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Magnetoconductance of a nanoscale antidot
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A 300-nm-diameter gate is used to introduce an antidot or artificial impurity into a quantum wire
defined in an Al„oa&,As/GaAs two-dimensional electron gas. At low magnetic fields, geometry-
induced quantum interference effects are observed, while at higher fields adiabatic edge-state transport is
established. In the transitional regime, conductance resonances due to magnetically bound impurity
states exhibit distinct characteristics including beating, sharp period changes, and spin splitting. An
asymmetry is observed between the resonances observed as a function of magnetic field and gate voltage.
The results are explained by a model based on an interedge-state coupling mechanism.
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In this paper, we employ a recent fabrication tech-
nique' to independently bias the 300-nm-diameter central
gate of the device in Fig. 1. Each of the five gates can be
separately addressed, allowing different geometries to be
defined in the two-dimensional electron gas (2DEG) at
the Al, Ga, „As/GaAs interface. In the experiments

presented, a set of two diagonally opposite gates, e.g. ,
gates two and four, are switched off by shorting them to
the 2DEG. Biasing gates one and three then define a
quantum wire and by tuning the central-gate bias ( Vs)
the geometry evolves into an antidot positioned between
two parallel constrictions. The potential inhomogeneity
under the central gate can also be viewed as a well-
defined artificial impurity (AI) introduced at a known lo-
cation. Motivated by the fundamental role played by im-
purities in the electronic transport through mesoscopic
semiconductor systems, we have studied the behavior of
the artificial impurity over a range of magnetic fields. At
low magnetic fields, the impurity shapes the classical
electron trajectories (Sec. II), while at higher fields, the
magnetoresistance is determined by edge states bound to
the impurity. The coupling process, which links the
transmitted and bound edge states, is studied as a func-
tion of both magnetic field (Secs. III—V) and central-gate
bias (Sec. VI). To check for the reproducibility of the
effects, the device was cooled using a dilution refrigerator
on four occasions and in each case measurements were
made after various amounts of illumination with a red
light-emitting diode (LED). After the wafer was il-
luminated to saturation, the electron density and electron
mobility of the bulk 2DEG were 3.5X10" cm and
1.5~10 cm /Vs, respectively.

II. LOW MAGNETIC-FIELD CHARACTERIZATION

FIG. 1. (a) A schematic representation of the gate pattern is
shown. To contact gate five, we adopt the two-level metalliza-
tion architecture shown in {b).

At low magnetic fields, the classical electron trajec-
tories form closed loops around the artificial impurity.
The cyclotron diameter is greater than that of the anti-
dot. For a given loop, the magnetic Aux threaded through
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the enclosed area A determines the quantum interference
of the partial waves associated with the trajectories. A
simple flux argument reveals a transmission that oscil-
lates with a characteristic period 68 given approximately
by the Aharonov-Bohm (AB) formula, hB =h/eA. Al-
though the impurity does not define a perfect ring, the
spread in A is sufficiently limited for the magnetoresis-
tance to be dominated by a single period over a small re-
gion of magnetic field. This is shown in Fig. 2 where
reproducible oscillations, superimposed on the classical
resistance background, emerge for biases at which the re-
gion under the central gate is depleted. The oscillations
persist up to 4 K, with a T ' amplitude dependence.

The diameter extracted from the AB formula is a mea-
sure of the average trajectory diameter around the impur-
ity. In a simple approximation, this is equal to (DI +
DO)/2. DI and DO are the inside and outside diameters
of the conducting region around the impurity. Calcula-
tions of A reveal an average trajectory diameter of 610
nm for the minimum biases required for depletion under
the gates. This is consistent with values for the average
width of the wire and diameter of the antidot (DO=900
nm —do and DI= 300 nm+d;), calculated from the litho-
graphic dimensions and lateral depletion distances do and

d,. of the gates. The device construction allows DO and
DI to be independently tuned. This is demonstrated in
the insets of Fig. 2. The average trajectory diameter, cal-
culated from 58 can be reduced, or increased, by tuning
the wire gates (upper inset) or central gate (lower inset),
respectively. At the minimum biases required for de-
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FICx. 2. The magnetoresistance taken at 50 mK, which shows
Aharonov-Bohm oscillations induced by the antidot. The insets
demonstrate how the diameter of the trajectory loops, deduced
from the oscillation period, can be altered by tuning various
gate voltages (see text for details).

