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The transport properties of a quantum channel with a periodically modulated conducting width are

investigated. A single constriction has a quantized conductance and its conduction plateaus have finite

rises. For a short channel with just a few periods of modulation, conductance is no longer quantized.

For a long channel with many periods of modulation, the quantized conductance characteristic of a sim-

ple quantum point contact is recovered, but the index of the quantization plateaus is no longer a mono-

tonically increasing function. Rather, the conductance steps up and down with energy. %'e calculate the

energy band structure of the corresponding infinite modulated channel. Comparison between the quan-

tized conductance and band structure shows a one-to-one correspondence between the plateau index and

the number of Bloch bands with positive group velocity at a given energy. The nonmonotonic conduc-

tance quantization for a long channel persists in the presence of an applied magnetic field, as does the

direct correspondence between the plateau index and the number of energy bands. In the high-field re-

gime this can be interpreted as selective resonant backscattering of edge states, and lends to nonmono-

tonic plateaus in the Hall resistance in the integer quantum Hall efFect.

I. INTRODUCTION

The first ballistic quantum point contact (QPC) devices
were fabricated using a split-gate geometry patterned on
top of a two-dimensional electron gas in high-mobility
GaAs/Al„Ga, „As semiconductor heterostructures by
Wharam et al. and van Wees et a/. ' A negative voltage
applied on the split gate depletes the electrons under-
neath the gate, creating a constriction for conduction be-
tween the two wide regions separated by the split gate.
Only the open region between the two parts of the split
gate allow the carriers to pass, forming a narrow con-
ducting channel. At low temperatures, the conductance
of such QPS's was found to decrease in a series of steps as
the negative gate voltage was tnade more negative.

The physical origin of this quantization is understood
to be (1) the creation of lateral one-dimensional subband
modes, analogous to waveguide modes, due to the
confinement by the constriction, and (2) the fact that each
mode carries the same amount of current. In the linear-
response regime, the conductance of the QPC can be de-

scribed by employing the two-terminal Landauer conduc-
tance formula

G =(2e /h) Tr(tt )=(2e /h)g~t,

where t is the transmission amplitude matrix of the struc-
ture. In the first model based on this formula, the t ma-
trix was simply taken to be the transmission amplitudes
of the narrow ballistic constriction, which has the proper-
ty ~t, , ~ =5;,. Therefore the conductance is found to be
G(E)=(2e /h)N, (E), where N, (E) is the number of
traveling modes (subbands) in the constriction at energy
E, a perfectly sharp integer step function. The experi-
mental results are in qualitative agreement with this ar-
gument, but not as sharp as implied.

As a result of the transverse modes produced by the la-
teral confinement, the conductance plateaus in a QPC in-
creases monotonically in steps as additional traveling
modes become available. If the ballistic channel is pat-
terned with further features, bends, constrictions, other
obstructions, or random potentials, conductance quanti-
zation is lost, and a complicated structure for G(E)
emerges due to the details of quantum interference and
backscattering in the channel.

However, if a ballistic channel has a periodically
modulated structure, we find that the quantization in the
conductance G(E) is recovered: what is "lost" is the
monotonic feature of G(E) as a function of energy, as is
the case in the conductance quantization of a QPC. '

Instead, the index of conduction plateaus is a nonmono-
tonic integer function that steps up and down as energy
increases.

In the presence of a perpendicular magnetic field, the
conductance quantization of a QPC persists, as does the
monotonic profile of its conduction plateaus. Similarly,
for a straight channel in the integer quantum Hall e8ect
(IQHE) regime, Hall resistance plateaus step up mono-
tonically in the well-known staircase fashion as magnetic
field increases. ' For a periodically modulated electron
channel, our investigation shows that the conductance
G (8}= (2e /h)N (8) as a function of an applied magnet-
ic field is also quantized, but the index of conduction pla-
teaus N (8}is a noninonotonic integer function.

Our basic results concerning the recovery of the quan-
tized conduction appeared in a recent paper. In this pa-
per we provide a fuller description of our calculation and
extend the results of considering (1) the conduction as a
function of applied magnetic field, (2) smooth variations
in the channel walls, and (3) the connection to the integer
quantum Hall effect.

The outline of this paper is as follows: Section II is a
brief account of the theoretical model and numerical
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method employed, Sec. III contains the calculated results
and related discussion, and Sec. IV summarizes our re-
sults. In Appendix A, we outline the scattering-matrix
cascading technique, which we utilize to obtain the
transmission matrix of a periodic structure consisting of
any number of unit cells. In Appendix B, we summarize
our extension of the quantum transmitting-boundary
method (QTBM), which we employ to solve the transport
problem of open boundary conditions both in the absence
and presence of a perpendicular magnetic field.

