PHYSICAL REVIEW B

VOLUME 50, NUMBER 15

15 OCTOBER 1994-1

Effective-medium tight-binding model for silicon

K. Stokbro
Center for Atomic-Scale Materials Physics and Physics Department,
Technical University of Denmark, DK 2800 Lyngby, Denmark

N. Chetty
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973

K. W. Jacobsen and J. K. Ngrskov
Center for Atomic-Scale Materials Physics and Physics Department,
Technical University of Denmark, DK 2800 Lyngby, Denmark
(Received 9 May 1994)

A method for calculating the total energy of Si systems, which is based on the effective-medium-
theory concept of a reference system, is presented. Instead of calculating the energy of an atom in
the system of interest, a reference system is introduced where the local surroundings are similar. The
energy of the reference system can be calculated self-consistently once and for all while the energy
difference to the reference system can be obtained approximately. We propose to calculate it using
the tight-binding linear-muffin-tin-orbital scheme with the atomic-sphere approximation (ASA) for
the potential, and by using the ASA with charge-conserving spheres we are able to treat open systems
without introducing empty spheres. All steps in the calculational method are ab initio in the sense
that all quantities entering are calculated from first principles without any fitting to experiment.
A complete and detailed description of the method is given together with test calculations of the
energies of phonons, elastic constants, different structures, surfaces, and surface reconstructions. We
compare the results to calculations using an empirical tight-binding scheme.

I. INTRODUCTION

Two parallel developments have changed our way of
understanding and predicting the energetics and dy-
namics of condensed-matter systems over the past few
years. One is the development of ab initio total-energy
methods! based on density-functional theory,? and the
local-density approximation.® It is now possible to cal-
culate total energies and equilibrium configurations of
systems with up to a few hundreds of atoms,* and in
other cases it has been possible to study the molecular
dynamics directly.!»>® During this time, there has been
a parallel development of approximate and semiempir-
ical total-energy methods,” '3 which has made it pos-
sible to treat the dynamics and thermal properties of
systems with many thousand atoms with a reasonable
accuracy.’®!® With such methods it is now possible to
treat problems in materials physics where extended de-
fects or long range disorder are crucial for the properties
that are under study.

The hope is to develop methods with the accuracy and
robustness of the ab initio methods which can handle the
larger systems on a reasonable time scale. One problem
with the ab initio methods is the fact that the computer
time scales as the cube of the number of atoms. De-
velopments of methods where the computer time scales
linearly with the size of the system have all focused on
localized basis sets.'®17 One important problem here is
to construct the Hamiltonian. A natural choice would
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be to use the linear-muffin-tin-orbital (LMTO) method
in the tight-binding formulation,'® but at the present
time these methods usually rely on semiempirical tight-
binding models constructed to fit a set of properties.

In the present paper, we introduce a very efficient
and accurate method for calculating total energies for Si
based on density-functional theory. The method is ap-
proximate, but computationally very efficient (two orders
of magnitude faster than conventional ab initio meth-
ods). A set of well defined approximations are made in
the total-energy expression where we rely on the varia-
tional nature of the generalized total-energy functional
to compute energies reliably. Since the approximations
are very systematic, we are able to test the validity of the
assumptions at each stage, and therefore in a controlled
way develop a hierarchy of models with various levels
of approximations. All input terms are calculated theo-
retically, i.e., no fitting to experiment. We have earlier
demonstrated the versatility of the first levels of approx-
imations in its application to metallic Al.1°

The method utilizes the effective-medium theory con-
cept of an effective medium or reference system. Instead
of calculating the total energy of a system of interact-
ing Si atoms directly, we associate with each atom in
the system a reference system where the energy of the
atom can be calculated easily and where the surround-
ings of the atom in question are sufficiently similar to
those of the system of interest that the energy difference
can be calculated approximately. Our main approxima-
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tions are to use a transferable input charge density?° and
a transferable effective potential.?! From these approxi-
mations the energy difference can be calculated with a
density-dependent pair potential and an LMTO tight-
binding Hamiltonian, with all the in-going parameters
determined from the transferable charge density and ef-
fective potential.

We have made extensive comparisons of the results of
this method with self-consistent calculations of elastic
properties, phonons, surfaces, different crystallographic
phases, surface reconstructions, and adatoms on surfaces.
In all cases the quality of the results is good, and we
show that in the cases where the empirical tight-binding
method is known to fail, the method works well.

The main result of the present paper is the scheme to
calculate total energies for Si systems, which is summa-
rized in the first part of Sec. IV. The basis of the method
is the Harris functional and the effective-medium theory
concept of a reference system. These aspects of the pa-
per are discussed in Sec. II and the first part of Sec. III.
In the second part of Sec. III we construct the LMTO
tight-binding model from which the one-electron energy
is calculated. The tests of the method are given in Sec.
IV, which also includes a discussion of the relation of the
present method to the empirical tight-binding method.

II. THE FIRST LEVEL OF APPROXIMATION:
THE OPTIMIZED DENSITY
AND HARRIS FUNCTIONAL

A. General remarks

The so-called Harris functional?? is a good starting
point for investigating the theoretical foundations of the
tight-binding method?®2* due to the non-self-consistent
nature of the functional and the fact that it only depends
on the input charge density. If the input density is good
enough,?® then this will give a considerable savings in
computer time since only a single iteration of the Kohn-
Sham equations is needed. In this work, we invoke these
properties of the Harris functional to develop a model
potential for Si.

B. Constructing atomiclike optimized densities

We have discussed previously??:2 the systematic de-

composition of a self-consistent total charge density into
atomiclike optimized densities

n(r) = Z Ang(r—R,). (1)
R,

Here, we wuse norm-conserving nonlocal pseudo-
potentials?”-2® within a plane-wave basis?® at an energy
cutoff of 12 Ry to compute the self-consistent charge den-
sities of bulk Si and the ideal (111) surface from which
we extract the reciprocal-space components of the opti-
mized density Angp(k) (see Appendix A). Reverting to
real space, the optimized density shown in Fig. 1 has
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FIG. 1. The free atom density (solid) and optimized den-
sity (dashed) for Si.

the well known features of a contraction in the outer
core region and a sharper attenuation of the tail with
some barely discernible Friedel oscillations.3° As noted
before,?° embedding an atom in a homogeneous electron
gas at typical metallic densities produces very similar fea-
tures, and this is of interest here because renormalizing
the atom in this manner is the basis of the effective-
medium theory of Jacobsen, Ngrskov, and Puska.!?

We have extracted reciprocal-space components of the
optimized density for the other two principal surface ori-
entations, viz. (100) and (110), and we find that to a
good approximation, the components fall on the same
universal curve. We will now make the assumption that
Angp(r) is indeed universal and transferable, and in the
next subsection we will test this ansatz by computing the
Harris functional for various different test situations and
comparing with the self-consistent results.