pletion, approximate estimates for DI and DO are 400
and 800 nm and we might therefore anticipate controlled
variations in the conducting channel diameter of 400 nm.
However, experimentally we find there is an extra limita-
tion. The AB oscillations disappear when the conduc-
tance of either of the two constrictions, formed by the
artificial impurity and the wire wall, is reduced to slightly
above 2e /h. Since the gate action used to reduce the
conductance also decreases the electron density, we
speculate that this effect may be an artifact related to the
lower electron density in the constrictions increasing the
roughness of the potential profile in the constrictions.
This will reduce the electronic phase coherence. This
effect limits controlled variations in the average diameter
to between 540 and 680 nm.

Finally, we note that at these low fields, the measured
device conductance is very close to the classical addition
of the conductances of the two individual constrictions
(i.e., as measured with the second constriction pinched
off). 5 We have observed no evidence for mode locking of
the two constrictions. '

III. MAGNETORESISTANCE
THROUGH TWO PARALLEL CONSTRICTIONS:
THE ROLE OF INTEREDGE STATE COUPLING

At magnetic fields sufficient for edge-state transport, a
range of experiments have previously considered the case
of two constrictions arranged in series and in parallel. '

We have investigated the situation of two parallel poten-
tial barriers with the advantage that each of the barriers
can be individually tuned and even pinched off. The
magnetic-field range spanned the transition from nonadi-
abatic to adiabatic edge-state transport.

The two parallel constrictions L and R, formed be-
tween the impurity and the wire's walls, each feature a
potential barrier as described above. Figure 3(a) shows
measurements at 3.3 T, corresponding to two spin-
unresolved edge states occupied in the bulk 2DEG.
Sufficient bias is applied to deplete under the antidot gate.
The side gate is tuned to pinch off constriction R. Curve
(i) is then generated by sweeping the other side-gate bias.
The conductance plateau, at 2e /h, corresponds to one
spin-unresolved edge state fully transmitted through con-
striction L. In curve (ii), the same gate bias is swept but
with constriction R set to transmit one edge state. At
gate biases for which both constrictions have individual
conductances Gz and GL of 2e /h, the total conductance
is also accurately equal to 2e /h. For this device
configuration, there is also an edge state circulating
round the antidot. At higher negative voltages in curve
(ii), when constriction L is pinched off, the device con-
ductance Gz. remains equal to 2e /h. The origin of this
behavior lies in the adiabatic transport of edge states. In
this regime, the mode circulating the antidot does not
couple to the modes that are transmitted or rejected at
the barriers and hence does not affect their transmission
coefficients. On depleting constriction L, the current car-
rying mode, which had been transmitted through the L
constriction, switches to the R constriction, but since its



10 858 A. S. SACHRAJDA et al. 50

(a)
L R

2

P4

Q
O

0

(b)
0
U

L
2

L R

2

CVS
4

U

(U 3
U

Q 2

0
V

A C
, La —Qb

-1.5

vL (v)

-2.0

FIG. 3. The total conductance of the antidot taken as a func-

tion of the bias applied to gate L. At 3.3 T (corresponding to
two spin-unresolved edge states in the bulk), G& is set to
transmit zero (i) and one (ii) spin-unresolved edge state. At 2.2
T (corresponding to three spin-unresolved edge states in the

bulk), GR is set to transmit zero (iii) and one (iv) spin-unresolved

edge states. T =50 mK for all traces. The insets are schematics
of the edge states at various points on the curve [N.B. in (b) one

of the two edge states reflected at the antidot is omitted for clar-

ity].

transmission coeScient through the antidot region
remains at one, the device conductance remains at 2e /h.