II. MODEL AND METHOD

The structure under investigation is shown schemati-
cally in Fig. 1. A channel of width W is periodically nar-
rowed to a width of w = W —h by an array of potential
barriers ("fingers") on the upper edge of the channel.
The period of the modulation is a, the number of narrow
regions (the number of periods) is N, and the length of
each narrow region in the longitudinal direction is d. We
present results for the particular case where W/a =2.0,
h/a =0.6, and d/a =0.4. A magnetic field of magni-
tude 8 is applied in the z direction, perpendicular to the
xy plane where the conducting channel is. The Landau
gauge is chosen for the vector potential so A = Byx. —
We adopt a single-band effective-mass model with an
effective mass m'/ma=0. 067, appropriate for GaAs.
Spin is accounted for through the twofold degeneracy in
the Landauer formula and is ignored otherwise
throughout the calculation. Hard-wall potentials are as-
sumed to define the channel modulation while the poten-
tial inside the channel is taken to be zero.

We solve the two-dimensional time-independent
Schrodinger equation

2m' m' » 2m'

To calculate the conductance of a channel of finite length
with N periods, we solve Eq. (2) to obtain the complex
energy-dependent transmission and reflection amplitudes
for each transverse mode, defined in the wide regions.
We solve directly for the wave function and transmission
amplitudes in one unit cell (marked by dashed lines in
Fig. l), then use a scattering-matrix cascading method"
to obtain transmission and reflection amplitudes for the
whole structure consisting of X unit cells. Transmission
and reflection into evanescent modes must be included in
the cascading process (see Appendix A for the details of
the scattering-matrix cascading). The conductance in the
linear response regime is then obtained using the two-
terminal version of the Landauer formula. '

The numerical solution of Eq. (2) for the unit cell with
open boundary conditions is accomplished using the
quantum transmitting-boundary method, ' a numerical
algorithm we have developed based on the finite-element
method for solving the two-dimensional Schrodinger
equation for current-carrying states. We employ a recent
extension of the method to include the effects of an ap-
plied magnetic field. ' A synopsis of the quantum
transmitting-boundary method in a magnetic field is pro-
vided in Appendix B. Transmission is computed at fixed
magnetic field on a very fine energy mesh. Transmission
as a function of magnetic field at fixed incident energy is
also computed. Real-space discretization requires meshes
of 50 X 100 elements at high values of magnetic field.

We compare the conductance for the finite system with
N periods of modulation with the energy band structure
of the corresponding infinite periodic system. For the
infinite system, we use the Bloch theorem and look for a
solution of the form %„k(x,y)=e'""u„k(x,y), where
u„„(x,y) is the periodic part of the Bloch wave function
and k is the wave vector. With this substitution, the re-
sulting Schrodinger equation as an eigenvalue problem
for E„(k)and u„„(x,y) can be written as

e

+ Vo(x,y) %(x,y) =ET(x,y) . (2)
l clay a

2m' m*
'2

+ k- lel&y + V u„k(xy)
2m

=E„(k)u„k(x,y) . (3)

We use the finite-element method to achieve numerical
discretization over the unit cell. A subspace iteration
technique is used to obtain the lowest several eigenener-
gies for several values of wave vector k spanning the first
Brillouin zone. Meshes of up to 5151 nodes were used to
achieve convergence at high values of magnetic field.

III. RESULTS AND DISCUSSIONS

X A. Conductance quantization at zero magnetic Seld

FIG. 1. The geometry of the periodically modulated quan-
tum channel.

Figure 2 shows the calculated conductance for finite
channels and the band structure for an infinite channel
when no magnetic field is applied (P=O). Energy is ex-
pressed in units of E&, the energy of the first transverse
mode (subband) in the wide regions defined as
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2m*

2

(4)

The horizontal axis is plotted as QE/E„ for simple
comparison between the rising location of the conduc-
tance for a short channel and the turn-on energies of the
successive modes (at QE/E, =1,2, 3, . . .), which are
defined in the wide regions. Figures 2(a), 2(b), 2(c), and
2(e) show the conductance of a channel with N = 1, 2, 16,
and 85 unit cells (constrictions), respectively. The energy
band structure for the infinite modulated channel is
shown for the first Brillouin zone in Fig. 2(f). Energy is
plotted on the horizontal axis so that the relationship to
the conductance results below is clear. Figure 2(d) shows
the individual transmission coefBcients for each incident
mode (T„Tz,. . . }, defined in the wide region, for the
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FIG. 2. The modulated channel in no applied magnetic field.
(a) Conductance for a short channel with 1 unit cell (N =1): a
QPC structure. (b} Conductance for a short channel with 2 unit
cells (N =2) ~ (c) Conductance for a channel with 16 unit cells
(N = 16). (d) Transmission coeScients of individual modes for a
long channel with 85 unit cells (N =85). (e) Conductance for
the long channel with N =85 unit cells. Gray-scale shadings in-
dicate the index of the quantization plateau. (f) The energy
band structure for the infinite periodic channel. Gray-scale
shadings indicate the number of individual energy bands with
positive group velocity in each energy region. The correspon-
dence of the shading schemes in (e) and (f) illustrates that the
conductance of the finite channel is related to the number of
positive-velocity bands in the band structure of the infinite
channel.

long channel with N =85 periods. The vertical scale is
for the transmission coeScient of the first, mode, T&. For
clarity, curves T2, T3, T4, and T5 are offset by 1.0, 2.0,
3.0, and 4.0, respectively.

