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We demonstrate the feasibility of ab initio studies of piezoelectricity within an all-electron scheme.
The focus of our analysis is on wurtzite ZnO; for comparison, some results are also presented for
the related materials BeO and ZnS. The comparative study is performed in order to understand
the microscopic origin of the peculiar behavior of ZnO, whose piezoelectric response is the strongest
among the tetrahedrally bonded semiconductors. In all such materials, the piezoelectric effect results
from two different terms of opposite sign: these are usually referred to as the “clamped-ion” and
the “internal-strain” contributions. Cancellation amongst them is least effective in ZnO, where the
dominant effect is due to a rigid-ion-like mechanism. Furthermore, we compute the spontaneous
polarization of ZnO and we discuss the puzzling agreement between our calculated value and a very
indirect experimental estimate of the same quantity.

I. INTRODUCTION

Among the tetrahedrally bonded semiconductors, ZnO
has the highest piezoelectric temsor.! This property
makes it a technologically important material in many
practical applications which require a large electro-
mechanical coupling.? For this reason ZnO has been stud-
ied extensively from an experimental point of view and by
now its mechanical and electrical properties are very well
known.3 However, the reasons for this unusual piezoelec-
tric behavior are unclear. By comparing ZnO with simi-
lar II-VI compounds such as ZnS, CdS, and CdSe, which
share the same wurtzite structure, it is found that the
piezoelectric tensor of the other materials are at most
one-half of the ZnO compound. Furthermore, a com-
pound such as BeO, which has the same structure and
the same anion, has one of the smallest piezoelectric ten-
sors among the II-VI and III-V semiconductors, an order
of magnitude smaller than in the case of ZnO.

In this work we demonstrate that an ab initio study
of the piezoelectric effect in ZnO is feasible, and accu-
rately predictive. Another aim of the present work is
showing how to deal with piezoelectricity when the ma-
jor simplifications of a pseudopotential scheme cannot be
exploited. Our main result is a clear identification of the
origin of the strong piezoelectric effect in ZnO. Some lim-
ited additional calculations, performed on BeO, which is
isoanionic, and ZnS, which is isocationic, allow further
insight into the phenomenon.

This paper relies on several theoretical advances which
by now allow a completely ab initio study of the piezo-
electric properties of ZnO. The first important step has
been the demonstration of the bulk nature of the piezo-
electric effect. In a fundamental paper,* Martin showed
that the piezoelectric tensor is a bulk property of a solid,
independent from surface effects, and that it can in prin-
ciple be computed from the electronic wave functions.
More recently it has been shown that the Kohn-Sham
orbitals, obtained in the framework of density-functional
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theory,’ are accurate enough to yield meaningful predic-
tions for the piezoelectric tensors both in III-V (Ref. 6)
and II-VI (Refs. 7 and 8) semiconductors. In these cal-
culations, the piezoelectric tensor was evaluated as the
stress linearly induced by a macroscopic electric field.
Technically, the computations relied on linear-response
theory combined with a plane-wave expansion of the wave
functions, in a pseudopotential scheme. The same meth-
ods do not suffice to study the properties of a “difficult”
material such as ZnO. The use of a plane-wave expan-
sion is neither suited to describe localized orbitals such
as the zinc d ones nor is it efficient for dealing with a
first-row element such as oxygen. In materials such as
ZnSe or ZnTe it is possible to approximately account for
the d electrons by including them in the frozen core.® On
the contrary, it is well known!®!! that in ZnO the zinc
d electrons strongly hybridize with the oxygen p ones,
thus giving important contributions both to the bonding
properties of the material and to its electrical response.
These d electrons are very localized around the nuclei:
this feature, together with the presence of oxygen, would
require a plane-wave basis set of prohibitive size. In this
material, a much more convenient scheme for electronic-
structure calculation is provided by the full-potential lin-
earized augmented-plane-wave (FLAPW) method.!?
Finally, the latest theoretical advance exploited in the
present work is the modern theory of macroscopic po-
larization, due to King-Smith and Vanderbilt!® (for an
alternative derivation and a review see also Ref. 14). In-
stead of computing the stress linearly induced by an elec-
tric field, we compute here the polarization linearly in-
duced by macroscopic strain. This quantity is efficiently
evaluated—within any basis set—from the overlap be-
tween Bloch wave functions computed on neighboring k
points. The accuracy of this alternative approach was
tested with respect to linear-response calculations in the
original paper and in some subsequent applications,® and
the equivalence of the two techniques is now completely
established even from a numerical viewpoint, when plane
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waves are used.