As the magnetic Geld is lowered, there are two
scenarios for how this adiabatic picture might break-
down. For simplicity we maintain the case of the two
conductances Ga and GL set close to 2e /h. As the mag-
netic field is lowered, the number of fully transmitted
edge states therefore remains set at one, while the number
reflected at the two barriers increases. One possible
mechanism is shown in the inset to Fig. 4(c). Coupling
has been introduced between the reflected edge states (C
and D) and the state bound to the antidot (E). A fraction
of the current carried by the reflected state is transmitted
at the antidot and the net effect of the coupling is to in-
crease GT above 2e /h. This mechanism requires cou-
pling between edge states with different Landau-level in-
dices. In a high electron mobility sample, this coupling
should be induced by the geometry of the depletion po-
tential (rather than random defects). Thus, it is reason-
able to make the assumption (ignoring other effects such
as differences in the spatial separation of the modes along
the antidot edge) for the purpose of the model that the
coupling is strongest near the openings of the constric-
tions, points a, b, c, and d, where this potential has the
most structure, i.e., is most rough. ' Alternatively, cou-
pling might exist between edge states with identical
Landau-level indices —between the transmitted edge
states (A and B) and the bound state (E)—causing GT to
decrease below 2e /h. This is reminiscent of the mecha-
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FIG. 4. (a) and (b) The conductance of the antidot on two
cooldowns, each taken at 50 mK. X marks the period change.
(c) Results and schematic representation of the theoretical mod-
el involving interedge-state coupling. Curve (i) shows the mag-
netoconductance when the voltage on one of the wire gates is

adjusted to pinch off that side (see text).

IV. TRANSMISSION RESONANCES
IN THE MAGNETOCONDUCTANCE

In Figs. 4(a) and 4(b) the field is swept from 0 to 2 T for
two cooldowns. The gates were set such that, when mea-

nism proposed by Jain and Kivelson to explain
impurity-induced breakdown of the quantum Hall effect.
It has been discussed theoretically by Kirczenow' and
Biittiker. "

The primary mechanism for our device is revealed in
Fig. 3(b). Curve (iii) is a plot of the conductance through
the device with Gz =0. The accuracy of the plateau con-
ductance suggests no coupling at these fields and gate
voltages between the edge states at the two constriction
edges of constriction L. In curve (iv), GUt is set to 2e /h.
For biases of gate L suScient to pinch off constriction L,
the total conductance is again accurately equal to 2e /h.
This confirms that in constriction R there is also negligi-
ble coupling between the edge states at the two edges.
Yet for biases where both constrictions have individual
conductances of 2e /h, then GT )2e /H. This behavior
is only consistent with the forward-scattering mechanism
shown in the Fig. 4(c) inset, and is in contrast to Ref. 12.
It is interesting to note that the equivalent coupling be-
tween edge states with different Landau-level indices has
also been shown to be the dominant mechanism in certain
quantum-dot geometries,

' and present in others. '

where edge states are bound by the confining perimeter of
the dot rather than by an artificial impurity. We will re-
turn to this comparison with dots in Sec. V.
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sured independently, GL and Gz remained at 2e /h
throughout this field range. Even though the
confinement changes from purely electrostatic at zero
field to mainly magnetic at 2 T, the number of (spin-
unresolved) conduction modes in each constriction
remains one. GL and Gz, therefore, remain at 2e /h.
Curve (i) of Fig. 4(b) shows the magnetoconductance of
one constriction (with the other pinched off) to be 2e /h
throughout the range. A calculation for the electron den-

sity in the constrictions shows that this only requires the
constriction width to be less than 100 nm. By monitoring
Gz, we can observe how parallel constrictions behave as a
function of field. At zero field GI and Gz add classically
(in Fig. 4(a) and 4(b), Gr is close to 4e /h at zero field).
Between 0.3 and 3 T, we observe the transition to adia-
batic transport (with Gr =2e /h at higher fields). In this
transitional regime, when the forward-scattering mecha-
nism operates, magnetoconductance oscillations are ob-
served. Periodic oscillations have been observed in other
multiply connected nanostructures, but abrupt period
changes (described below) and the very clear beatlike
structures have not. ' These new characteristics have
been observed on four cooldowns' and are believed to be
intrinsic to the device. We now explain the features in
terms of resonant scattering of electrons between the
states C and D through the discrete energy levels of the
bound state E.