For a single constriction (N =1) in the channel which
forms a QPC, the conductance, plotted in Fig. 2(a), shows
an overall quantization profile, which increases monoton-
ically with energy. The conductance plateaus start to rise
at the turn-on energies of the traveling modes in the wide
region, which is lower than the turn-on energies of the
traveling modes in the constriction by a factor of ( W/w)
(2.04 in our case). The rise is gradual, "inherent" to the
QPC conductance because of the mismatch between the
electron states in the wide region and narrow re-
gions. ' ' This is enhanced by the contribution from
the evanescent modes because the constriction is short in
our case where d /w =—,'. For two constrictions (N =2) in
the channel, the conductance, plotted in Fig. 2(b), is not
quantized and shows more structures. This is to be ex-
pected because of details of mode mixing due to the
abrupt narrowing of the channel and the resonant state
formed between the two constrictions. '

For a channel with %=16 constrictions, the conduc-
tance, plotted in Fig. 2(c), shows a clear profile of quanti-
zation. There is also an indication of the familiar mini-
band formation in a periodic structure. ' Although the
basic features of the quantization are already present for
channels with comparatively few periods, such as the one
just shown in Fig. 2(c), some narrow and fine plateaus re-
veal themselves only for a rather long channel, as shown
in Fig. 2(e) for a channel with N =85 periods. Figure 2(f)
shows that for no individual incident mode of the long
modulated channel (N =85 } is the transmission quan-
tized. However, the total conductance, which is the sum
of the modal transmissions as shown in Fig. 2(d), is strik-
ing in that it is essentially quantized in units of 2e2/h.
Unlike the usual quantization of QPC ballistic conduc-
tance, however, the conductance of the modulated long
channel does not increase monotonically but rather steps
up and down between quantized levels, sometimes going
to zero. %e write the ballistic conductance of the very
long channel as G(E)=(2e /h)N, (E), where N, (E) is
the integer index corresponding to the quantized conduc-
tance plateau for energy E, a nonmonotonic piecewise
constant function of energy.

The rapid oscillations seen in Figs. 2(c) and 2(e) origi-
nate from the coupling of the quasi-zero-dimensional
states in the cavities formed between narrow regions.
These are closely related to transmission poles in the
complex energy plane off the real axis. ' In the first
conduction plateau the number of oscillations is equal to
the number of cavity regions (N —1). These are well
resolved in our current energy mesh for N =16 in Fig.
2(c), but not so well resolved for N =85 in Fig. 2(e). At
higher energies, the oscillations are complicated by mode
mixing when more than one transverse subband in the
narrow regions exists. So the number of oscillations has
no simple direct correspondence to the number of quasi-
one-dimensional states (equivalently the number of cavity
regions). Note that for some plateaus the oscillations are
absent and the conductance for these plateaus converge
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to the exact quantized values more quickly while for
some other plateaus the oscillations persist. We suggest
that this has to do with the inherent incommensurability
in the corrugated structure, a full discussion of which will
be given elsewhere.

The conductance quantization in Fig. 2(e) can be un-

derstood by examining the band structure shown in Fig.
2(fl. For each value of the energy, define an integer
Nb+(E) to be the number of energy bands [distinct E„(k)
curves] with positive group velocity (slope),
v =BE(k)/Bk &0. From Fig. 2(e) we find that Nb+(E)
is also a nonmonotonic function; it is zero in energy gaps
and steps up and down as a function of energy. By com-
paring Figs. 2(e) and 2(fl we see that, in fact,
N, ( E)= N+i( E). The number of positive velocity bands

for the infinite system yields the quantization of the con-
ductance in the periodically modulated finite system.
The shaded regions of the figures illustrate this
correspondence with each value of N, (E)=Nb+(E)
represented by a different gray-scale value.

In a straight quantum waveguide, the conducting chan-
nels are the transverse subbands produced by a lateral
confinement potential. The number of these modes,
Nb (E), is a monotonic increasing function of energy.
The cancellation of the velocity and density of states
leads to an identical current being carried by each sub-
band. At higher energies, more of these ballistic channels
are opened for conduction, so conductance goes up in a
staircase fashion accordingly.

In the limit of many unit cells (N ~~ ) of periodically
modulated channel, Bloch states are the counterparts of
the transverse modes of the straight-through electron
waveguide and they serve as the ballistic channels for
transmission of electrons in the periodic structure. Like
a strict one-dimensional periodic potential, the cancella-
tion of velocity and density of states persists in the Bloch
bands of a quasi-one-dimensional periodic channel. But
in a strict one-dimensional (1D) periodic structure,
Nb+(E) only takes the values of 1 in a band or 0 in a gap.
In the periodically modulated quasi-2D channel, howev-
er, Nb (E) can take other integer values as well. This
behavior of Nb+(E) is a result of the interplay between the
longitudinal periodicity and the transverse confinement
potential. In the limit of infinite periodic structure,
Bragg reflections and mode mixing result in the appear-
ance of forbidden gaps and allowed energy regions with
differing numbers of energy bands. In finite but long
structure, the mode mixing and reflection result in non-
monotonic conductance quantization. In terms of trans-
verse modes produced solely by the lateral confinement,
transport is by no means adiabatic; however, transport
can be viewed as the adiabatic transmission of Bloch
states.