C. Results

In order to test the accuracy of the approximations
at each step in the potential construction, we will use a
data base of test systems. This data base covers silicon
in different crystallographic structures at the equilibrium
volume, phonons, elastic constants, and surfaces. For
the surfaces, we have used a supercell geometry with 12
atoms, and for all calculations we ensure an adequate
sampling3! of the Brillouin zone.

In Table I, we compare the Harris with the self-
consistent results. We also include the effective-medium
tight-binding (EMTB) results and those of the empirical
tight-binding model of Ref. 39, which we discuss in the
next section. We note that using the Harris functional
with our choice of input-charge density, constructed from
spherically-symmetric atomiclike densities (i.e., without
bond charges), there is excellent corroboration with the
self-consistent results. Other studies3?:33 using the free
atom density as an input into the Harris functional have
reproduced the bulk self-consistent results with a similar
degree of accuracy.
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TABLE I. The self-consistent (SC), the Harris functional (H), and the effective-medium
tight-binding (EMTB) results for the lattice constant ao, bulk modulus B, and cohesive energy
E. for Si in the diamond structure. The energy relative to the diamond phase of the 3 tin, simple
cubic, bee, and fec structure at the equilibrium lattice constant as obtained from the self-consistent
calculation. The phonon frequencies of the transverse acoustics phonon at the X point, the trans-
verse optical phonon at the X point, the longitudinal acoustic and optical phonon at the X point
LAO(X), and the longitudinal and transverse optical phonon at the I' point LTO(T'). The three
cubic elastic constants. The energies of the ideal principal surface orientations. In the last column
(EmpTB) we show the values obtained with the empirical tight-binding model of Ref. 39.

Quantity Units SC H EMTB EmpTB
(a) Diamond bulk
ao A 5.395 5.380 5.380 5.42
B Mbar 0.99 0.93 0.93 1.04
E. eV 5.85 5.83 5.83 4.70
(b) Structures
B tin (4.76 &) eV/atom 0.26 0.25 0.27 0.60
sc(2.51 A) eV/atom 0.41 0.41 0.43 0.73
bee(3.03 A) eV/atom 0.55 0.52 0.65 1.31
fec(3.79 A) eV /atom 0.56 0.54 0.77 1.32
(c) Phonons
vra(X) THz 4.3 4.2 4.0 5.0
vro(X) THz 14.1 13.3 19.0 16.6
vroa(X) THz 12.3 12.2 12.7 14.4
vrro(T) THz 15.7 15.6 19.6 18.5
(d) Elastic constants
Cu Mbar 1.70 1.65 1.43 1.46
Chz Mbar 0.72 0.62 0.90 0.78
Ccl, Mbar 1.10 1.10 1.64 1.23
(e) Surfaces
(100) eV/atom 2.19 2.10 2.43 1.65
(110) eV/atom 1.27 1.28 1.46 1.43
(111) eV /atom 1.45 1.43 1.47 1.43

Our first result is that the total energies of the ideal
surfaces of this semiconducting material are accurately
derived from a non-self-consistent calculation. It is in-
teresting to note that this is so despite the fact that the
exact position of the surface states are known to be sensi-
tive to the degree of self-consistency. The reason is simply
that the total energy is stationary in the density while
the position of the surface states are not. We therefore
emphasize that the derived potential should only be used
for predicting physical quantities which are stationary in
the density.

III. THE SECOND LEVEL
OF APPROXIMATION:
THE EFFECTIVE-MEDIUM
TIGHT-BINDING MODEL

A. General remarks

We will use the effective-medium construction as a ba-
sis for making further approximations. The effective-
medium idea is to first calculate the total energy for a
series of reference systems, and then for a given system
relate each atom to a reference system, and only calcu-
late the energy difference between the two systems. If the

reference system is chosen wisely, the energy difference
will be small, and can therefore be calculated approx-
imately. To find the appropriate reference system, we
will introduce the concept of a neutral sphere, defined
to be a sphere around an atom for which the electron
density exactly compensates the positive atomic charge.
As reference system we will use silicon in the diamond
structure with a lattice constant such that the neutral-
sphere radius is the same in the reference system as for
the atom in the original system.

In calculating this energy difference, we will utilize that
the Hohenberg-Kohn density functional can be general-
ized to a functional E[n,v] which depends on both the
density n and the potential v (Refs. 12 and 23) and which
is stationary with respect to independent variations of
each variable. The general functional can be written as

Efn,v] = Y ealt] - / n(r)v(r)dr + Eafn] + Exc[n),
()

where €,[v] denotes the eigenvalues generated by solv-
ing the Kohn-Sham equation with the potential v, and
where E.[n] and Ey.[n] is the electrostatic and exchange-
correlation energy, respectively. If the potential is re-
stricted to be a functional of the density, the Hohenberg-
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Kohn functional or the Harris functional appear as spe-
cial cases.1?

We have already used the stationary property of the
density by calculating the total energy using a super-
position of atom-based optimized densities. We will
show that from this approximation the electrostatic and
exchange-correlation energy can be transformed into a
density-dependent pair-potential sum by linearizing the
exchange-correlation functional.

In order to get a simple scheme for calculating the
kinetic energy we will use the atomic-sphere approxima-
tion (ASA). We thereby exploit the stationary property
of the the kinetic-energy functional with respect to vari-
ations in the potential by substituting the full potential
with the spherically-averaged potential within each neu-
tral sphere. Furthermore, we have recently shown?! that
the spherically-averaged potential of the reference system
is very similar to that of the real system, and since the
kinetic-energy functional is stationary in the potential it
is a good approximation to substitute the spherically-
averaged potential within each sphere with the potential
of the reference system. This last approximation trans-
forms the potential-energy contribution to the kinetic-
energy difference into a sum of density-dependent pair
potentials.

The remaining term is the one-electron energy which
we calculate using an LMTO tight-binding Hamiltonian.
Since the only potential appearing in the problem is now
that of the reference system, we can precalculate the po-
tential parameters and, by constructing an interpolation
formula for the structure constants, we obtain a simple
density-dependent two-center tight-binding Hamiltonian.

We have now given a brief description of the main
approximations used in the construction of the EMTB
model. In the following, we give a more detailed account
of the construction.

B. The diamond reference system
and the neutral-sphere radius

In the original effective-medium theory of Ref. 7, each
atom is viewed as embedded in the electron density from
the neighboring atoms and, when averaged, this density
provides an effective medium in the form of a homoge-
neous electron gas. The role of the homogeneous electron
gas is to provide a reference system in which the atoms
have similar chemical surroundings as in the original sys-
tem. In order to obtain the total energy, corrections due
to the nonsmoothness of the charge density have to be
included; however, these corrections are small and can
be calculated approximately. We will use the effective-
medium construction and calculate the total energy E
as

E = Z e (s;) + {E — z eref(s,»)] , (3)

where we use the neutral-sphere radius s; of each atom to
define the reference system and e**f(s) is the energy of the
reference system with neutral-sphere radius s. Note that
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since the electron density is constructed using Eq. (1),
the choice of identical neutral spheres in the two systems
is equivalent to the choice of identical embedding density
used in Ref. 7.