The experiments outlined in Sec. III show the predom-
inant coupling to be the forward-scattering mechanism
shown in the inset to Fig. 4(c). Furthermore, for both
possible coupling mechanisms, calculations of the con-
ductance using a generalization' of the scattering theory
described in Ref. 15 reveal that the features of the experi-
ment can only be explained by the forward-scattering
mechanism. In these calculations, the transmission TCD
between the edge states C and D was evaluated from the
interedge-state scattering probabilities T„TI„T„Td,
and the phase shifts accumulated by the electron wave
function in going round every possible closed orbit
around the antidot. These orbits are E and every other
closed orbit that can be constructed out of E, C, and D,
and the scattering events a, b, c, and d that link C and D
to E. The Landauer form of the two terminal conduc-
tance Gr =2e /h (1+TcD ) was then used for a compar-
ison with the magnetoconductance obtained in the exper-
iments. In Fig. 4(c), the theory closely matches the main
features of the experiment especially when allowance is
made for dampening effects, such as kT smearing and in-
elastic scattering, which were excluded from the calcula-
tions. ' The beating effect is a manifestation of the in-
terference between different orbits of the antidot. The
theoretical beat pattern's lower envelope can be matched
to that of Fig. 4(a) or 4(b) by increasing and decreasing
the coupling strength, respectively. The AB formula can
be used to extract a diameter from the oscillation period
in a similar way to that used at low fields. In this regime,
however, the period corresponds to the addition of a flux
quantum inside the area enclosed by the mode circulating
the antidot and the diameter (typically -480 nm) is,
therefore, smaller than that obtained in Sec. II.

Figures 4(a) and 4(b) exhibit abrupt increases (5 to

15%) in the period, hB, when B increases past certain
values. This is in contrast to the almost constant period
in the calculations of Fig. 4(c). The location of the in-
creases is marked by X's. In Figs. 4(a) and 4(b), the jumps
occur at nodes in the beat pattern. This was not always
the case. On different cooldowns and after difFerent LED
illuminations, they occurred at various places along the
beat pattern, including the antinode or between the an-
tinode and node. We conclude that the beats and period
changes are different phenomena. This is seen in Fig. 5
where oscillations are shown over small ranges where the
period change occurs. At fields below the transition, the
oscillations maxima align with the grid. In Fig. 5(a), after
a missing oscillation, the minima align with the grid and
the behavior initially appears to resemble the ~ phase
shift recently observed. ' However, further to the right
the minima cease to match the grid lines, confirming that
the period is changing and not just the phase. In Fig.
5(b), we show a second case where at fields slightly higher
and lower than the transition region, the oscillations are
in phase. This results in a few slightly larger amplitude
oscillations. Other experiments, see, for example, Fig.
5(c), showed that these two cases are not typical and that
the two periods may overlap over a narrow field range
with no simple phase relationship at the transition.

We now suggest a picture that explains this
phenomenon. Whereas there are several possibilities to
explain a decrease in period as the magnetic field is in-
creased, we have found no simple explanation for the ob-
served increase in period. Inadequate explanations in-
clude (i) a change in the enclosed area due to an inhomo-
geneous potential —this would always result in an in-
creased area and therefore decreased magnetic-field
period; (ii) a change in the enclosed area due to a
magnetic-field variation in the spatial location of the
edge-state wave functions (calculations show that due to
the finite size of the edge-state wave function, the period
changes are more gradual than those observed); (iii)
magnetic-field period changes associated with the beating
phenomena (these effects are included in the calculations
but are found to be inconsistent with the observed
period-change behavior); (iv) a variety of coupling

B(arbitrary units)