It is important to note that the transmission of indivi-
dual modes is not quantized, but the total transmission is.
The quantization occurs as the various modes are mixed
by the periodic scattering. The nonmonotonic conduc-
tance quantization for the modulated channel is therefore
a manifestation of the two-dimensional character of the
channel mixing and the quasi-one-dimensional character
of the current flow.

8. Conductance quantization in a magnetic Seld

In zero magnetic field, the electrostatic confinement
potential across the channel in the y direction gives rise
to the transverse modes (subbands). In high magnetic
fields, the subbands are the magnetic edge states, which
move in opposite directions along the opposite channel
walls. Following Buttiker s interpretation, we under-
stand that in the limit of high magnetic fields, all trans-
port would be through edge states and the suppression of
backscattering between edge states on opposite sides of
the channel would guarantee monotonically increasing
and quantized conductance. In the field range of inter-
mediate strength, however, both the electrostatic
confining potential and magnetic field are important, giv-
ing rise to magnetoelectric subbands. ' Mixing between
the subbands can still occur and backscattering of edge
states can still take place, producing rich structure in
electromagneto transport. We now study the modulated
channel in this field range. The magnetic field of magni-
tude B is described by a dimensionless parameter P,
defined as

where IH =&A/eB is the magnetic length. Energy is nat-
urally expressed in units of the first bulk Landau level

EL =fico, /2=%(eB/2m').
In Fig. 3 we show the conductance and band structure

calculated for the case of a magnetic field P=10. For a
single short constriction (N =1), the conductance, plot-
ted in Fig. 3(a), shows monotonically increasing steps
with finite rise. For a channel with N=3 periods, the
conductance, plotted in Fig. 3(b), shows some detailed
structures and the quantization is "lost" due to the mode
mixing in the channel. For a channel with N=16
periods, however, the conductance quantization evidently
emerges as shown in Fig. 3(c). For a long channel with
N =60 periods, the conductance, plotted in Fig. 3(e), is
more prominently quantized. The individual modal
transmission coeScients for N=60 are plotted in Fig.
3(d). As in zero magnetic field, none of them shows
quantization by themselves. It is only the total transmis-
sion coeScient (equivalently conductance), which is a
sum over all the modal transmission coeScients, that is
quantized. Again, this quantization is nonmonotonic and
related directly to the number of positive-velocity bands
in the band structure for the corresponding infinite sys-

tem, shown in Fig. 3(fl. So, if we write the conductance
of the very long channel as a function of energy at a fixed
magnetic field as G(E)~ii =(2e /h)N, (E)~ii, where

N, (E)~3 is the integer index of the conduction plateau,
we will have N, (E)~ii =Nb (E)~~, where Nb+(E) ~s is the
number of Bloch bands with positive group velocity in

the energy band structure.
For the results shown in Fig. 3, the corrugations are

only in the interior region between the contacts but the
1ong lead regions, which connect the corrugated region to
the contacts, are considered straight. A two-terminal
measurement configuration for such a channel is i11ustrat-
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ed in Fig. 4(a). Electrons are injected from the source
onto the transverse modes defined in the straight leads.
Upon entering the corrugated region, the incident waves
are scattered by the corrugations, resulting in a certain
amount of reflection. For a channel with N =60 periods
at a magnetic field of P=20, the calculated conductance
is plotted in Fig. 4(b). It shows the characteristic of the
nonmonotonic quantization steps.

In Fig. 4(c), we plot the modal transmission coefficients
for the individual incident edge states. Note in Fig. 4(b)
that the conductance is lowered by one unit for energies
just below 7EL, marked by the dashed line. Examination
of the individual transmission coefficients in Fig. 4(c)
shows that it is the erst edge state (with a slight admix-
ture of the third) that has been resonantly reflected. For
this energy range the second and third edge states are al-
most entirely transmitted but the first and outermost
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FIG. 4. (a) A modulated channel with straight leads connect-
ed to the source and drain. Incident electrons are in the sub-

bands defined in the straight lead regions. (b) Conductance for
such a channel with N =60 unit cells. (c) Transmission
coeScients of individual modes (edge states).
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edge states is reflected.
Figure 5 is a configuration of Hall resistance and two-

terminal resistance measurements. Under the assumption
of local equilibrium, the channel upper edge is at equipo-
tential with the current source Ef+5I4 and the channel
lower edge at equipotential with the current drain Ef.
The two-terminal resistance is R3, =V]3/I]3 5Jtl/I]3
and the Hall resistance is RH = V34/I]3=5@/I». Thus,
they are equal to each other in this case.

