
written as

where

J*(E„)
n*(x,E„)=

qvg*(x, E )

and J(E„) is the total current density [J+(E„)
+J (E„)], + ( —) implies that the electron is moving
from the emitter (collector) to the collector (emitter} elec-
trode" and Ug is the electron group velocity and is related
to the real part of the logarithmic derivative as'

vg*(x, E„)=—,'Re[Z*(x,E„)] . (10)

/(=fog c,gI),
1=2

where go is the unperturbed ith eigenfunction and the
coefficient c; is c; = (tg~H'~$0) l(E, Ei). Therefore, in-
the presence of an applied magnetic field, the eigenstates
are a linear combination of all other states and is evident
in N(x, E„) plot. The full width at half inaximum
(FWHM) of N(x, E„)versus E„plot carries the signature
of the FWHM of the transmission coefficient plot as a
function of E„. The FWHM of N (x,E„),therefore, is re-
lated to the lifetime ~ of the carriers (FWHM —I/~}.
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The behavior of DOS in the crossed electric and mag-
netic field is studied next. The application of a bias volt-
age introduces a term —

q Cx into the unperturbed Ham-
iltonian Ho. Here, 8 is the electric field corresponding to
the bias voltage and x is the distance. Contrary to this,
the application of a perpendicular magnetic field modifies
the unperturbed Hamiltonian with a term
V (x) =q(m /2)co, (x —xo) . Thus, the presence of
these two mutually counteracting factors in the total
Hamiltonian try, if not completely, to cancel each other.
Figure 1(b) [Fig. 1(c)] shows N(x, E„)along the quantum
well as a function of E„ for 8 =20 T and V, =0 V (0.05
V). It is observed that Fig. 1(c) resembles Fig. 1(a) (8 =0
T) more closely than does Fig. 1(b). Thus, the application
of crossed electric and magnetic field mutually coun-
teracts each other.

The influence of the phase-breaking scattering (i.e., r&
is finite) is also studied in the context of the behavior of
the 1D DOS. Figure 1(d) shows N(x, E„)as a function of
both distance x and energy E„ for B=0 T and V, =0 V
for finite r&. As is apparent, the peak in Fig. 1(a) corre-
sponding to the first eigenenergy becomes drastically
smeared out in Fig. 1(d}. In order to appreciate this
feature more clearly, the behavior of N (x,E„)as a func-
tion of E„at the center of the well with ~& as a parameter
is plotted in Fig. 2. Thus although the peak of DOS at
the first eigenenergy gets smeared out in the presence of

the phase-breaking scattering, the peak at the second
eigenenergy remains essentially unaffected. The presence
of the phase-breaking scattering results in a redistribu-
tion of DOS by depleting the states from the first eigen-
states to the intermediate energies between the first and
second eigenstates. It is to be noted that ~& is, in general,
inversely proportional to N(x, E„). Thus, a self-
consistent solution for N(x, E„)demands a self-consistent
calculation for ~& and is obtained in the following
manner. Initially r& is assumed to be 1 ps. ' N(x, E„)are
calculated by using Eqs. (2)—(4}and r&'s were updated by
using the calculated N(x, E„}.The updated r&'s were
used in the next iteration to recalculate N(x, E„). The
process was repeated until the change in N(x, E„}be-
tween two successive iterations becomes very small. The
constant of proportionality C [r&=C/N(x, E„)]was cal-
culated by assuming ~&=1 ps at the first eigenenergy.
The value of ~& specified in the plot is that corresponding
to the peak DOS. As expected, the first peak is gradual-
ly washed out with decreasing ~&. The application of a
magnetic field in this case introduces an additional redis-
tribution of DOS of the structure by slightly weakening
the effect of the phase-breaking scattering.

In Fig. 3, the global 1D DOS is plotted as a function of
E with magnetic field as a parameter. Depending on the
magnetic field, the peaks of N(x, E„)at resonance vary.
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FIG. 1. The base-10 log of the local DOS 1V(x,E„) (per cubic meter per joule) is plotted along the quantum we11 as a function of
E . (a) corresponds to B =0T. (b) and (c) correspond to B =20 T. V, is assumed 0 for (a) and (b), and 0.05 V for (c). ~&= ~ is as-

sumed. (d) shows the behavior of N(x, E„)for self-consistently calculated ~&.
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FIG. 2. The base-10 log of local DOS N(x, E, ) (at the center

of the quantum well) is plotted as a function of E„with ~& as a
parameter. Curves a and b correspond to r&= ~ and 10 ' sec,
respectively, and B=O T. Broken curve shows the result for
B =20Tand ~&=10 ' sec.

FIG. 3. The base-10 log of global DOS (per square meter per
joule) is plotted as a function of E„with magnetic field as a pa-
rameter.

CONCLUSIONIn order to comprehend the implication of the figure, the
area under the curve is calculated using an effective 1D

~EF —E„~~~
DOS, N,z(E„)=N(E„)/(I+e " ). An integra-
tion of N,ti(E„) over E„ from 0 to ae will yield the total
number of states. The inclusion of the phase-breaking
scattering mechanism diminishes the number of states at
the first eigenenergies. Irrespective of the applied mag-
netic field or electric field or the presence of phase-
breaking scattering, the integration gives a value of
5X10' . This proves the fact that states can be neither
created nor annihilated by applying external perturba-
tion. This efFect may be observed experimentally by
probing the capacitance of the structure which carries
the signature of the DOS of the DBQW.7

The 1D DOS is calculated for a DBQW by calculating
the diagonal elements of retarded Green's function. The
application of magnetic field modifies the ID DOS as a
function of both energy and distance in the quantum well.
The application of crossed electric and magnetic field
counteracts the eiFects of each other, if not completely.
In the presence of magnetic field, the peak of the global
DOS shifts to higher energy and the FWHM in the
neighborhood of the eigenenergies gets modified. The to-
tal number of states, independent of the origin of pertur-
bation (electric, magnetic, or phase-breaking scattering),
remains constant.
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