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Electronic properties of cubic and hexagonal SiC polytypes from ab initio calculations
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Ab initio total-energy studies are used to determine the lattice constants and the atomic positions
within the unit cells for 3C-, 6H-, 4H-, and 2H-SiC. The electronic structures are calculated for the
atomic geometries obtained theoretically within the density-functional theory (DFT) and the local-
density approximation (LDA). We state more precisely the ordering of the conduction-band minima
and derive effective masses. By adding quasiparticle corrections to the DFT-I DA band structures we

6nd indirect fundamental energy gaps in agreement with the experiment. A physical explanation of
the empirical Choyke-Hamilton-Patrick relation is given. Band discontinuities, bandwidths, crystal-
field splittings, and ionic gaps are discussed versus hexagonality.

I. INTRODUCTION

The physics of silicon carbide and the possibilities of its
use in devices have been subjects of considerable interest
because of its strong chemical bonding, physical stability,
and other attractive electrical, optical, and thermal prop-
erties. Many applications require a detailed knowledge of
the electronic structure of the material, which itself de-
pends on the atomic geometry. The latter one is rather
complicated since SiC crystallizes in more than hundred
difFerent modifications, i.e., polytypes. The band struc-
ture of SiC and, in particular, the indirect fundamental
gap vary remarkably with the polytype.

In numerous theoretical studies in the last twenty years
ab initio pseudopotential methods are extensively applied
to the ground-state properties of 3C-SiC, z s 2H-SiC, v ~o

and also 4H- or 6H-SiC. s ~~ However, results of ab ini-
tio density-functional-theory (DFT) calculations based
on the local-density approximation (LDA) for the elec-
tronic structure are only available for 3C (Refs. 12—14)
and 2H (Refs. 12 and 14) polytypes. Only in a very re-
cent work~s also 4H and 6H have been studied. However,
the DFT-LDA band gaps of semiconductors and insula-
tors have been consistently underestimated by 30—50%
compared with the experiment. ~s ~s Despite the discrep-
ancies between the calculated and measured band gaps,
the dispersion of single bands as well as the energetical
ordering of the conduction-band mmima come out nearly
correctly from the calculations. When many-body quasi-
particle (QP) effects~s ~s are taken into account addition-
ally, a reliable indirect energy gap may be predicted, at
least for cubic 3C-SiC ~v ~s o

The majority of the ab initio DFT-LDA calcula-
tions concerning SiC (Refs. 2—5 and 7—15) expand the
wave functions in terms of plane waves. The only
exception concerns the full-potential linear-muon-tin-
orbital (LMTO) method. s In the case of electronic-
structure LMTO calculations for SiC polytypes usually
the semiempirical atomic-sphere approximation (ASA) is

additionally introduced. In general, the gap prob-
lem. appears also within the LMTO-ASA description.
However, it is remarkably reduced by varying the num-
ber and the radii of the atomic spheres for the dif-
ferent polytypes. s~'2s Electronic band structure studies
for zinc-blende and wurtzite SiC before 1987 have ap-
plied empirical methods, e.g. , the empirical pseudopo-
tential method2s 2s or semiempirical linear combination
of atomic orbitals methods. 27 zs Recently, Backes et al.s

suggested an interesting interpretation of the trends in
the electronic structure versus the polytype by consider-
ing the polytypes as structures of mutually twisted Si-C
bilayers and by interface matching of the electronic wave
functions. More or less direct experimental studies of
the electronic structure of the SiC polytypes are rather
rare. Besides x-ray emission spectra3 ' only one band
structure mapping exists for 3C-SiC.