For silicon in the pseudopotential scheme the neutral
sphere contains four electrons, and from Eq. (1) we obtain
the equation

4 = ZF(dij,si) , (4)

where T is the electron-density contribution from atom j
to a sphere at site 7 of radius s;,

I(d,s) = /drAnop(|r —d|). (5)

We solve Eq. (4) iteratively for the neutral-sphere ra-
dius, using a cutoff distance of r. = 11.67a¢ to termi-
nate the sum (we thereby include five neighbor shells in
the equilibrium diamond lattice). For this lattice, the
nearest-neighbor distance is dg = 4.40ao and we obtain
a neutral-sphere radius of so = 2.72a0. In Fig. 2 we
show the neutral-sphere radius of the diamond struc-
ture as a function of the nearest-neighbor distance. For
comparison, we also show the Wigner-Seitz radius of the
diamond lattice and the 2!/3 smaller Wigner-Seitz ra-
dius of a diamond lattice embedded in a bec lattice with
empty spheres. We see that in the diamond structure
the neutral-sphere radius is substantially smaller than
the Wigner-Seitz radius. This difference is due to the
large regions in the diamond lattice which contain almost
no charge and therefore are not included in the neutral
sphere. In a more close-packed system like the fcc sys-
tem the neutral-sphere radius is more or less equal to the
Wigner-Seitz (WS) radius.

As a reference system we will use the diamond struc-
ture, and the energy correction therefore vanishes for a
diamond lattice or an isolated atom, since the latter can
be regarded as a diamond lattice with an infinite lattice
constant. So by construction the EMTB will give the
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FIG. 2. The neutral-sphere radius(solid) for silicon in the
diamond lattice as a function of the nearest-neighbor distance.
The dashed lines show the Wigner-Seitz radius of the diamond
lattice, and of an inscribed bcc lattice.
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correct cohesive energy, bulk modulus, and equilibrium
lattice constant for the diamond structure.

In order to calculate the energy difference to the refer-
ence system, we divide the total energy into two terms:
the kinetic energy (T') and the sum of the electrostatic
and exchange-correlation energy (G),

E = Ze’Ef(si) + [T - Zt’ef(si)}

1

+ [G - Zg"%si)], ©)

E = Zeref(si) + AT + AG.

So far we have just rearranged the terms in the total en-
ergy. The first approximation we make is to calculate the
kinetic energy in the ASA. The quality of this approxi-
mation depends on how well the full potential can be
approximated by a superposition of spherically-averaged
potentials within atomic spheres. Traditionally, the ASA
is made using space-filling spheres on the ground that
with this choice integrals over space may be mapped into
integrals over the spheres — the integration of a constant
function will therefore be correct in the ASA. However,
since the density enters all integrals, we will use neutral
spheres, making the spheres charge conserving instead of
volume conserving — the integration of a constant func-
tion times the density is correct. This choice seems more
physical since we thereby obtain that both the ASA den-
sity and the full density contains the correct number of
electrons. When the ASA is made with volume conserv-
ing spheres the ASA density is usually fixed to include the
correct number of electrons, however, the corresponding
full density, which is accessible in the LMTO method,8
will then not contain the correct number of electrons.
In Fig. 3 we show the full self-consistent potential of sil-

(0,0,1)

(1,1,0)

FIG. 3. The self-consistent potential of silicon in the dia-
mond lattice projected onto the (110) plane. The solid circle
show the radius of the neutral-sphere radius, while the dashed
circle show the Wigner-Seitz radius.
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icon in a (110) diamond plane, together with the neutral-
sphere radius (solid circle) and Wigner-Seitz radius (dot-
ted circle). It is clear from the figure that the overlap
region of the WS spheres penetrates far into the spheri-
cally symmetric parts of the potential, which would lead
to a poor approximation of the full potential. The over-
lap region of the neutral spheres, on the other hand, very
accurately sample only the asymmetric part of the po-
tential and since the potentials are superimposed the ap-
proximation is enhanced in this region. We will use the
ASA with neutral spheres, and because we thereby ob-
tain an accurate approximation for the full potential we
may avoid the traditional usage of empty spheres in ASA
calculations for open structures.

We have recently shown that with our choice of refer-
ence system the ASA potential of a general system is al-
most identical to the potential of the reference system,?!
so that we may at each site substitute the potential
within the atomic sphere with the reference potential.
Furthermore, due to the variational properties of the en-
ergy functional, this only leads to errors in the total en-
ergy of second order in the potential difference (v — v™f).
We then have for the kinetic-energy difference

AT =~ Z €alt™f] — Z €e1e1(si)

agocc

-y / T s)ln(e) ~ A (7)
= AEluel + AV,

where 7°*f is the spherically-averaged potential of the ref-
erence system, and ej(s) is the one-electron energy of
the reference system with neutral-sphere radius s.

Let us now summarize the total binding-energy expres-
sion in the form used in the effective-medium theory of
Ref. 12. The total binding energy is given by

E=E.+AE;s + AE;q
(8)
- Z e (s;) + [AG + AV] + AE1.,

where E., AE,,, and AE,,; are called the cohesive func-
tion, atomic-sphere correction, and one-electron correc-
tion, respectively.

The first term, the cohesive function, is the energy
of the reference system, which we parametrize using the
interpolation formula34

E.(s) = Eo(14+z)e™*, == A(s — so)- (9)

In this equation, Ey = —5.83, is the cohesive energy of
the equilibrium diamond lattice and the parameter, A =
2.047, is determined by the bulk modulus of the diamond
lattice.

The second term, the atomic-sphere correction, can be
viewed as a correction to an ASA calculation of the elec-
trostatic and exchange-correlation energy. To see this
we use the definition of the effective potential o™f =

i—’g;—, where g™f is the ASA electrostatic and exchange-

correlation energy of the reference system. We can now
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TABLE II. The effective-medium components of the Harris functional results of Table I. The
second column show the lattice constant of the structure and the displacement used for the frozen

phonon and elastic deformation calculations.