FIG. 5. Detailed plots of three different period changes
demonstrating that the period changes marked by X can occur
at different locations within the background beat pattern. T-50
mK.
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schemes between the edge state circulating around the
antidot and a second natural inhomogeneity were can-
sidered but none of the calculations was able to repro-
duce the data. However, it is found that a second inho-
mogeneity can explain the period change under the fol-
lowing circumstances. A local maximum in the potential
energy, labeled X in inset (a) of Fig. 6, induces a local
maximum in the energy of a particular Landau level (or
more precisely, in the spectrum of a magnetoelectrostatic
subband). As the magnetic field increases, eventually this
maximum rises above the Fermi energy, and the local
maximum at I supports a new edge state Y. The forma-
tion of Y has a dramatic effect on the values of B at
which edge state E comes into resonance and this
changes ~. However, this is not due to a change in A.
This is demonstrated in insets 6(d} and 6(e), where the
calculated electron eigenfunctions do not show a
significant position change. The calculations were per-
formed for the annulus geometry shown in 6(b), using the
model potential-energy function shown in 6(c). The cal-
culated change in period shown in 6(f) results from a non-
local effect arising from the conservation of particle num-
ber X =2(lz —lr+1„.—1„)in the annulus, where 1, is the
azimuthal quantum number of the state i. This depen-
dence of 1E on lr leads to a sudden change in bB as Y is
formed. For our experimental situation [Fig. 6(a)] Y
forms in a smaller region near E. The phase shift that E
acquires in the vicinity of X will be similarly affected by
local conservation of charge leading to an analogous
period change but of a smaller magnitude. More than
one potential maximum could be present in the vicinity of
the central gate and we postulate that two such maxima
give the observed changes in period observed in Fig. 4.
Further details of this model can be found elsewhere.

V. SPIN-RESOLVED EDGE STATES

At higher magnetic fields, it is possible to resolve reso-
nances originating from edge states with different spin.
For this regime it is instructive to compare quantum
dot' and antidot systems. For the dot geometry, the po-
tential barriers are located at the entrance and exit of the
dot. For both geometries, experiments are modeled by an
interedge-state coupling mechanism operating at the sites
at which the edge-state curvature is a maximum. ' ' For
the dot geometry, the transmission is decreased at reso-
nance while in contrast it is enhanced for the antidot
geometry. '

High magnetic-field experiments on quantum dots re-
veal the two series of resonances to be locked in exact an-
tiphase (resonances from one spin species occur exactly
half way between the neighboring resonances of the
second spin species). ' The first qualitative explanation
of this behavior included electron-electron interactions
within the backscattering process. ' In this picture the
addition spectrum is dominated by the electron interac-
tion rather than the single electron level spacing. Models
have since been developed in terms of an effective capaci-
tance between the bound and transmitted edge states. ' '

For the more open antidot geometry, similar effects
have now been observed in the sequence of experiments
shown in Fig. 7 and by others. ' At the low fields in Fig.
7(a), the oscillations have an almost constant period (as
described in Sec. IV). Splitting in the resonances occur at
the higher fields shown in the inset of Fig. 7(b). At still

higher fields, the spin-splitting increases until in Fig. 7(b)
we observe a region of uniform amplitude oscillations,
but with a period half that observed in Fig. 7(a). Exhibit-
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FIG. 6. Position of conductance peaks. Lines are a guide to
the eye. Breaks are period changes. (a) Schematic of artificial
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FICx. 7. Magnetic-field sweeps showing the halving of the os-

cillation period between {a) low magnetic-field regimes and (b)

high magnetic-field regimes. The inset to {b) is taken at an inter-

mediate field range period b just sufficient to achieve spin reso-

lution of the edge states. The inset to (a) shows the normalized

oscillation period vs the tilt angle (see text).
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ing similar behavior to quantum dots, the two series of
resonances (from the two spin species) are locked in exact
antiphase. The oscillations remain in this mode until the
higher fields of the adiabatic regime are reached, where
the interedge-state coupling mechanism responsible for
the resonances is effectively switched off and, according-
ly, conductance oscillations are no longer observed. The
magnetic-field range from when the spin splitting is first
observed to the adiabatic regime was narrow, typically
from approximately 2 to 3 T.