In the present paper, we present results of parameter-
free pseudopotential calculations. The lattice constants
a, c (for the hexagonal polytypes 2H, 4H, and 6H), or
the length ao of the characteristic cube (for zinc-blende
3C-SiC) are determined by means of total-energy min-
imizations. The atomic positions within the hexagonal
unit cells are also optimized. ~~ Then, the band struc-
tures are calculated for the theoretical equilibrium atomic
structures. Otherwise, polytypes under pressure would
be considered. s4 The infiuence of the atomic relaxations
within the unit cells on the electronic structure is dis-
cussed. We study the dispersion of the resulting bands in
more detail. The energetical ordering of the conduction-
band minima is studied versus the "percentage hexag-
onality" of the polytypes. We discuss reasons for the
indirectness of the energy gaps. With the physical expla-
nation of the linear relation between the electronic energy
gap and the percentage hexagonality up to 50'%%uo, i.e., the
Choyke-Hamilton-Patrick rule, a long-standing, but un-
resolved problem is attacked. I'urthermore, the resulting
effective masses are compared with experimental results
and their structural trends are derived.
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II. THEORETICAL INPUT

In our DFT-LDA theory, the electron-ion interaction
is treated by using norm-conserving, ab initio pseudopo-
tentials of the Bachelet-Hamann-Schluter (BHS) type
in the fully separable Kleinman-Bylander form. %ithin
the applied self-consistent method, the electron wave
functions are expanded in terms of plane waves. The
number of plane waves in this expansion is determined by
the energy cutoH'. In the beginning, the norm-conserving
pseudopotentials are generated for Si and C atoms ac-
cording to the data of Ref. 37, giving rise to poten-
tials similar to the BHS ones. Unfortunately, for this
choice of the carbon pseudopotentials the energy cutoff
should. be rather large, about 80 Ry or more, to reach
convergency in the ground-state and electronic proper-
ties, due to the lack of core p states. Therefore, we
use the degrees of &eedom that one has in generating
pseudopotentials ' ' to our advantage by carefully
choosing the core radii r, for carbon, outside of which
true and pseudowave functions are identical. ' Enlarg-
ing r, means softening of the pseudopotentials, i.e., a
smaller number of plane waves is required. In the BHS
type potentials, r, is determined by a parameter cc~, more
strictly by r, = r „/cc~, where r

„
is the position of

the outermost peak in the all-electron wave function and
l denotes the quantum number of the angular momen-
tum. We generate pseudopotentials for angular momen-
tum components t = 0, 1, and 2. The corresponding pa-
rameters for carbon are cc, = 1.7 and cc„=1.6. They
are somewhat smaller than the BHS values cc, = 1.8 and
cc„=3.0. The d potential, which plays the role of the
local part, has not been modified. For silicon we use the
pseudopotentials given in Ref. 37. In the case of 3C-SiC
it is clearly shown in Ref. 10 that the convergency of
the physical quantities is much more rapid with respect
to the energy cutoff if the modified carbon pseudopoten-
tials are applied. Therefore the energy cutoff may be
reduced to a reasonable value of about 34 Ry.

Performing the self-consistent DFT-LDA calculations
we apply the computer code fhi93cp of Stumpf and
Schemer. In a first step both the hexagonal lattice con-
stants a and c and the atomic geometries within the unit
cells of the hexagonal polytypes are relaxed until the
Hellmann-Feynman forces vanish and the total energy
reaches a minimum, using a steepest-descent method to-
gether with a Car-Parrinello-like approach for bringing
the wave functions to self-consistency. In the 3C-SiC

case the procedure reduces to the variation of only the
cubic lattice constant ao. The k integration is replaced
by a sum of special k points in the irreducible part of the
Brillouin zone (BZ). The special k points are generated
according to Chadi and Cohen using the special scheme
of Evarestov and Smirnov. 42 We apply six mesh points in
the hexagonal case. The many-body electron-electron in-

teraction within LDA is described by the Ceperley-Alder
scheme43 as parametrized by Perdew and Zunger. 44