Suppose we consider a very long channel (I]I~Do)
with the periodic corrugation extending to the lead (con-
tact) regions as schetnatically shown in Fig. 6(a). Assume
the incident electrons are injected by the contacts in
Bloch states. Since Bloch states themselves are the re-
sults of the reflection due to the periodic corrugations,
there will be no further internal or mode mixing for such
incident electrons and hence no backscattering. This is
similar to the phenomenon of the suppression of back-
scattering of edge states in the integer quantum Hall
effect regime. Measurement of the two-terminal conduc-
tance for such a channel yields equivalently the inverse of
the Hall resistance. In Fig. 6(b) we plot the energy band

FIG. 3. The modulated channel in an applied magnetic field
of P=10. (a) Conductance for a short channel with 1 unit cell
(N = 1): a QPC structure. (b) Conductance for a short channel
with 2 unit cells (N =3). (c) Conductance for a channel with 16
unit cells (N =16). (d) Transmission coefficients of individual
modes (edge states) for a long channel with 60 unit cells
(N=60). (e) Conductance for the long channel with N=60
unit cells. Gray-scale shadings indicate the index of the quanti-
zation plateau. (f) The energy band structure for the infinite
periodic channel. Gray-scale shadings indicate the number of
individual energy bands with positive group velocity in each en-
ergy region. The correspondence of the shading schemes in (e)
and (f) illustrates that the conductance of the finite channel is
related to the number of positive-velocity bands in the band
structure of the infinite channel.

I2:

FIG. 5. A measurement configuration of two-terminal and
Hall resistance. Under the conditions of local equilibrium, the
channel upper edge is in equipotential with the current source
and the lower edge is in equipotential with the current drain.
The two-terminal resistance is equal to the Hall resistance.
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FIG. 6. (a) A very long modulated channel with modulations
extended to the leads. Electrons are injected from the source
onto the Bloch states. No backscattering occurs for such in-

cident electrons. The two-terminal conductance is equivalent to
the inverse of the Hall resistance. (b) The energy-band structure
for the infinite periodic channel at p=20. (c) The inverse of the
Hall resistance derived from the energy band structure.
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structure for an infinite channel at p=20. From the
correspondence between the conductance quantization
for a very long channel and the band structure for the
corresponding infinite periodic systems we observed and
discussed above, we can derive the Hall conductance for
such structure as RH

' = (2e Ih )N, = (2e Ih )Nl,+. This is

plotted in Fig. 6(c). Therefore, the simple, nonmonotonic
feature of the energy band structure yields the exact, non-
monotonic quantization of the Hall resistance. Here we
plot RH

' as a function of the Fermi energy, compatible
with the original IQHE experimental results of von Klitz-
ing, Dorda, and Pepper, where the Hall resistance was in-
vestigated as a function of gate voltage.

C. Conductance quantization as a function
of magnetic Seld

To complete our investigation of magnetotransport, we
present in Fig. 7 the calculated transmission and conduc-
tance results versus the applied magnetic field at a fixed

energy of E =30E, , where E, is the energy of the first
subband when no magnetic field is present as defined in
Sec. III A. There exist five traveling modes at zero mag-
netic field. The strength of the magnetic field is measured
by the parameter p, as defined in Eq. (5).

Figures 7(a), 7(b), and 7(c) plot the conductance of a
channel with %=4, 50, and 250 periods, respectively.
The short channel with N =4 modulations shows no
quantization; the long channel with X =50 modulations
shows strong signal of quantization; the Uery long channel
with %=250 modulations shows clear quantized steps.
As the conductance plateaus step up and down in the in-
creasing magnetic field, the quantization manifests its
nonmonotonic characteristic. Once again, the individual
transmissions of even the very long channel, plotted in
Fig. 7(d), have complicated features as a function of mag-
netic field.

In a simple ballistic QPC, the index of the conductance
plateau is a decreasing staircase function as an increasing

0 5 10 15 20 25 30

FIG. 7. The modulated channel in a varying magnetic field at
an energy of E =30E&. (a) Conductance for a short channel
with 4 unit cells (N=4). (b) Conductance for a long channel
with 50 unit cells (N=50). (c) Conductance for a very long
channel with 250 unit cells (N =250). (d) Transmission
coeScients of individual modes (edge states) for the long modu-
lated channel.

magnetic field depopulates successive magnetoelectrostat-
ic energy subbands below the Fermi energy. In a straight
waveguide, Hall conductance (or resistance) in the integer
quantum Hall effect regime has similar monotonic
behavior in a varying magnetic field. However, in the
periodically corrugated ballistic channel under discus-
sion, the conductance, written as G(B)=(2e /h)N, (B),
is quantized in a nonmonotonic fashion, with N, (B)being
the integer index of the conductance quantization plateau
at magnetic field B. In the case of varying magnetic field,
there exists no single energy-band diagram for the corre-
sponding infinite structure. An argument can be made in
terms of an instantaneous energy-band structure for each
field value. The conclusion of N, (E)=Nb+(E), drawn in

Sec. III A, then can be extended to N„(E,B)=Nb+(E, B).
Here Xb+ (E,B) is the number of positive-velocity Bloch
states for the corresponding infinite structure at a given
set of energy E and magnetic field B.

We have mentioned the resonance reflection of the first
edge state in Figs. 4(d) and 4(e) over a range of energy
just below 7EL at p=20. This is also observed in Fig.
7(d) over a range of magnetic field just below p=25 at
E =30E&. This selective reflection of edge states is simi-
lar to the experimental results of Muller et al. , where
they used an applied potential from a metal gate to reftect
individual edge states. The consequence of this reflection
was a deviation from the usual integer quantum Hall
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effect (IQHE) plateaus, a deviation understandable in the
edge-state picture of the IQHE. The reflection of selec-
tive edge states seen in our calculation for a modulated
channel suggests that a similar IQHE deviation, steps up
and down between Hall resistance plateaus, should be ob-
servable in these geometries.
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FIG. 8. The geometry of a periodically modulated quantum

channel with sinusoidal modulations.