In an attempt to increase the spin splitting at fields
below the transition to the adiabatic regime, the magnetic
field was tilted. The locking was found to occur at all
tilts, and the period of the oscillations scaled simply with
the normal component of the tilt. An example is shown
in the inset of Fig. 7(a). The normalized period (the
period multiplied by cosa where 8 is the tilt angle) is plot-
ted for oscillations of the same spin species. This normal-
ized period is independent of tilt angle. The resonances
of the two spin species are, therefore, not determined by a
simple Zeeman term (which is related to the total com-
ponent of the magnetic field). Instead, the locking
phenomenon is thought to result from electron interac-
tion, in a similar way to the dynamics of quantum
dots, ' ' although it should be stressed that the
period of the individual spin species resonances is in
agreement with that deduced from the area enclosed by
the mode encircling the antidot.
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FIG. 8. Conductance oscillations generated by sweeping the
bias applied to the antidot gate. The inset shows a typical trace
taken at 1.3 T and 50 mK showing the resonance oscillations as-
sociated with the G =2e'/h plateau. The main plot shows the
reciprocal relationship between the period and the magnetic
fields at which the traces were taken. The circles and squares
are for data taken on two separate occasions.

VI. GATE-VOLTAGE-INDUCED RESONANCES

Resonances associated with the impurity-bound states
can also be detected as the size of the impurity is
changed. The device allows a clear demonstration of this
effect since Vg the bias applied to central gate can be ad-
justed independently of the outer gate biases. In the inset
of Fig. 8, V~ is swept as the two outer gate voltages and
field are kept constant. Resonances are evident around
the plateau. Consider the gate-voltage period b Vs in
more detail. In the absence of electron-electron interac-
tion effects, one would expect EVg to be determined by
hA =h/e8. For small changes, A varies as 2m.rb, r,
where r is the radius of the impurity. Assuming
b, r ~b, V, we obtain hV ~1/8. Figure 8 shows the
linear relationship for two typical cooldowns. At a field
of 2 T, 5V corresponds to Ar = 1.5 nm.

Regimes exist where oscillations occur as a function of
field but not as a function of V . This reproducible effect
is illustrated in Fig. 9. The mean conductance [Fig. 9(a)]
and oscillation amplitude [Fig. 9(b)] are plotted as a func-
tion of field. The field sweep (circles) corresponds to
Vg 0 55 V The data represented by triangles was
compiled from a range of V sweeps taken at constant
field between 1 and 3 T. The curves in Fig. 9(a) show a
close agreement in the beat pattern. Minor deviations are
attributed to a slight rearrangement of traps (induced by
the many V sweeps), which perturb the device potential
profile and hence the beat pattern. Deviations also result
from the presence of the oscillations on top of the beat
pattern, which contribute an uncertainty equal to their
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FIG. 9. A comparison of the conductance generated by
sweeping magnetic field (circles) and antidot gate voltage
(squares). The former is generated by sweeping magnetic field
for fixed Vg

= —0.5 V, while the latter is compiled from a range
of Vg sweeps taken at constant magnetic field between 1 and 3
T. (a) shows the background conductance to be similar while (b)
shows the behavior in oscillation period to be distinctly
different. T-50 mK for all traces.
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amplitude. Allowing for these small perturbations, the
beat patterns of the two curves are almost identical. In
contrast, Fig. 9(b) reveals the oscillations' amplitudes, ex-
tracted from the same set of field and V sweeps, to have
distinctly different behavior for the two traces. In the
field sweep, the oscillation amplitude increases on the
peaks (antinodes) of the beats, whereas this amplitude
modulation is small or nonexistent for the V sweeps. In
fact, oscillations are completely absent on the third beat
of data extracted from the V sweeps. Further experi-
ments will be required to develop a rigorous model, how-
ever, here we suggest an explanation that is in qualitative
agreement with the observations.