The geometrical structures of the polytypes, at which
the band structures are calculated, are represented in
Table I. They are derived &om total-energy and force
minimizations. The lattice constants a and c result
&om finding the minimum of the total energy with re-
spect to a and c, whereas the atomic positions within the
hexagonal unit cells result &om the vanishing Hellmann-
Feynman forces. The atomic positions can be repre-
sented by triples in terms of the three primitive vec-
tors of the hexagonal Bravais lattice. ii 4s The coordi
nates in the planes perpendicular to the c axis are only
defined by the lattice constant a. The coordinates u,
v, and iU parallel to the c axis can be expressed by
the constant c. In the pH polytypes (p = 2, 4, 6) they
vary only in the first j = 1, ..., p/2 Si-C bilayers. For
the silicon and carbon atom in these bilayers it holds

u(Si) = 0 and u(C) = Is + ~(1) for 2H; u(Si) = 0,

u(C) = —is+a(l), v(Si) = 4+b(2), and v(C) = —,6+s(2)
for 4H; and u(Si) = 0, u(C) = s +s(1), v(Si) = s + b(2),
v(C) = —,"4+a(2), iv(Si) = —,'+b(3), and u)(C) = —,"+s(3)
for 6H. The other coordinates follow &om the space-
group symmetry Cs4 .

The (p —1) independent dimensionless cell-internal pa-
rameters are also listed in Table I. They indicate the de-
viations from the atomic positions in an ideal tetrahedral
structure with c/(pa) = g2/3. Without loss of general-

ity, b(l)—:0 is chosen. As typical for DFT-LDA cal-
culations without the inclusion of the zero-point atomic
displacements, the lattice constants in Table I are some-
what underestimated by about 1% in comparison to the
experimental values. 45 4s The internal geometry of the
hexagonal unit cells is however in reasonable agreement
with results of x-ray studies, in particular for 60
Despite the small deviations &om the experimental ge-
ometries we start from the atomic structures derived the-
oretically, because they are stress free

The used DFT-LDA well describes the ground-state
properties of the polytypes. However, it can hardly

TABLE I. Theoretical hexagonal lattice constants and cell-internal parameters of the considered
SiC structures. p denotes the number of the Si-C bilayers in the unit cell of the pC or pH polytype.

Polytype
3C

2H

a (A)
3.034

3.033

3.032

3.031

~/u (~)
2.477

2.480

2.482

2.480

Layer j

2

i

0.000 37
0.000 06

—0.000 09
0.000 48

—0.000 23
0.000 80

0.000 00
0.000 03

—0.000 12
0.000 00

—0.000 21
0.000 00
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be applied to derive electronic excitation energies &om
the resulting energy band structures. Energy gaps
and transition energies are remarkably underestimated.
These underestimations in comparison to experimen-
tal values can be removed by adding many-body QP
corrections. M ~0 We assume that in general they give rise
to a nearly rigid shift of the empty bands against the oc-
cupied valence bands. The rigid shift is identified with
the QP correction for the fundamental energy gap. A
simplified analysis of Bechstedt and Del Soleis is of the
QP self-energy within Hedin's GW approximationisso
gives a simple analytic expression for the correction 6qp
to the DFT-LDA band gaps,

EcIp = e qTp/e /(1+ 7.62qTpro),

where the high-&equency dielectric constant e and
the Thomas-Fermi wave number qTp characterize the
screening properties of the system. The radius
denotes the averaged decay constants of the valence-
electron wave functions of the anion and the cation. Us-
ing expression (1), reasonable gap corrections may be
estimated ' 9 at least for zinc-blende SiC. With the
cation and anion radii &om Ref. 18, the bond polariz-
ability as defined by Harrison, si the lattice constant (cf.
Table I), and the dielectric constantsi we find a value
b,qp=1.13 eV. The small variations &om polytype to
polytype are neglected in the following. The variations
of the electron density are negligible since the changes
of the Si-C pair volumes between the polytypes are ex-
tremely small. ii The splitting of the high-&equency di-
electric constants parallel and perpendicular to the c axis
in 6H amounts less than 3%%uq of the constant for 3C.4s

The resulting shift variations of about 0.03 eV with the
polytype are neglected in our estimation.