In a wurtzite structure the homogeneous macroscopic
strain is in general coupled to an internal microscopic
strain, i.e., to a relative displacement of the cationic and
anionic sublattices. In the Born-Oppenheimer approxi-
mation, the macroscopic piezoelectric tensor results from
two distinct contributions: a purely electronic one, called
hereafter clamped-ion term, and evaluated at vanishing
microscopic strain and one due to the relative displace-
ment of the sublattices, which is equivalent to a zone-
center optic phonon. There is no easy experimental ac-
cess to each of the two terms separately. The available
calculations for zinc-blende-structure semiconductors in-
variably found these two terms of similar magnitude and
of opposite sign, the actual value of the piezoelectric ten-
sor resulting then from a strong cancellation between
them.

The main finding of this work is that in ZnO the
clamped-ion contribution to the piezoelectric polariza-
tion is about half (in modulus) the final value, such that
the cancellation is much less effective, and internal strain
is responsible for the dominant term. The same behav-
ior is found for BeO as well. However, the actual value
of the internal-strain relaxation is much smaller in BeO
than in ZnO, thus accounting for the different piezoelec-
tric properties of the two oxides. The isocationic wurtzite
ZnS behaves instead more like the zinc-blende-structure
materials, where the two terms undergo a significant can-
cellation. Incidentally, a pseudopotential study of ZnS
in the metastable zinc-blende structure was previously
performed” and some useful comparisons with the present
results are possible. Finally, we observe that no impor-
tant role seems to be played by the Born effective charge,
whose absolute value is close to the nominal ionicity (i.e.,
2) in all the II-VI’s compounds studied so far.

The spontaneous polarization is a by-product of the
present calculation. Though this quantity has never been
measured, our value is in embarrassing agreement with
the existing very indirect estimate of the same quantity.
The reasons why this agreement appears so surprising
are discussed, and an intriguing issue is left open.

This paper is organized as follows. In Sec. II we review
the main definitions which are necessary to deal with the
piezoelectric tensor in a wurtzite structure. In Sec. III
we give the technical details of the electronic-structure
calculations presenting the FLAPW band energies and
charge densities!® of ZnO, together with those of ZnS
and BeO. In Sec. IV we present our computation of the
piezoelectric tensor of ZnO and we discuss the results in
connection with analogous calculations performed on the
reference materials BeO and ZnS. Section V is devoted
to the issue of spontaneous polarization. Section VI con-
tains our conclusions.

II. PIEZOELECTRICITY
IN WURTZITE-STRUCTURE CRYSTALS

ZnO is a tetrahedrally coordinated semiconductor with
wurtzite structure. This structure has a hexagonal Bra-
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vais lattice with four atoms per unit cell.!® It is com-
pletely defined by the length of the hexagonal edge ao,
the height ¢ of the prism, and a microscopic dimension-
less parameter u, which is defined as the length of the
bond parallel to the ¢ axis, in units of c. The piezoelec-
tric tensor has three independent components (Cg, point
group).!” Two of these components measure the polar-
ization induced along the c axis, at zero electric field, by
a uniform strain either along the c axis or in the basal
plane. The relevant relationship, in Voigt notation, is

P; = e33e3 + e31(€1 + €2) (1)

where €3 = (¢ — ¢g)/co is the strain along the c axis,
€1,2 = (@ — ag)/ao is the strain in the basal plane, and
es3,e31 are the piezoelectric coefficients. The third inde-
pendent component of the piezoelectric tensor describes
the polarization induced perpendicularly to the ¢ axis by
a shear strain and will not be considered in this work.
The sign of the piezoelectric tensor is fixed assuming
that the positive direction along the c axis goes from
the cation to the anion.

Equation (1) is a macroscopic phenomenological equa-
tion which is valid in the linear regime for small strain val-
ues. It defines the piezoelectric tensor through the change
in polarization induced by variations of the cell parame-
ters a and c only. From a microscopic point of view, and
within the Born-Oppenheimer approximation, a strain
parallel or perpendicular to the ¢ axis produces also an
internal displacement of the zinc sublattices with respect
to the oxygen ones, i.e., a variation of the parameter u
of the wurtzite structure.'® The measured polarization is
due both to the effect of the change of the macroscopic
cell parameters and to the associated change of u, as we
anticipated in the Introduction. We therefore separate,
in analogy with the zinc-blende case, a clamped-ion term
and a term due to internal relaxation:

OP: du
€33 = egg) gu—s ;i;;’ (2)
where
OP;
61(3?5) = E; ) (3)

and analogous relationships hold for e3;.