Broadening of the oscillations is determined by the
finite lifetime of the electrons in the bound state. This is
limited by both inelastic scattering events and an intrinsic
leakage of electrons at the coupling points a to d [see in-
set of Fig. 4(c)]. The latter effect increases the broaden-
ing of the oscillations at the antinodes of the peaks. When
V is swept, an additional broadening mechanism may
become operative. As V is swept, the electron distribu-
tion in the doped Al„Ga, ,As layer readjusts to achieve
equilibrium and a smooth electrostatic potential. The
time constant of this process is not known, although
several seconds is reasonable (for example, after illumina-
tion with a LED, 20 s is typical to reestablish a constant
resistance). A retrospective comparison of this time con-
stant with the gate sweep rate suggests the electrostatic
potential may be slightly out of equilibrium and, there-
fore, spatially rough in comparison with the field sweeps.
This roughness is increased in narrow regions because of
the reduced screening by the 2DEG (electron redistribu-
tion can reduce this effect, but only for time constants
longer than those discussed here). The roughness will,
therefore, be most apparent in the narrow regions be-
tween the wire edges and impurity. The roughness will

be minimal in the region between a and b (and between c
and d) and phase coherence across these regions will be
maintained. Interference between the pair of paths an
electron can take through each one of these regions is re-

sponsible for the formation of the envelope of the beat
pattern. ' Thus it is consistent that the beat-pattern en-

velope is almost undiminished in the V„sweeps (com-

pared with the field sweeps) while the Aharonov-Bohm
oscillations (which require phase coherence around the
entire orbit E, including the rougher regions between the
antidot and the wire walls) are strongly damped. This
damping is greatest at the antinodes of the beat pattern
where the lifetimes of an electron in the Aharonov-Bohm
resonant states are the shortest.

Figure 10 shows the smearing of the beats as the tem-
perature is raised. The data is taken for temperatures
above those required to observe the resonances associated
with the single electron energy levels of the bound state
((600 mK). Three major beats are apparent in the field
range. The beats at higher fields are more smeared by
raising the temperature than those at lower fields. Our
estimates (which involve some extrapolation) for the
smearing temperatures T' (i.e., the temperatures at
which the beats would not be apparent) are 14 K for beat
1 and 8 K for beat 3. This can be explained qualitatively

1

l

lK
BK
6K

2

FIG. 10. The temperature dependence of the beat pattern.

by a model by Kirczenow' in which the smearing tem-
perature T* is given by

kT*=( 5(1, —I2)/5e~

where I, and l2 are the azimuthal eigenvalues of the in-

nermost edge state and its nearest neighbor at the Fermi
energy, e is the energy, and g is a constant close to one.
The origin of the field dependence of the smearing tem-
perature is an increase and eventual divergence of
~5lz/5e~ as the second Landau level begins to depopulate
by increasing magnetic field. The model predicts a factor
of approximately 2 in the difference of T* between the
fields at which these beats occur. This is close to that ob-
served in Fig. 10. There is, however, a discrepancy in the
absolute value of the smearing temperature. Experimen-
tally the smearing occurs approximately a factor of 4
lower than predicted by Eq. (1). However, the calcula-
tions are sensitive to the exact potential and density
profile close to the antidot and the role of P, the phase
coherence length, has not yet been taken into account. '

VII. CONCLUSIONS

We have reported low-temperature investigations of a
device used to define an artificial impurity. A range of
distinct magnetic-field regimes have been considered. At
low magnetic fields, the impurity shapes the classical tra-
jectories. At higher fields, when edge states become
bound to the impurity, we have identified a transitional
regime between nonadiabatic and adiabatic edge-state
transport. This regime is characterized by the appear-
ance of resonances related to tunneling through the single
electron levels of the bound edge state. These magne-
toresistance resonances are accompanied by beat patterns
and sharp changes in period and are explained by a mod-
el invoking interedge-state coupling. Resonances have
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also been generated by changing gate bias. The difference
between these oscillations and those generated by sweep-
ing the magnetic 6eld have been explained in terxns of
lifetime broadening of the bound state. Further experi-
ments are planned to evolve more rigorous models for the
many features reported in this paper.
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