III. RESULTS AND DISCUSSION

A. Band structures

The resulting DFT-LDA band structures are repre-
sented in Fig. 1 versus high-symmetry lines A-L-M-F-A-
H-K-F within the BZ of the hexagonal system. For direct
comparison we present the cubic structure in a hexagonal
3H cell. The zero of the pseudopotentials is used as the
energy zero for all polytypes. The hexagonal BZ is shown
in Fig. 2. The overall features of the band structures
agree well with previous calculations. '2 The top
of the occupied valence-band states is situated at j. . Dif-
ferences concern the magnitude of the various band gaps,
where this effect is not only related to their underestima-
tion within DFT-LDA. Rather, there are variations in
the position of the conduction-band minima. Surely, the
minimum in the wurtzite structure 2H-SiC is located at
the K point in the center of the BZ edge parallel to the
c axis similarly to hexagonal diamond. The X point
in the fcc BZ represents the position of the minimum in
the zinc-blende 3C-SiC. Two of these X points are folded
onto M points of the hexagonal BZ of the corresponding
3H structure. The exact positions depend on the details
of the calculations, the ratio c/a of the hexagonal lat-
tice constants, as well as the atomic positions within the
hexagonal unit cells. For the relaxed structures we 6nd
the conduction-band minima at M for 4H and, respec-
tively, at about 0.63LM for 6H. This result is somewhat
surprising since the fcc X point should map onto 3LM
for 4Hand M for 6H. That means that the simplifying
folding argument is not exactly valid going &om one poly-
type to another one. The actual arrangement of atoms
and bonds in the unit cells gives rise to changes in the
band position and dispersion. The exact minimum posi-
tion is particularly sensitive to the details of the atomic
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FIG. 1. Band structures for 3C-, 6H-,
4H-, and 2H-SiC.
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kz B. Transition energies and band discontinuities

i
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FIG. 2. Brillouin zone of the hexagonal lattice.

structure since the lowest conduction band between I
and M is rather fiat. This fiatness increases with the
lowering of the LM distance in k space. Hence the 6H
case is the most critical one.

The general findings that all considered polytypes are
indirect semiconductors are not surprising, including that
the conduction-band minimum is located at X in the
zinc-blende structure or at M in the hexagonal BZ of
3H. Diamond and silicon show a similar behavior, there
the conduction-band minima are situated on the 1'X line
near X. Moreover, the upper valence band has the low-

est energy in X, so that the repulsive interaction between
the lowest conduction band and the highest valence band
should be small. In the wurtzite structure, the situation
is changed. First of all, the zinc-blende X is folded onto
sLM in the hexagonal BZ of 2H. This point has a lower

syznmetry and the bonding and antibonding combina-
tions of the C 2s orbital and a Si 3p orbital, of which
the state mainly consists, can interact with more closer
lying states. The minimum at K, that has a similar or-
bital character as the states at the zinc-blende W, gives
rise to the lowest empty band. On the other hand, go-
ing from 2H to 4H or 2H to 6H, H (L) maps onto K
(M) or onto sHK (sLM) (cf. Fig. 1). The energeti-
cal distance of the valence and conduction bands in K is
remarkably reduced. The resulting stronger interaction
pushes the conduction-band minimum away from the va-
lence bands. States on the LM line near M form the
lowest conduction-band minimum.