Ec ] AEas AElel
Quantity H } AGe AGyxe AV
B tin (4.76 R) 0.25 0.00 -1.39 -0.80 0.67 1.78
sc (2.51 A) 0.41 0.01 -0.99 -0.64 0.37 1.67
bee (3.03 &) 0.52 0.01 -1.94 -1.13 0.96 2.62
fec (3.79 A) 0.54 0.00 -1.75 -1.16 0.61 2.84
TA(X) (0.04) 0.025 0.002 -0.053 -0.022 0.035 0.062
TO(X) (0.02) 0.059 0.001 -0.062 0.023 0.14 -0.044
LOA(X) (0.02) 0.099 0.029 -0.050 0.007 0.096 0.017
LTO(T) (-0.01) 0.145 0.002 -0.133 0.031 0.277 -0.032
LTO(T) (0.01) 0.099 0.001 -0.068 0.025 0.150 -0.009
(o (0.06) 0.0361 0.0229 -0.0060 -0.0034 0.0051 0.0174
2(C11 — C12) (0.06) 0.0450 0.0005 -0.0257 -0.0117 0.0170 0.0650
Chs (0.08) 0.0241 0.0003 -0.0235 0.0050 0.0463 -0.0039
(100) 2.10 0.40 0.36 0.68 0.32 0.34
(110) 1.28 0.10 0.20 0.52 0.23 0.23
(111) 1.43 0.10 0.24 0.58 0.24 0.27

identify the —AV term of Eq. (8) as the first term in
a Taylor expansion of the difference in the ASA electro-
static and exchange-correlation energy between the sys-
tem and the reference systems (AG), and we therefore
have AE,, = AG — AG + O([n — n™f]?). We see that
the atomic-sphere correction is the first order correction
to a calculation where not only the kinetic energy, but
also the exchange and correlation energy have been cal-
culated within the ASA, i.e., the ASA has been used for
both the potential and the density. In the next section
we will show that the atomic-sphere correction can be
calculated by a density-dependent pair potential.

The third term, the one-electron correction, is the en-
ergy correction due to the difference in band structure
between the system and the reference system, and in
Sec. IIID we will calculate this term using an LMTO
tight-binding model.

In Table II we show the EMTB terms for the test sys-
tems of Table I. The cohesive energy and atomic-sphere
correction were extracted from a Harris functional calcu-
lation and the one-electron correction then obtained by
subtracting these terms from the total energy. With this
data base we may not only check the potential by calcu-
lating the total energy, but we may test the accuracy of
each term in the energy separately. For now we will just
note that the contribution from the cohesive function to
the energy of the equilibrium structures is very small,
indicating that it is the minimum of this function that
determines the equilibrium volumes. Since the cohesive
function depends only on the neutral-sphere radius, this
implies that all the equilibrium structures have almost
the same neutral-sphere radius, even though the equilib-
rium volumes are very different.

C. Calculating the atomic-sphere correction
with a density-dependent pair potential

We will now decompose the atomic-sphere correction
into density-dependent pairwise interactions. The inter-

actions depend on the local density through the neutral-
sphere radius s

Eas = Zv(dijasi)» (10)
.3

where the density-dependent pair potential is composed
of three parts

V(d,s) = V,(d, s) + Va(d) + Vic(d, 5), (11)

which originates from the AV term, the electrostatic en-
ergy, and the exchange-correlation energy, respectively.
From Egs. (1) and (8) we see that Eq. (10) is exact for the
AV term and the electrostatic energy, with the density-
dependent pair potentials given by

Vy(d,s) = / 7 (r, 5) Angy(|r — d|)dr,

-Z N / Angp(r')

%/(“ r —r/|

(12)

Vei(d)

r

x [Angp(Ir — dJ) - Z5(r - d])] dr

+/ <v1(r) - TZ) Angy(jr — d|)dr.  (13)
In the last equation Z is the ionic pseudocharge, and
the last term correct for the difference between the ionic
potential and the pseudopotential. Note that we only
include the local part of the pseudopotential v;, since the
nonlocal part is canceled between the electrostatic energy
and the potential part of the kinetic energy.
To calculate the exchange-correlation energy we use
the local-density functional of Ref. 35, and from the de-
composition of the density we have

dr')

Exe = Z / Angy(Ir — Ri|) Exc(n(r)) dr.  (14)

In order to approximate this term with a density-
dependent pair-potential sum we will have to divide the
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TABLE III. The table shows the value of the AGx. term
for the structures of Table II. The column denoted H is the
value of the term calculated using the Harris functional, the
column denoted EMTB is the result obtained using the ap-
proximations of the EMTB model, and in the third column a
parameter has been allowed in order to scale all the energies.

AGx.

Quantity H EMTB x1.28
B tin (4.76 &) -0.80 -0.62 -0.80
sc (2.51 &) -0.64 -0.48 -0.62
bee (3.03 &) -1.13 -0.90 -1.16
fcc (3.79 A) -1.16 -0.94 -1.21
TA(X) (0.04) -0.022 -0.015 -0.020
TO(X) (0.02) 0.023 0.016 0.020
LOA(X) (0.02) 0.007 0.001 0.002
LTO(T) (-0.01) 0.031 0.023 0.029
LTO(T) (0.01) 0.025 0.018 0.023
Cu (0.06) -0.0034  -0.0025  -0.00339
2(C11 — C12) (0.06) -0.0117  -0.0082  -0.0105
Ch (0.06) 0.0050  0.0030 0.0038
(100) 0.68 0.31 0.40
(110) 0.52 0.25 0.32
(111) 0.58 0.26 0.33

exchange-correlation functional into contributions from
each atom, which may be obtained by using a linear
expansion for the exchange-correlation functional. We
have chosen to linearize the exchange-correlation func-
tional around the spherically-averaged density of the ref-
erence system, fi(r, s), and thereby obtain the density-
dependent pair potential

Vacldr) = [ Areg(r) % (n(r, ) Aoy I — di)dr.

(15)

In Table III we compare the exchange-correlation part
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FIG. 4. The density-dependent pair potential, and its three
components, used for calculating the atomic-sphere correction
as function of distance, with the neutral-sphere radius fixed
at so. The inlet shows the logarithm of the density-dependent
pair potential.
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FIG. 5. The density-dependent pair potential as a function
of the neutral-sphere radius (s), with the distance fixed at do.

of the atomic-sphere correction calculated using this
density-dependent pair potential to an exact evaluation
of the exchange-correlation integral. We see that the cor-
rection generally is underestimated by 20%. This sug-
gests that a better approximation might be obtained
if the exchange-correlation functional is hnearized at a
lower density than the mean density, possibly because it
varies more rapidly in the low density regime. We have
not addressed this problem further, being satisfied with
the fact that when a factor is allowed for rescaling the
density-dependent pair potential we obtain a good de-
scription of the exchange-correlation energy, as shown in
the third column of Table III.

We conclude this section by showing in Fig. 4 the dis-
tance dependence of the density-dependent pair poten-
tials, and in Fig. 5 the dependence upon the neutral-
sphere radius. We see that the distance dependence of
the sum is nearly exponential even though the distance
dependence of the individual components is not. The
dependence upon the neutral-sphere radius is dominated
by the contribution from the exchange-correlation part,
which approximately scales as s?, originating from the
scaling of the mean density in the reference system.

D. Calculating the one-electron correction
with an LMTO tight-binding model

Returning to the expression for the total energy,
Eq. (8), we have already given expressions for the first
two terms and need only to calculate the one-electron
correction to obtain the total energy. This is the most
time consuming step in a total-energy calculation since
it involves the diagonalization of a Hamiltonian. The
key number in this context is the number of basis func-
tions (IN) because the computer time used in conven-
tional diagonalization schemes scales as O(N?). In the
Car-Parrinello method the scaling is O(NM?2) where M
is the system size. However, the prefactor is large such
that this method generally is two orders of magnitude
slower than tight-binding methods. A plane-wave basis
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set is in this respect not very efficient, since many plane-
waves are needed in order to get a good description of the
regions around the atomic positions where the electron
density varies rapidly. Instead, we will use a partial wave
method in which the basis functions are augmented with
the the local solution of the Schrédinger equation around
each atom, and therefore only a small basis set is needed.