D. A sinusoidally corrugated channel

To show that the recovery of the conductance quanti-
zation is not an artificial effect due to the abrupt, sharp
nature of the corrugations, we consider a quantum chan-
nel with a smoothly varying width. Figure 8 schematical-
ly shows this geometry. The upper wall of the channel is
periodically modulated by a sinusoidal corrugation. The
corrugation has a maximum width h extended into the
channel and a maximum extension d in the longitudinal
direction. The conducting width of the channel
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FIG. 9. The sinusoidally modulated channel in no applied
magnetic field. (a) Conductance for a short channel with 1 unit
cell (N = 1):a QPC structure. (b) Conductance for a short chan-
nel with 2 unit cells (N=2). (c) Conductance for a channel
with 16 unit cells (N = 16). (d) Transmission coeScients of indi-
vidual modes for a long channel with 88 unit cells (N =88). (e)
Conductance for the long channel with N =88 unit cells. Gray-
scale shadings indicate the index of the quantization plateau. {f)
The energy band structure for the infinite periodic channel.
Gray-scale shadings indicate the number of individual energy
bands with positive group velocity in each energy region. The
correspondence of the shading schemes in (e) and (f) illustrates
that the conductance of the finite channel is related to the num-
ber of positive-velocity bands in the band structure of the
infinite channel.

FIG. 10. The sinusoidally modulated channel in an applied
magnetic field of P=10. (a) Conductance for a short channel
with 1 unit cell (N =1): a QPC structure. (b) Conductance for
a short channel with 2 unit cells (N =3). (c) Conductance for a
channel with 16 unit cells (N = 16). (d) Transmission
coeScients of individual modes (edge states) for a long channel
with 42 unit cells (N =42). (e) Conductance for the long chan-
nel with 1V =42 unit cells. Gray-scale shadings indicate the in-
dex of the quantization plateau. {f) The energy band structure
for the infinite periodic channel. Gray-scale shadings indicate
the number of individual energy bands with positive group ve-
locity in each energy region. The correspondence of the shad-
ing schemes in (e) and (f) illustrates that the conductance of the
finite channel is related to the number of positive-velocity bands
in the band structure of the infinite channel.
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w (x)= W —h (cosmx /d) varies between W and W —h

continuously and its first derivative is also continuous.
The calculated conductance and band structure are plot-
ted for the case of W/a =2.0, h /a =0.7 and d/a =0.6
at zero magnetic field in Fig. 9 and at a magnetic field of
@=10in Fig. 10.

Similar examinations of the conductance (transmission}
for short channels and long channels are conducted as we
have discussed in previous sections for the abruptly cor-
rugated structure. The conductance quantization of a
single ballistic constriction (N =1) as shown in Figs. 9(a)
and 10(a) has a finite rise in plateaus. This quantization is
lost in a short channel with just a few modulations as
shown in Figs. 9(b) and 10(b) for N =3. For long struc-
tures with many periodic modulations, however, the con-
ductance quantization is recovered and is characteristi-
cally nonmonotonic, with and without magnetic fields as
shown in Figs. 9(e} and 10(e). Comparison with the ener-

gy band structure maintains the conclusion of
N, (E,B)=Nb+(E, B), where N, (E,B) is the index of the
conductance plateau for the long but finite periodic chan-
nel and Nb+(E, B) is the number of positive-velocity
Bloch states (energy bands) for the corresponding infinite
structure. %'e conclude that the nonmonotonic conduc-
tance quantization we have discussed so far is indeed due
to the periodic nature of the structure and not an artifact
of the abruptness of the corrugations.

IV. CONCLUSION

In conclusion, we have studied the ballistic transport
properties of periodically modulated channels. In a sin-

gle short constriction, the weil-known conductance
quantization of a QPC is present, but the plateaus rise
gradually due to the impedance mismatch and effects of
evanescent states. This quantization is destroyed for short
channels with a few periodic constrictions. For a long
modulated channel, however, our result show that ballis-
tic conductance is again quantized, but is a nonmonoton-
ic function of energy. The index of a quantized conduc-
tance plateau has a one-to-one correspondence to the
number of positive-velocity states in the energy band
structure for the corresponding infinite modulated chan-
nel. Like the one-dimensional subbands in a QPC, each
Bloch state in a periodic quasi-one-dimensional structure
carries the same amount of current; this gives the physi-
cal origin of the conductance quantization observed in
our calculations. Unlike the counterpart 1D subbands in

straight channels, the number of Bloch states in a period-
ic channel is not a monotonic function of energy; this ac-
counts for the nonmonotonic behavior of the conduc-
tance plateaus. This phenomenon persists in a varying
magnetic field. At high magnetic field, it can be interpret-
ed as a resonant reflection of particular edge states and
should produce anomalous IQHE behavior.