The behavior of the conduction-band extrema as well
as the highest valence band with the polytype can be seen
from Table II. For comparison in this table, the 3C band
structure is represented within a 3K BZ and the most
important high-symmetry points I", K, K, A, M, and I
in the hexagonal BZ are considered. In addition, the re-
sulting indirect energy gaps are also given. Some of these
energies show a clear trend with the hexagonality of the
polytypes. The monotonic behavior is only disturbed by
the K2, level in the 4H structure. The I'q, and K2, en-

ergy levels decrease with rising hexagonality, whereas the
Mq conduction-band minimum shows the reverse trend.
The increase of the I'q, level with decreasing hexagonality
is perhaps somewhat overestimated. We find a value for
the direct energy gap at I' in 3C-SiC that is larger than
the corresponding experimental value. 4 This is supris-

ing, since we expect a general underestimation of the
transition energies within DFT-LDA. However, such an
overestimation is also stated by other authors ' ' us-

ing a similar calculational method. In the zinc-blende
3C case one finds within the DFT-LDA larger transition
energies I'q5„-+ I'q, and I'q5„~ Iq, as observed ex-
perimentally. However, the most experimental transition
energies have been obtained from reQectivity measure-
ments. Therefore, the discrepancies can arise &om an in-

correct identification of the high-symmetry point in the
experimental analysis. In general, the conduction-band
minimum at I' is much higher in energy than the minima
at M and K. There seems to be practically no chance to
prepare a SiC polytype, showing a direct gap with a rea-
sonable oscillator strength, apart from a certain stronger
rearrangement of the Si and C atomic layers, leaving the
SiC material class.

The most interesting aspect of the band structures is
related to the magnitude and the location in the BZ of the
fundamental indirect energy gap E'"~ versus the poly-
type or the corresponding percentage hexagonality. The
relevant trends are represented in Fig. 3 for the gaps
I'q„-+Mq, (or, respectively, conduction-band states be-
tween L&~3, and Mq, ) and I'l3„-+Kq, . The transition
energies are compared with experimental data for the
indirect gaps. 4s They exhibit a linear increase from O%%uo

(3C-SiC) to 50/z (4H-SiC) and a nearly constant behav-

TABLE II. Density-functional theory —local-density approximation energies of the lowest con-

duction band and the highest valence band at high-symmetry points in the hexagonal BZ. The
zinc-blende structure is calculated within a 30 cell. The VBM is used as energy zero. In addition,
the indirect gaps are given.

Polytype
3C

r
5.99
0.00
5.49
0.00
5.40
0.00
5.07
0.00

K
3.78

—2.19
3.41

—2.06
3.88

—1.65
2.10

—3.93

5.08
—3.20
3.59

—2.27
3.15

—2.47
5.21

—1.69

A
5.74

—0.32
5.55

—0.08
5.60

—0.19
6.15

—0.68

M
1.27

—1.76
1.98

—1.08
2.18
-1.11
2.72

—1.17

2.66
—1.03
2.01

—1.29
2.59

—1.53
3.31

—2.31

Eind
g

1.27

1.96

2.18

2.10
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3C

5.0-
0

4.6

6H 4H 2H TABLE III. Valence-band parameters (width W, ionic gap
E' " at -I'K + I', crystal-field splitting 4„„,t) and band
discontinuities [AE„andb,E, with respect to 3C (but calcu-
lated in 3H)j for the SiC polytypes. All values in eV, apart
from A~,„,t, (in meV).

4.2

0$3.8
CL

3.4

Polytype
3C
6H
4H
2H

W
15.64
15.69
15.72
15.81

EloD (M)
1.32
1.33
1.33
1.32

+cryst
0

36
56
97

AE
0.00

—0.02
—0.05
—0.13

AE,
0.00
0.74
0.99
0.99

3.0

2.6

2.2
0 33 50

percentage hexagonality

100

FIG. 3. Relevant indirect band gapa I's„m Mi, (or be-
tween Lips, and Mi, ) and I's„~Ks, versus the percentage
hexagonality. Theoretical results are marked by full and open
circles. For comparison experimental results (Ref. 48) are
plotted as squares and connected by dashed lines, whereby in
the case of 2H and 4H the excitonic gap energies are taken.
The lowest theoretical gaps are connected by solid lines.