However, the partial waves depend on the energy at
which the Schrodinger equation is solved, and the Hamil-
tonian thereby becomes energy dependent. This problem
is solved very elegantly in the linearized band structure
methods where an energy independent basis set is ob-
tained by linearizing the solutions of the Schrédinger
equation around a fixed energy €¢,. We will use the
LMTO method,'® and with these basis functions, called
LMTO'’s, the eigenvalues become correct to first order in
the difference with the energy €,, and a systematic ex-
pansion exists for the higher order corrections. For now
we will only consider the first order approximation, and
we may then neglect the overlap of the orbitals, since the
overlap enters as a higher order correction.

Since we use the ASA for calculating the kinetic energy
the first order LMTO Hamiltonian becomes especially
simple. It separates into potential parameters A%, C*
determined from the potentials in the atomic spheres,
and structure constants S* which only depend on the
positions of the atomic spheres!®

Hg i =CgbiLu + (A5)2Sg ;0 (A5)V?,  (16)

where we use the notation L = Ilm for the angular-
momentum quantum numbers, and we will use an sp®
basis set.

The index a in Eq. (16) denotes the representation we
use for the LMTO’s. The conventional LMTO’s are the
a = 0 representation in which the structure constants
have simple two-center forms

S?

_ 0
il' iL = 0, S{sw,spa,pw,ppr}
— {-2071,2v327%,1207%, ~627%),  (17)

where z is a relative distance measure given by

d[(s: + 5)/2]
do

In this equation d[s] is a function that returns the
nearest-neighbor distance in the diamond lattice with
neutral-sphere radius s, such that we have the same rel-
ative distance zo = do/so, for all diamond lattices. Note
that the LMTO Hamiltonian will not depend on the
choice of w as defined in Eq. (18), since the w depen-
dence of the structure constants is canceled by a similar
term in the potential parameters.

It is possible to shift to a representation where the
neighboring sites, through a screening “charge” «, are
used to localize the structure constants.!® The structure
constants now depend on the local structure through a
matrix equation (the LMTO Dysons equation)

. (18)

T =d;j/wij, wij = So

a — <0 0 a
SiL,jL’ — ~4L,jL' + E SiL,kL”al“SkL”,jL" (19)
kLll
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We use the screening constants a,, = {0.3072,0.0316}
which are related to the sp-screening parameters of
Ref. 18 through a scaling of (1.07)(2l + 1).

With this choice of screening constants we have cal-
culated the structure constants for all the test systems
of Table I using the LMTO Dysons equation, which in-
volves inverting a 200X 200 matrix. In Fig. 6 we show the
Slater-Koster components® of each structure matrix, as
a function of the relative distance measure(z) defined in
Eq. (18). It is surprising how well the structure constants
for such different surroundings as surfaces, phonons, and
different crystal structures, all fall on the same curves. In
Ref. 18 interpolation formulas for the structure constants
of close packed structures were found by using a relative
distance measure obtained by scaling the distances with
the Wigner-Seitz radius. The neutral-sphere provides a
natural measure, which makes it possible to extend this
idea to more open structures and surfaces.

With our choice of relative distance measure we may
now use the data base to construct interpolation formulas
and thereby obtain a simple and fast scheme for calculat-
ing the structure constants of a general system. For the
sso and ppm elements we only need to include nearest-
neighbor elements, while the spo and ppo elements are
longer range, and we therefore have to include second-
nearest-neighbor elements. For the interpolation we have
used the functional form

5%(z) = f(z) = f(zc) — (z — zc) f'(ze),
(20)
f(z) = A[L+ A(z — 1)]e =,

where the first equation ensure that the structure con-
stants go continuous differentiable to zero at the cut-
off z.. The relative distance measure, z, is defined in
Eq. (18) and A, X are parameters to be determined from

structure matrix

y clc'l‘ bc;:z R . - fc;:§2
scfec relative distance dia

FIG. 6. The crosses show the Slater-Koster components of
the structure constants for the structures in Table I as a func-
tion of the relative distance measure, z, defined in Eq. (18).
The structure constants were calculated using Eq. (19). The
tick marks on the horizontal axis indicate the relative dis-
tance in the diamond, simple cubic, fcc, and bce structure.
The solid lines show the value of the structure constant as
obtained from the interpolation formula of Eq. (20).
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the data base. We fix the parameter A from the nearest-
neighbor structure constant of the diamond lattice, and
determine ) by a least-squares fit to the nearest-neighbor
data points of Fig. 6. The resulting approximations are
shown as solid lines in Fig. 6, and the values of the pa-
rameters are given in Table IV.

The on-site elements of the screened structure matrixes
are nonzero. We have from Eq. (19)

OLiL = Z SPL ko Sppn i (21)

kL

where 0 is the on-site element calculated using the
approximate structure matrix S®. For the diamond
structu.re the on-site element is diagonal and we have

o p(diamond) = {1.71,1.46}, while it will contain off-
d1agonal components in a general system. However, the
use of the approximate off-site structure matrixes (S%)
in Eq. (21) gives a significant error for these components,
i.e., the off-diagonal components of o, are nonsymmet-
ric and generally too large. We will therefore use the
following approximation for the on-site structure matrix

iLiL' = Z[U?L,izx + 051 ip + 205 ;o (diamond)], (22)
which is a simple average of the symmetrized value of o™
between the system and the reference system.

We now return to the calculation of the potential pa-
rameters. These are given by the solutions at the lin-
earization energy ¢, of the radial Schrodinger equation
within each atomic sphere.3® Since we get the potential
from the reference system, we only have to calculate the
potential parameters for the reference system once and
for all, and then use the neutral-sphere radius to find
the potential parameters for a general system. In Figs. 7
and 8, we show the value of the potential parameters as a
function of the neutral-sphere radius of the reference sys-
tem. For each system we have chosen ¢, at the center of
gravity of the occupied bands. These data are accurately
approximated by the interpolation formulas

AZ(s) = A (s0)e
Ag(s) — A:(so)e—0.978(s—so) ,
Cp(8) — Ci(s) = 4.67+ [CZ(s0)
~C2(30) — 4.67)e™0T0(e=%) |

—1.130(8—80)
’

(23)

TABLE IV. The value of the parameters in Eq. (20). The
parameter z. determines the range of the Hamiltonian, which
for the sso and ppm element is nearest neighbor in the dia-
mond lattice, while it is second nearest neighbor for the spo
and ppo element. The S*(do/s0) is the structure constants of
the equilibrium diamond lattice as obtained from the LMTO
Dysons equation, while A is obtained from a least squares fit
to the data points of Fig. 6.