We analyze for the time being only the eg3 coefficient,
thus keeping a fixed to its equilibrium value ag. The
change of polarization linearly induced by a relative sub-
lattice displacement (variation of u) can be measured by
an effective charge Z*:18

OPy| _ e .
oul,” V3"

where e is the electron charge. In order to compare the
different contributions and different materials it proves
useful to refer to dimensionless quantities. Defining é33 =
2a2ess/eV/3 we have

(4)

8, .du
€33 = ey + §Z des” (5)
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Equation (3) shows that we can obtain the clamped-ion
piezoelectric tensor from the slope of the straight line
yielding polarization versus strain at fixed u. Eventually,
the total piezoelectric tensor is recovered by evaluating
the effective charge from the derivative of the polariza-
tion with respect to u at fixed ¢ and from the knowledge
of the u variation induced by macroscopic strain. This
latter derivative can be evaluated from simple energetic
considerations, knowing the equilibrium value of u as a
function of the structural parameter c. The two other
quantities require instead the computation of the polar-
ization variation induced by a change of either ¢ or u.
The variation of the polarization can be obtained using
a method introduced recently by King-Smith and Van-
derbilt!314 which allows one to compute the difference
in polarization between any two states of the same crys-
tal, under the hypothesis that these two states can be
transformed into each other by the adiabatic variation of
a suitable parameter in the crystal Hamiltonian. An ad-
ditional necessary condition is that the solid remains an
insulator throughout the transformation. The key point
of the method is the evaluation of a geometric quantum
phase:1? its main ingredients are the phases ¢(k, k'), de-
fined as the phases of the overlap-matrix determinants

Smn(k, k') = (xm (K)|xn (k")), (6)

where x, (k') is the periodic part of the valence Bloch
wave functions. The difference in electronic polarization
can be obtained from these phases by an integration over
a unit cell of the reciprocal lattice.

Let us call A\ a parameter of the crystal Hamiltonian,
which in our case could be either c or u: the electronic
term in the polarization difference is then:'3

P(A) — P(A=0) = -(;Te)s [/ dkaik,scp,\(k, 1)

k'=k

- / dkgi—s%\ﬂ(k,k')lk,:k]’ (7)

where the two integration domains are reciprocal unit
cells of the solids characterized respectively by a finite
Xor by A = 0. When )\ is identified with u the two
domains coincide; when X is identified with c they can be
trivially made to coincide upon scaling.'* In practice, the
wave functions are evaluated on a discrete mesh. In the
basal plane we use an irreducible set of three k points.
Along the reciprocal c axis, we use a discrete mesh of 20 k
points. We calculate the wave functions in these 60 points
after having performed a self-consistent calculation with
six special k points.

III. FLAPW CALCULATIONS

All our calculations are performed within the self-
consistent FLAPW method.'? The local-density approx-
imation (LDA) to the density-functional theory with the
Hedin-Lundqvist exchange and correlation potential has
been used. In all our calculations we chose equal atomic-
sphere radii for anions and cations: their values are 1.8
a.u. in ZnO and ZnS and 1.5 a.u. in BeO. In the inter-
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stitial region the wave functions include all plane waves
with energies up to 4.35 Ry in ZnO and ZnS and less
than 4.2 Ry in BeO. Inside the spheres the wave func-
tions are expanded in products of radial functions and
spherical harmonics with principal angular momentum
l < 8. The crystal charge and potential are expanded in
an analogous basis set with wave vectors whose modu-
lus is less than 9.5 a.u. in ZnO and ZnS and 10 a.u. in
BeO. The core states are calculated fully relativistically
and updated at each iteration, whereas the valence states
(O 2s, O 2p, S 3s, S 3p, Be 25, Zn 3d, and Zn 4s) are
treated semirelativistically. The overlap matrices Eq. (6)
are evaluated?® in the FLAPW representation.

In order to determine the set of lattice parameters
which minimize the total energy in ZnO and BeO we pro-
ceed in two steps. We first fix ¢c/a = 1/8/3 and u = 3/8,
which are the “ideal” values, ensuring perfect tetrahedral
coordination. We then vary a to determine the volume
which minimizes the total energy. We found 2 = 45.89
A3 for ZnO and Q¢ = 26.64 A3 for BeO. These volumes
are considered as the equilibrium LDA volumes. Then,
in order to determine the parameters c¢/a and u, we com-
puted the total energy at several points of the (u, c¢/a)
plane, at fixed volume. The total-energy surface around
the minimum is described by a parabolic function with
6 parameters which are determined by a least-square fit
over 14 configurations. The rms errors turn out to be
0.07 mRy in ZnO and 0.03 mRy in BeO; however, since
a few points have a much larger error we assume for both
compounds—as a safe estimate—an error of 0.5 mRy on
the total energies. In Fig. 1 we show the results for both
ZnO and BeO on the same energy scale. Experimentally
it is well known that BeO is much harder than ZnO and
in fact in BeO the 0.5 mRy curve encircles a small region
of the (u, c/a) space. The position of the minimum inside
this region is in good agreement with the experimental
data. On the contrary in ZnO the 0.5 mRy curve does
not define a sufficiently small region of the parameters
space. Both the experimental point and the theoretical
point are, however, within this region. Since—on the