ior between 50%%up and 100'Pp (2H-SiC). This behavior is
represented by the empirical Choyke-Hamilton-Patrick
(CHP) rule. i For coinparison with the experiment the
DFT-LDA values are enlarged by the QP gap correction
b,cip = 1.13 eV according to expression (1). One obtains
two interesting results. First, the interplay of the two in-
direct transitions I' ~ M and I' -+ lt explains the CHP
rule. For not too large hexagonality the fundamental in-
direct gap is related to I' -+ M (or near M) transitions,
resulting in a linear behavior. In the case of the wurtzite
structure, the energy of the I' ~ X transitions is smaller
than that of the I' m M ones, giving rise to the seemingly
constant gap going from 4H to 2H. Second, the DFT-
LDA values for the lowest indirect gaps increased by help
give rise to values close to the experimental ones. The
agreement between theoretical and experimental indirect
gaps is reasonable. Small deviations may be traced back
to variations in the QP gap correction and the exciton
binding energy with the polytype. Thereby, the DFT-
LDA results are nearly independent on details of the cal-
culational method. Denteneerss finds similar DFT-LDA
gap energies for 2H-, 4H , and 3C-SiC.-

Three quantities which characterize the valence band
structure are given in Table III. They are the total width
of the valence bands W, the ionic gap E' within the va-
lence bands, and the splitting L,~,~ of the threefold de-
generated valence-band maximum (VBM) of zinc blende
into a twofold (p and p„)I's„VBMand a lower one-
fold (p, ) I'i„splitofF band of the hexagonal pH poly-
types by the hexagonal crystal field. The total valence-
band widths of cubic and hexagonal SiC polytypes are
similar. There is only a slight increase of W with the

percentage hexagonality. Both the absolute magnitude
and the variation with the polytype are comparable with
other DFT-LDA observations. is The averaged ionic gap
between the p lowest valence bands and the 3p higher
valence bands in pH (for zinc blende it holds p = 1 in
this case) is a measure of the ionicity of the chemical
bonds in the system. However, the considered indirect
ionic gap sl'X ~ I' exhibits no clear variation with the
hexagonality. That indicates the near constancy of the
ionic character of the bonds versus the polytypes.

When the hexagonal stacking nature is enhanced from
3C, 6H, 4H to 2H, the crystal-field splitting h„„,q of
the upper valence bands increases enormously. In the
hexagonal cases it is much larger than the experimental
spin-orbit splitting of 7—10 meV. s4 The values for h„„,t
listed in Table III measure the difFerences in the electron
densities of hexagonal and cubic Si-C bilayers in the dif-
ferent stacking sequences parallel to the hexagonal axis
([lllj or [0001)) apart from the efFect of the 60' rotat-
ing of the hexagonal layers against the cubic ones. They
therefore grow with rising hexagonality h.

An interesting problem concerns the preparation of
heterostructures on the base of chemically identical, but
structurally inequivalent semiconductors, more strictly
speaking of difFerent polytypes. The key parameters of
such structures are the band offsets at the interface. We
have calculated the discontinuities using the energy zero
of the atomic pseudopotentials as the reference level of
the alignment. An inHuence of QP efFects on the ofFsets
is neglected, assuming that the QP shifts for the VBM
and the conduction-band minimum (CBM) are nearly in-
dependent of the polytype. We have also checked the
alignment of the averaged electrostatic potentials. The
results are the same since the potentials vary only by a
few meV.