Quantity | sso spo ppo ppT
T 2.60 2.95 2.95 2.60
S%(do/s0) -0.938 1.690 3.279 -1.025
A 2.40 2.85 2.76 4.10
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FIG. 7. The dots show the calculated potential parameters
A for the diamond reference system; the solid line is the
approximation obtained with the interpolation formulas of
Eq. (24).

where AZ(s0), Ag(80), C*(80), and Cg'(so) (unit eV) are
the potentlal parameters in the ethﬁnum diamond lat-
tice listed in Table V, and s is the neutral sphere (unit
ao). In Figs. 7 and 8 the interpolation formulas for the
potential parameters are shown as solid lines.

We have now constructed the LMTO tight-binding
Hamiltonian directly from the data of the ab initio plane-
wave calculation. However, due to the small basis set
and the incomplete description of the interstitial region
the calculated band structure for the equilibrium dia-
mond structure does not agree completely with that of
the plane-wave calculation shown in Fig. 9 [self-consistent
(SC)]. We find the occupied band to be 15% too wide
and the band gap at the I' point to be too small. In
order to improve the Hamiltonian, we have made a least-
squares fit of the potential parameters to the three lowest
eigenstates at the I' point and the two lowest at the X
point. By this procedure we include the effect of the
neglected orbitals in an indirect fashion. The resulting
potential parameters are shown in the second row of Ta-

-15.0 r T T y

C* (eV)

05 3.0 D 40
neutral-sphere radius (a,)

FIG. 8. The dots show the potential parameters C*, and
the solid line is the approximation obtained with the interpo-
lation formulas of Eq. (24).
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TABLE V. The LMTO potential parameters for the equi-
librium diamond lattice. The values in the first row are ob-
tained by solving the radial Schrodinger equation within the
atomic sphere, the values in the second row are obtained by
a least squares fit to the band structure of silicon.

Quantity | Cp(s0) — C(s0) AT (s0) A (so)
Calculated 10.73 1.954 0.959
Fitted 8.26 1.954 0.738

ble V, and we see that A%(so) is unchanged while both
Ag(so) and Cg(so) — Cg(so) have been rescaled with a
factor 0.77. The corresponding band structure is shown
in Fig. 9 (EMTB), and we now have a good description
of the occupied parts of the bands, and the band gap at
the ' point.

We are now ready to calculate the one-electron correc-
tion (AEqe) of Eq. (8). Instead of calculating the band
energy we will calculate the bond energy,3” because we
thereby remove any first order dependencies on the on-
site elements

Elel = Z € — ZN,S, (24)

k€occ

In this equation NV; is the site projected occupation and
&; the site projected on-site element. The bond energy
depends only weakly on the shift in the average on-site
elements. For instance, for the three principal surfaces,
the largest shift in the average on-site element is at the
(100) surface, where it is 0.84 eV higher than in the bulk.
Such a shift lowers the bond energy 0.19 eV compared to
a calculation where the average on-site element is fixed at
the bulk value. We have chosen to fix the average on-site
element to be zero, £ = 0, since by this approximation
the second term in Eq. (24) vanishes, and this greatly
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FIG. 9. The figure show the band structure of silicon calcu-
lated with three different methods. Starting from the top the
calculations are self-consistent plane-wave calculation (SC),
the EMTB model, and the empirical tight-binding model
(EmpTB) of Ref. 39.

simplifies the calculation of forces. Due to this approx-
imation the total energy for the surfaces will be a little
too high with the EMTB model.

In Table VI we show the one-electron correction ob-
tained with this scheme compared to the value of the
plane-wave Harris functional calculation. The second col-
umn shows the the result when we use the calculated po-

TABLE VI. The table shows the value of AFE;.) terms for the structures of Table II. The column
denoted H is the value of the term calculated using the Harris functional, the column denoted
EMTB (calc) is the result obtained using the approximations of the EMTB model, and in the third
column [EMTB(fit)] the potential parameter has been obtained by fitting to the band structure.
The last column (EmpTB) shows the values obtained with the empirical tight-binding model of

Ref. 39.
AElel

Quantity H EMTB(calc) EMTB(fit) EmpTB
B tin (4.76 K) 1.78 1.82 1.76 0.38
sc (2.51 &) 1.67 1.70 1.62 0.81
bee (3.03 &) 2.62 2.60 2.76 0.29
fec (3.79 &) 2.84 2.89 3.10 0.44
TA(X) (0.04) 0.062 0.066 0.058 0.057
TO(X) (0.02) -0.044 0.034 0.033 0.049
LOA(X) (0.02) 0.017 0.027 0.020 0.062
LTO(T) (-0.01) -0.032 0.047 0.051 0.1081
LTO(T) (0.01) -0.009 0.061 0.056 0.1233
Cn (0.06) 0.0174 0.0184 0.0161 0.0137
2(C11 — C12) (0.06) 0.0650 0.0604 0.0525 0.0422
Chs (0.06) -0.0039 0.0091 0.0116 0.0168
(100) 0.34 0.89 0.94 1.15
(110) 0.23 0.57 0.58 | 1.23
(111) 0.27 0.53 0.55 | 1.23
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tential parameters (first row of Table V), while the third
column shows the result when we use the potential pa-
rameters obtained by fitting the band structure (second
row of Table V). For all test systems the accuracy of
both models is acceptable when compared with the value
of the total energy of Table II. We have chosen to use
potential parameters fitted to the band structure, since
we then at the same time get a good description of the
total energies and the band structure. In the next sec-
tion we will first sum up the ingredients of the EMTB,
and then compare it to empirical tight-binding schemes
by applying both models to various test systems.

IV. APPLICATIONS
A. The EMTB potential

An EMTB calculation starts with loading precalcu-
lated values for the functions I'(d,s),V(d,s) defined in
Egs. (5) and (11), and the atomic-sphere, €™*f(s), and
one-electron energy term, ei*(s), of the reference sys-
tem. Next we calculate the neutral-sphere radius of each
atom, s;, from Eq. (4). The total energy is given by

E = Z ec(8:) + Eas — Zeas(si) + Era1 — Z erel(s:)-

1. T

(25)

The cohesive function e.(s) is defined in Eq. (9), and
the atomic-sphere energy E,, defined in Eq. (10). The
one-electron energy is calculated from the Hamiltonian
3 (5:)0iL, 51
+(AF(3:)) 255 10 (2) (AE ()7, (26)

E _
iL,jL' —

where the off-site structure constants are given by the
interpolation formula in Eq. (20) with the parame-
ters of Table IV, and the relative distance measure
(z) defined in Eq. (18). The on-site elements are
given by Egs. (22,21,17), using the screening a,, =
{0.3072,0.0316}. The potential parameters are calcu-
lated from the interpolation formulas of Eq. (24) with
the constraint that the average on-site element at each
site is zero (&; = 0), and using the values in the last
row of Table V for A%(sq), C*(s¢). With this model we
have calculated the total energy for the test systems of
Table I and the corresponding results are shown in the
third column.