An experimental investigation of the conductance of a
modulated channel (16 periods) of the type shown in Fig.
1 has been performed, ' but their results are for the ener-

gy region below the second conductance plateau and so
probe only the purely one-dimensional aspect of this
problem. Our findings of the nonmonotonic conductance

quantization are the result of the quasi-two-
dimensionality of the subbands, regardless of their elec-
tric or magnetic origin, and the mode mixing due to the
scattering by the periodicity of the system. The experi-
ments in Ref. 19 do illustrate that it is possible to observe
the effects of coherence over many periods (and several
micrometer s).
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APPENDIX A: SCATTERING-1VIATRIX
CASCADING METHOD

The scattering matrix of a device describes the rela-
tionship between the outgoing current amplitudes and
the incoming current amplitudes at its two ends. For a
two-dimensional device in which transverse modes arise
due to a confining potential, the scattering matrix relates
the amplitudes of the wave function projected onto the
outgoing modes and the amplitudes of the wave function
projected onto the incoming modes. Shown in Fig. 11 is
a device consisting of two successive sections that are de-
scribed by scattering matrices s, and s2, respectively,

=s
1

J J+
=S2 2J 2 J

r) t) J;„
t, r',

r2 t2 J+

(A 1)

(A2)

where {J„}and {J,'„,} are the amplitudes of the incorn-

ing and outgoing states at interface 1; {J;„}and {J,„,}
are the amplitudes of the incoming and outgoing states at
interface 2; {J+} and {J } are the amplitudes of the
right-going and left-going states at the internal interface
II of the two sections. The dimensions of the above-
defined {J } vectors and the complex reflection and
transmission matrices of s, and s2 are

{J„}:N „X1, {J,'„,}: N,'„,X 1, (A3)

r2 t2

N„„, Jout

1J: nuiout

f rt
$I (3 $2

~f r

FIG. 11. A schematic diagram for scattering-matrix cascad-
1flg.
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{J;„j:N;„Xl, {J,„,]: N,„,X1,
{J+]:N+Xl, {J I: N Xl,
r, : N,'„,XN„,t1..N XN„,
r1N+XN t 1NoII)XN

r2. N XN+, t2. Nout XN+

(A4}

(A6)

(A7)

(A8)

(A9)

r =ri+tirz(I+ rirz} t

t' =t i [rz(I+ r i—rz ) 'r
&t & + t 2 1

t = tz(I+ r irz—) 't»
r'=tz(I+ r', rz—) 'r', tz+rz .

(A21)

(A22)

(A23)

(A24)

amplitudes of the individual scattering matrices of the
two subsequent sections,

where N
„

is the number of incoming modes and N,'„,is
the number of outgoing modes at interface 1; N;„ is the
number of incoming states and N,„,is the number of out-
going states at interface 2; N+ is the number of right-
going modes and N is the number of left-going modes
at the internal interface II.

Matrix equations (Al) and (A2) can be written as

Jo ) r1J +t 1J
J+ =t1J„+r1J

=rz J++tzJ,', ,

J',„,=t2J++r2J,'„.

(Alo)

(Al 1)

(A12)

(A13)

By substituting Eq. (A12) into Eq. (A16), we get the fol-
lowing expression for J+ ..

J+ =(I+ r irz) 'ti J—„+(I+ r irz ) 'r itzJ—;» (A14)

where I+ is an identity matrix of dimension N+ XN+.
Then substitute Eq. (A14} into Eq. (A12); we get

J =rz(I+ r irz) 'ti J„—
+ [rz(I+ r irz ) 'r—&tz+ tz ]J;„. (A15)

With J and J+ replaced by Eqs. (A14) and (A15), Eqs.
(A10}and (A13) become

J,'„,=[r, +t', rz(I+ —r', rz) ' i]J
„

+ t i [r z (I+ r', rz ) 'r it —z + t z ]J;„,
J,„,= [tz(I+ r irz) 't—

i ]J
„

+[tz(I+ r irz) 'r—itz+rz]J;„.

(A16)

(A17)

Let the overall scattering matrix of the whole device be s.
Then the outgoing waves {J,'„,] and {J,„,] are related to
the incoming waves {J„]and {J;„]through the total
reflection and transmission matrices by the following ma-
trix equation:

For a periodic structure consisting of N unit cells, the
overall scattering matrix can be obtained from the
scattering matrix for one unit cell by iteratively doing the
above cascading process N —1 times,

SN SN —1$1 SN —2$1$ ' ' ' $1$1 ' '$1

(A25)

To obtain correct results, it is necessary to include the
evanescent states both in the outgoing and incoming
states.

APPENDIX B: THE QUANTUM
TRANSMI'l IING-BOUNDARY METHOD

N(r)={&,(r)] =I&i(r},gz(r), . . . , giit(r) (B1)

In this appendix we provide a summary of the quan-
tum transmitting-boundary method. Figure 12 illustrates
the geometry of a two-dimensional quantum structure. It
is partitioned into a "device" region Qo, and several lead
regions Q1,Q2, . . . , Q„.The leads extend to infinity and
in general are arbitrarily oriented. The boundary of the
region Qo is denoted I", the boundary between a lead re-
gion Q; and the device region Qo is denoted-I;. The rest
of the boundary I, which is not part of a lead boundary,
is denoted I 0. A steady magnetic field B is applied in the
perpendicular direction, that is B=Bz. The main pro-
cedures of the QTBM algorithm are described in the fol-
lowing steps.