Results for the VBM at I' (b,E„)and the CBM at near
M, M, or K (b,E,) are also listed in Table III. They are
referred to the band edges of the zinc-blende SiC calcu-
lated within the 3H structure. The results seem to in-
dicate type-II heterostructures for the considered combi-
nations, i.e., electron wells are located in the zinc-blende
material whereas hole wells appear in the hexagonal lay-
ers. However, the valence-band discontinuities AE are
so small that in any case we expect rather Bat hole wells
considering the width of the fundamental gap. The band
discontinuities in Table III are confirmed by a recent
tight-binding estimationss that derived b,E„=—0.146
eV for a 3C/2H heterostructure. For a 3C/6H combina-
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tion our values agree well with predictions of AE = 0 eV
and AE~ = 0.66 eV by Monch in the framework of the
electronegativity concept. On the other hand, we observe
remarkable offsets for the conduction bands AE, . The
corresponding values increase with the hexagonality in a
similar manner as the indirect gaps. It seems to be note-
worthy to mention, that reasonable values for QE also
result for heterojunctions formed by two hexagonal poly-
types. For instance, it holds AE, = 0.3 eV for a 4H/6H
combination. That means, even at such interfaces a two-
dimensional electron gas can appear. The occurrence of
a type-II heterostructure in the 3C/pH case is related to
the indirectness of the studied semiconductors. Consid-
ering also the conduction-band minima in I' the electron
wells would also appear in the hexagonal material layers.
The character of such a heterostructure would, however,
be of type I.

C. Effective masses

TABLE IV. Effective masses of electrons in the conduc-
tion-band minima. For explanations see text. All values in
units of the free-electron mass mo.

fAE
I

mJ
fAJ Q

3H
0.42
0.30
0.24

6H
0.68
1.25
0.13

4H
0.62
0.39
0.13

28
0.44
0.26
0.43

In general, we expect that the DFT-I DA nearly gives
the principal curvature of the energy bands. This should
be also true near the extreme k of the band structure
within the BZ. Therefore we try to derive components of
the efFective-mass tensors m;~(k) from our calculations
using the second derivatives of the bands. Results for the
lowest conduction-band minima in K, M, or at the IM
line near M are given in Table IV. For electrons we give
the full inverse efFective-mass tensor along the principal
axis determined by the c axis of the structure and the po-
sition of the minimum in k space. We consider the longi-
tudinal masses m~~ parallel to the connection line between
the minimum position and I', more strictly speaking par-
allel Ml' (4H, 3H), KI' (2H), and (IM)I' (6H). The
two transverse masses m~i and m~2 are distinguished
according to the anisotropy of the system. m~i denotes
the transverse mass parallel to the c axis. In the calcula-
tion of m~i we use the direction ML. For the estimation
of the second transverse mass m~2 of the hexagonal poly-
types we replace the correct direction by the line MK in
an approximate manner. For comparison the zinc-blende
SiC polytype is also calculated within a hexagonal 3H
structure.

No clear trend with the hexagonality or the extent of
the unit cell can be derived from Table IV for the electron
masses. This is not astonishing since the conduction-
band minima appear at different k points in the BZ. Only
in the 3H and 4H cases one observes the minimum at the
same point M. A remarkable anisotropy of the electron
efFective-mass tensor is found for 68 and 48. In space
directions (nearly) parallel to MI' and LI' heavy elec-

trons appear whereas the mass for the electron motion in
the plane perpendicular to c axis but parallel to the edge
MK of the hexagonal BZ is small. This is a consequence
of the fiatness of the lowest conduction bands in the most
space directions. The electron-mass anisotropy in the 2H
and 3H (3C) polytypes at M (X) or K is much smaller.
The findings for the conduction-band masses have con-
sequences for the electron mobility, since this property is
proportional to the inverse mass. We expect that at least
for the mostly available 6H an-d 4H-SiC polytypes, the
current directions should be carefully selected. Other-
wise, too small electron mobilities result. It is notewor-
thy to mention that the conduction-band masses given
for 3H in Table IV cannot be indentified with the masses
for the real electron motion in 3C. The directions are not
equivalent, since Xr„is mapped onto Mi„„in a neigh-
boring BZ. For 3C we find for the Xl' and XU directions

m~~
= 0.67mp or mg = 0.25mp. In order to prove our

results, the inverse effective-mass tensor for zinc blende
is transformed into the hexagonal coordinate system. In-
deed, we derive the same diagonal elements as calculated
for 3H. However, this inverse effective-mass tensor is
not diagonal. The experimental values for zinc-blende
SiC, derived from cyclotron-resonance measurements, 59

are m~~
——0.67mo and m~ ——0.25mo. There is an excel-

lent agreement of experimental and theoretical values in
this case.