B. Empirical tight-binding (EmpTB)

In a conventional empirical tight-binding scheme the
energy function consists of an attractive band structure
term describing the bonding in the system and a repul-
sive pair potential usually interpreted as arising from the
overlap interaction. For the comparison we will use the
tight-binding model of Goodwin et al.,3° with a fixed
cutoff as in Ref. 40, and in the following we will denote
this model EmpTB. The EmpTB is based on the nearest-
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neighbor tight-binding model of Harrison,*! in which the
strength of the hopping integrals is obtained by fitting
the band structure, and the level splitting is taken to be
identical to that of the atom. Harrison assumed a uni-
versal decay of the pair potential and hopping integrals,
such that the only parameter remaining to be determined
is the strength of the pair potential, which was fixed to
give the correct equilibrium lattice constant. The result-
ing model gives an excellent description of the elastic
properties of silicon in the diamond structure; however,
the model fails to predict the energies of different sili-
con phases. Goodwin et al. made the model transferable
to other structures by introducing a scaling of the hop-
ping integrals, and adjusting the level splitting. Their
model has four adjustable parameters which were fixed
to give the cohesive energy and bulk modulus of the di-
amond and fcc structure. This scheme has proven very
successful for describing systems*? far from the structures
where the tight-binding parameters were fitted, and cur-
rently most empirical tight-binding schemes use a similar
functional form.

The last column in Table I shows the total energies
of the test systems obtained with the EmpTB. We see
that the elastic properties are described very well by the
EmpTB, while the total energies of the structures and
surfaces are not too accurate. However, note that the
energy of the crystal structures were calculated at the
equilibrium volume as obtained from the self-consistent
calculation (in Fig. 10 we show the full phase diagram).
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FIG. 10. The triangles in both figures show the ener-
gies of the diamond, clathrate II, 3-tin, simple cubic, bcc,
and fcc structure, in that order, at their respective equilib-
rium volumes, calculated self-consistently. The energy of the
clathrate II structure is from Ref. 42. The solid lines in the
upper figure show the energies of the structures calculated
using the EMTB model, while the energies in the lower fig-
ure were calculated using the empirical tight-binding model
of Ref. 39. The cusps on the curves in the lower figures are
caused by second-nearest neighbors entering within the cutoff
distance.
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C. Comparison between the EMTB
and EmpTB model

In Table VII we show for the two models the hopping
integrals and sp level splitting in the equilibrium diamond
lattice. For the EMTB we show the scaled parameters,
and for the EmpTB we have included the value of €, — ¢,
used in Ref. 41. In Fig. 9 we show the band structure of
the two models compared to a self-consistent calculation.
For the EMTB model the description of the occupied
bands is excellent. In the EmpTB model the description
is reasonable, with the largest error for the lowest state
at the I' point. Also, the band gap at the I" point is too
small in the EmpTB model; this is of importance when
the model is used together with the O(N) method of Refs.
16 and 17, where a large band gap is needed in order to
make the scheme efficient.

The difference between the two tight-binding models
becomes apparent when we look at the distance depen-
dence of the matrix elements. In the EMTB the distance
dependence is divided into two parts, scaling of the po-
tential parameters and the structure matrix. When we
have a uniform compression, without a structural change,
only the potential parameters change. These scale ap-
proximately as (sq/s)3, which is similar to the scaling
of Ref. 41. When there is a structural change the scal-
ing should be stronger, and this scaling enters through
the structure constants. In the EmpTB these two basic
scalings are mixed into one function.

In the last column of Table VI we show the value of the
one-electron correction as obtained when the EmpTB is
used to describe the one-electron energy for the system
and reference system. Clearly the EmpTB does not de-
scribe the one-electron correction, with largest discrep-
ancies for surfaces and structural energies. For these sys-
tems we have found crystal field terms to be important,
i.e., off-diagonal on-site elements and shifts of the level
spacings. Such effects are not included in the EmpTB,
but enter in the EMTB through Eq. (21).

Besides the one-electron term there is a pair-potential
term in both models. However, the EMTB pair potential
is negative, while the EmpTB pair potential is positive.
The EmpTB pair potential can therefore not only de-
scribe the electrostatic and exchange-correlation energy,
but must include some terms from the kinetic energy. In
the work of Harrison*' the pair potential is viewed as
an overlap interaction, i.e., it is mainly due to the one-
electron energy.

In the EMTB there is an additional term, the cohesive
function. The fact that this term is not equal to the sum
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of the reference pair-potential and one-electron energies,
illustrates the idea behind the reference system: Because
the reference system is chosen for a given atom so that
the environment of the atom is similar to the environment
in the real system it is possible to calculate the energy
difference with a rather crude tight-binding model. The
largest error is in the shift of the average on-site term of
the Hamiltonian, but since the potentials are identical in
the system and reference system this error for the system
is canceled by a similar error in the one-electron energy
of the reference system, and the correct binding energy
is then obtained through the cohesive function.

In the next section, we will calculate the phase diagram
for silicon and in Secs. IVE and IV F we will investigate
some of the reconstructions of the (100) and (111) sur-
faces.

D. Phase diagram

In Fig. 10 we show the total energies versus volume
for the diamond, clathrate II,%? 3-tin, simple cubic, bec,
and fcc phases of silicon calculated with the EMTB
and EmpTB schemes. The EMTB potential gives a
good description of the cohesive energy and the equi-
librium volume for all the phases investigated, while the
EmpTB predicts the correct energy ordering of all the
phases, excluding the clathrate II structure which is lower
than the diamond structure, but the equilibrium vol-
umes are shifted. The small cutoff of the interactions in
the EmpTB model becomes visible for the 8-tin and fec
phase, i.e., second-nearest neighbors enter within the cut-
off range. In the EMTB scheme we also use a fixed cutoff,
however in this case we use a relative distance measure
which is scale invariant, and this ensures that for a given
structure we include the same number of neighbors in-
dependent of the lattice constant. For the EMTB model
we have found crystal field effects to give an important
contribution to the structural energies. For instance, in
the fcc phase €, —€, = 5.39 eV compared to €, —e, = 5.87
eV in the diamond phase.

E. The (100) surface

There has been a large effort to understand the differ-
ent reconstructions of the (100) surface, involving a wide
range of experimental and theoretical tools since different
reconstructions occur at different length scales. However,
the reconstructions are so complex that there are still a
lot of unsolved problems, especially for systems involving
too few atoms in order for elasticity theory to be correct,

TABLE VII. The tight-binding parameters of the equilibrium silicon structure for the EMTB
and the empirical tight-binding (EmpTB) scheme of Ref. 39. For the EMTB we show the rescaled
parameters. In Ref. 39 the four hopping integrals for the EmpTB were taken from Ref. 41 and
the level splitting fitted to the fcc — diamond energy difference. The number in parentheses is the

value of Ref. 41.