(1) Discretize the device region Qo on a mesh,
r;=(x;,y;), i =1,2, . . . , M. The potential V(x,y) should
be known at least on these nodal points.

(2) Choose a set of finite-element shape functions

2J,„,
1J;„

=$ J;„
1

r t'

t r' J2
iII

(A18)

which can be written as

(A19)

(A20) r0

Compare Eqs. (A19) and (A20) with Eqs. (A16) and
(A17); we obtain the overall reflection and transmission
matrices cascaded from the reflection and transmission

FIG. 12. A schematic diagram for a general two-dimensional
device with multiple leads.
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which obey

P, (r, )=5,, (82)

Its first derivative matrix B(r ) of dimension (2XM) is

nates as

(2 2

G;(g;, g;)=B sina'cosa'+rl;g, sin a'

BN(r )

Bx

—71;R
' cosa'+ g, R ' sina' (812)

BN(r )

By

(6) Calculate the N „XN,'„,overlap matrix e' and the

X,'„,XE,'„,overlap matrix A' between the transverse
modes

ay, (r } ay, (r)
Bx Bx

~02("}

~y

ay (-. )

Bx

dpM(r )

By

(83)

e'=
I ()'...I

—= f„X'.0'. d k;

~'=
I A'.

. ., I
—= f, 0'.

,
0'.,d 4

(813)

(3) Construct the M XM matrices T, 0, and V, using

f2T—: BTr Br d~r,
"o 2m'

0—:f ~ BN() ~
d

~o 2m'

v—=f„(l IBy) +V,(, ) EN ( —)d",
2m

(84)

(85)

(86)

where y„'(g;) are the incoming modes and P' (g; ) are the
outgoing modes and they are both part of the solution of
Eq. (89). N,'„is the number of incoming modes and N,'„,
is the number of outgoing modes, both including travel-
ing and evanescent states.

(7) Calculate matrices M;'„(N';„XL'),M,'„,(N,'„,XL'),
and g,'„,(N',„,XL') using

k, , BG "" Ndrn ~~ e Xn
gi Ii =0

Bg, rl,
—

and the wave function in the lead region has the form
'k'

ql,'=e 'Y'(g;) .

(87)

(88)

Then solve the Schrodinger equation as an eigenvalue
problem of the wave vector k' for the transverse mode
Y'(g; ) at incident energy E:

2

+ +k' + V(g) Y'(g)

&Y'(g; ) . (89)

(5) Transfer the lead wave function Eq. (88) for the lo-
cally defined gauge Eq. (87) to the globally defined gauge

3 = —Byx, (810)

using

qg
—ieG/Ayi (811)

where 6 is the gauge transformation function defined by
3 —3'=VG. It can be expressed in the local coordi-

where Vo(x,y) is the potential energy in the device region
Qo.

(4} For each lead i, construct a local coordinate system
0; —rl;g; with rl; pointing down the direction parallel to
the lead walls and g; pointing across the transverse direc-
tion across the lead. The potential energy V, (g, ) in the
lead region can vary across the transverse coordinate g;
but is independent of the longitudinal coordinate g, by
the virtue of lead definition. Choose the Landau gauge in
the local coordinate system as

M,'„(n,l)= f
I

(814)

M,'„,(m, l )

(815)
—ieG /A

Q,'„,(m, l)= f (e ' p' )NidI;, (816)

where Go ——G'(g;, g;)~„=o, N'=(N'&, . . . , N&, . . . , N'I )

are the global shape functions on the boundary I, and L'
is the number of nodal points on the boundary.

(8) Calculate the boundary terms of matrix C; and vec-
tor P, from

(A' M' ) (Q' )*
2m*

(817)

I', —: (a'M,'„—a O'A' M,'„,}
2p7l

(818)

(T+O+V+C)u=P . (819)

Once u is solved, other physical quantities of interest, for

where a'=(a &, az, . . . , a'; ) are the amplitudes of the
in

incident wave function on the incoming modes. Then
embed C; and P,- for lead i into the M XM global matrix
C and the M X 1 array P, done in the assembly process in
the finite-element method.

(9) The discretized wave function then can be obtained
by solving the following linear system for the unknown
values u of the wave function at the nodal points
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example, current-density distribution can be obtained
too.

(10) For obtaining the complex reflection and transmis-
sion matrices, Eq. (B19) is solved for multiple columns of
right-hand side P, corresponding to injecting electrons at
one mode one time with full amplitude. The N,'„,XN

„

re6ection matrix r' in lead i and the N,'„,XN,'„transmis-
sion matrix t' 1 from lead i to lead j can be computed
from

r'= —(O'A' ) +(A' ) Q' U' (B20)

t' J=(AJ ) QJ,„,UJ, (B21)

where U'=(u'„u2', . . . , u'; ) and U~=(uJI, u~z, . . . , uj; )
in in

are the wave functions on the lead boundaries I,. and 1 .

when the incoming wave at lead i is fully in the mode
1,2, ,N „,respectively.
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