Unfortunately, only one transverse efFective mass
is commonly derived from the experiment, ~s more
strictly from a fit to IR spectra, for hexagonal struc-
tures. One observes m~~

——0.22 (0.34)mo and m~ ——0.18
(0.24)mo for 4H-(6H-)SiC. Data for 2H are not avail-
able. In contrast to the 3C case, a remarkable discrep-
ancy appears for 6H and 4H. The theoretical masses

m~~ (m~2) overestimate (underestimate) the values de-
rived from IR experiments. The third mass m~i can
hardly be identified with experimental data. A reason is
due to the description5~ 5s of the nitrogen donor within
the simplified efFective-mass approximation of Gerlach
and Pollmannsi where, moreover, only two independent
components of the effective-mass tensor are assumed.
On the other hand, there are also values from Faraday-
rotation measurements of 6H-SiC, m~~ = 1.5mo and
7A~ = 0.25riip. In the light of the calculated masses a
reinterpretation of the experimental findings in terms of
the complete effective-mass tensor should be necessary.

The small spin-orbit splitting in SiC (Ref. 54) has con-
sequences for the dispersion of the valence bands near I',
especially in the zinc-blende case. This can be clearly
seen from the calculated VBM in Fig. 1 where the spin-
orbit interaction is completely neglected. There should
be a tendency for nonparabolicity in the heavy-hole and
light-hole bands. Nevertheless, in Table V we represent
the dispersion of the I'6„heavy-hole and light-hole bands
as well as the I'z splitoK band by effective masses in irn-

portant space directions I'A, I'K, and j'M. We observe a
remarkable anisotropy and rather diferent curvatures of
the three bands near k = 0. The dispersion of the heavy-
hole band is rather weak In all . space directions the
eB'ective masses are larger than the free-electron mass.
Apart &om the I'A direction, the band masses remark-
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TABLE V. EfFective masses of holes in the three uppermost valence bands (in units of the
free-electron mass).

Band

heavy-hole
light-hole

splitofF

3H
r~ r~ rM r~
1.87 10.73 2.75 1.83
1.87 0.64 1.00 1.83
0.23 0.27 0.26 0.22

6H 4H
I Z rM rX rZ
2.26 6.11 1.73 2.41
1.03 0.87 1.73 0.77
0.56 0.44 0.21 0.51

2H
rM rx rz rM
4.23 1.64 2.26 2.75
0.45 1.64 0.46 0.40
0.74 0.21 0.79 1.00

ably decrease for the light-hole band and especially for
the splitoK band. In contrast to the holes in the heavy-
hole and light-hole bands an observable hole mobility can
be only expected for the splitofF valence band.

IV. SUMMARY

In conclusion, DFT-LDA band structures of the dif-
ferent SiC polytypes 3H(3C), 6H, 4H, and 2H have
been presented and discussed. The band structures result
from a calculation, using the atomic coordinates from the
same DFT-LDA theory as input. The ordering of the
conduction-band mimrna is stated more precisely. We
show that the minima are indeed at X (3C), M (4H,
3H), and K (2H), respectively. However, the minimum
in the 6H structure is slightly displaced from the M point

towards L. Adding quasiparticle corrections to the gaps,
we explain not only the physical reasons of the empir-
ical Choyke-Hamilton-Patrick rule, but also the correct
magnitude of the transition energies. Effective masses
of the electrons are calculated. Their trends versus the
polytypes and consequences for the electron mobility are
discussed. Valence-band parameters are also derived. A
comparably large crystal-field splitting and nonparabol-
icity are concluded in the case of the hexagonal polytypes.
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