Model | H,qo H,,, Hppo Hypr €p — €5
EMTB -1.79 1.99 2.37 -0.74 5.87
EmpTB -1.82 1.96 3.06 -0.87 8.295(6.83)
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and too many atoms to be feasible for plane-wave meth-
ods.

There is a general consensus that the main building
block for all the reconstructions is the buckled 1x2 dimer
reconstruction. This structure was first predicted by
Chadi*® from a tight-binding calculation, and lately also
self-consistent plane-wave calculations*%® have found
this structure to be lower in energy than a symmetric
dimer reconstruction. So for a potential to give a de-
tailed description of the various reconstructions on the
(100) surface, it should at least predict the correct 1x2
dimer reconstruction.

In Table VIII we show the result of a relaxation of
the (100) 1x1 and 2x1 reconstructions using the EMTB
and EmpTB compared to the results of self-consistent
plane-wave calculations. For both models the descrip-
tion of the structure of the 1x2 reconstruction is good,
but the EMTB gives a too high relaxation energy, while
the relaxation energy of the EmpTB is far too small. For
the EMTB the driving force for the reconstruction is the
atomic-sphere correction, and not the one-electron cor-
rection. The atomic-sphere correction always drives the
system to more close packed structures, and in this case
that can be done without an increase in the one-electron
energy. Both models predict an outward relaxation of the

TABLE VIIIL
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1x1 cell, while the self-consistent calculation predicts an
inward relaxation.

F. The (111) surface

Also the (111) surface has many interesting recon-
structions, the most famous being the 7x7 Tagayanagi
reconstruction.®® This reconstruction is built from
adatom geometries where the adatoms sit on top sites,
and studies using self-consistent plane-wave calculations
have confirmed the stability of adatoms in top site
positions.*”*® For a potential to predict the correct re-
constructions of the (111) surface it therefore has to de-
scribe these adatom geometries properly.

In Table VIII we show the result of a relaxation of the
(111) 1x1 surface, and of the top and hollow site adatom
geometries in a /3 x /3 cell. The self-consistent numbers
are from two different references; the top site geometry
were calculated in Ref. 48 with a ten layer slab and a
12 Ry cutoff. In the other reference*’ the energy of the
adatom in both the top and hollow positions where calcu-
lated but with an eight layer slab using a 6 Ry cutoff. We
see that both tight-binding models predict the top site
to be more stable than the hollow site geometry; how-

Energies and structures of the (100) and (111) surface obtained from

self-consistent, EMTB, and EmpTB calculations. The v denote the surface energy per 1x1 cell,
and A+ the surface energy relative to the ideal 1x1 cell. For the relaxed 1x1 geometries we show
the relative relaxation of the first layer atoms, A;2. For the (100) 1x2 structure we show the dimer
bond length, 4, and buckling angle, 8. For the (111) v/3 x /3 T4 structure we show the relaxation
toward the adatom axis (dotted line in Fig. 11), ér, and the relaxation in the vertical direction, dz.

The atom numbers refer to Fig. 11.

Geometry Quantity Unit SC EMTB EmpTB
The (100) Surface
Ideal 1x1 ¥ eV 2.19 2.43 1.65
Relaxed 1x1 Ay eV -0.03* -0.02 -0.03
Arz % —5.1° 4.8 4.5
Relaxed 1x2 Ay eV —0.85° -1.04 -0.39
0 Degree (16°)® 19° 15°
T4 ao 4.28° 4.47 4.62
The (111) Surface
Ideal 1x1 5 eV 1.45 1.47 1.43
Relaxed 1x1 Ay eV —0.06° (—0.179) -0.01 -0.02
Ay % —27° -7 3
V3 x 3Ty Ay eV —0.27° (—0.289) -0.27 -0.04
rq ao 5.01° (4.709) 4.89 4.95
§r(2) ao —0.35° (—0.289) -0.35 -0.23
§2(2) ao 0.03° (—0.159) 0.10 0.12
52(3a) ao —0.71° (—0.749) -0.65 -0.57
52(3b) ao 0.38° (0.18%) 0.18 0.21
52(4a) ao —~0.54° (—0.48%) -0.58 -0.62
52(4b) ao 0.23° (0.119) 0.06 0.12
or(5) ao 0.10° 0.09 0.13
52(5) ao 0.01° 0.03 -0.04
V3 x /3 Hs A~y eV —0.17¢ -0.13 -0.02

2Reference 50.
PReference 45.
°Reference 48.
dReference 47.
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FIG. 11. The geometry of the top site adatom on the (111)
surface.

ever, the formation energies obtained with the EmpTB
are far too small, while the EMTB is in excellent agree-
ment with the data of Ref. 48. The formation energy
obtained with the empirical tight-binding scheme is too
low to stabilize the adatom, and therefore additional pa-
rameters have to be introduced in order to describe the
7x7 reconstruction.?® In Fig. 11 we show the geometry
of the adatom in the top position, and in Table VIII we
compare the relaxed coordinates.

V. SUMMARY AND CONCLUSIONS

In the present paper, we have presented a method
for total-energy calculations for Si systems. We have
discussed in detail the hierarchy of approximations be-
hind the present formulation. Starting from a fully self-
consistent solution of the Kohn-Sham equations the first
level of approximation is to use the Harris functional with
transferable, optimized densities centered at each atomic
position deduced from independent self-consistent calcu-
lations for different bulk and surface structures. At this
level the errors introduced compared to the fully self-
consistent calculations are very small.

The next level of approximation involves the introduc-
tion of a reference system. We have shown that choosing
a reference system with the same neutral-sphere radius
(or average electron density) as in the real system gives
one-electron potentials and potential parameters for the
LMTO Hamiltonian that can be transferred from the ref-
erence system to the real system with very little error.
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The energy difference between the reference system and
the real system can be calculated from a difference be-
tween a density-dependent pair-potential sum in the real
and the reference system and a one-electron energy differ-
ence. The former describes to a very good approximation
the difference in the electrostatic, exchange correlation,
and part of the kinetic energy. The one-electron energy
difference taking care of the rest of the energy difference
is evaluated using an LMTO tight-binding Hamiltonian.

The results of the method are very encouraging. The
computational effort is similar to empirical tight-binding
methods (for 150 atoms the diagonalization of the Hamil-
tonian takes 95% of the time, and only the last 5% is
spent on the energy and force calculations), but the re-
sults seem to be better. The time consuming part of the
calculation is the diagonalization of the LMTO Hamilto-
nian and for this part the proposed “order N” methods
can be used,®!7 since the band gap at the I point is well
described.
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APPENDIX A: PARAMETRIZATION
OF THE OPTIMIZED DENSITY

We have found the optimized density to be well ap-
proximated by the functional form

Anop(k) = Anatom(k) + alkz(k - az)(k — (13)
x exp(ask — ask?), (A1)

where a; = 0.078,a;, = 2.584,a3 = 1.465,a4 =
1.969, a5 = 0.962, and n,tom is the atomic density.
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