BeO ZnO
1.65 1.65
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8
S 1,60 \J 1.60
w
1.55 & 4 1.55
0.37 038 0.39 0.37 0.38 0.39
u u

FIG. 1. Theoretical constant energy contours in the (u,
c/a) plane for hexagonal BeO and ZnO at constant unit cell
volume 2. The spacing between contours is 0.5 mRy. The
solid circles indicate, respectively, the ideal (white), the the-
oretical (gray), and the experimental (black) configurations.
The dashed line corresponds to structures with equal bond
lengths.
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FIG. 2. Energy bands of hexagonal ZnO,
BeO, and ZnS along the main symmetry lines

of the Brillouin zone.
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basis of experimental data—we expect a large value for
the piezoelectric tensor of ZnO, this problem of the exact
determination of the LDA equilibrium structure of ZnO
does not constitute a real limit. We have thus chosen the
unstrained equilibrium structure as follows: for BeO the
theoretical LDA minimum a = 5.042 a.u., ¢/a = 1.629;
for the other materials the experimental values a = 6.147
a.u., ¢/a = 1.602 (ZnO) and a = 7.222 a.u., ¢/a = 1.638
(ZnS). As for the u’s, the numerical error is much smaller
and the theoretical values agree pretty well with the ex-
periment.

At these values of the parameters we have computed
the energy bands of the three compounds. In Fig. 2 we
show the results. The LDA bands of ZnO and ZnS have
been computed earlier!® using a pseudopotential scheme
and a localized-orbital basis set. The agreement with
the present results is quite good. It is well known that
the eigenvalues of the Kohn-Sham equation must not
be identified with the single-particle excitation energies.
Notwithstanding, it has become a common practice to
compare the energy bands with photoemission data and
usually the agreement for the sp bands is found to be
satisfactory in many materials. As noted in Ref. 10, this

FIG. 3. Valence charge density plots of ZnO and BeO pro-
jected on the plane parallel to the ¢ axis which contains both
anions and cations. Subsequent contours differ by 0.01 a.u.

is the case also for ZnO and ZnS, but the position of
d bands is not in agreement with photoemission data,
which predict narrow states around —8 eV. Our calcu-
lation in fact agrees with the previous LDA one,'° and
we find the d bands at least 4 eV higher than the pho-
toemission experiments. We cannot assess whether this
must be ascribed to density-functional theory, to LDA,
or to both; we just mention that a recent Hartree-Fock
calculation!! predicts instead the d bands about 2 eV too
low.

The total valence charge densities of ZnO and BeO are
displayed in Fig. 3. This figure shows that both ZnO
and BeO look like strongly ionic materials, despite the
amount of pd hybridization which is present'®!! in ZnO
and obviously not in BeO. The ionic radius of beryllium
appears much smaller than the one of zinc and this fea-
ture could in part explain the different mechanical be-
havior of the two materials as we will discuss below.

IV. INDUCED POLARIZATION IN ZINC OXIDE

We will discuss mainly the computation of ez3, since
the computation of e3; is completely equivalent. In Fig. 4
we plot the values of the polarization versus €3, obtained

—-0.02 0

FIG. 4. Polarization of ZnO versus €3 for several values of u
(filled triangles) and at the equilibrium values of u for a given
€3 (empty squares). The slope of the solid lines gives egg),
while the slope of the dashed line gives the total piezoelectric

tensor.
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using Eq. (3) and calculated for several values of u (filled
triangles; the open squares will be discussed below). It
can be seen that for a given u value, the polarization is
a linear function of €3 in this range (solid lines) and, fur-
thermore, that the €3 derivative is independent of . This
derivative is fairly small, yielding the clamped-ion piezo-
electric coefficient reported in Table I: this is opposite in
sign to the total measured effect and about one-half of
its modulus.

The opposite sign of the two contributions is typ-
ical of all the tetrahedrally bonded materials either
having zinc-blende structure, previously studied using
pseudopotentials,5® or having wurtzite structure, stud-
ied here. In III-V materials the clamped-ion term is
usually larger than the contribution due to the internal
strain, resulting in a negative value of the piezoelectric
coefficient, while in II-VI materials the opposite happens
and the sign becomes positive. However, the absolute
value of each of the terms is usually much larger than
the final value, resulting from a large cancellation: there-
fore ZnO is unusual in this respect, since we have only
a 50% cancellation. It is worth mentioning that in a
rigid ion model the clamped-ion part is exactly zero. For
a comparison, we also report in Table I the value of the
clamped-ion piezoelectric tensor for the two reference ma-
terials. When comparing the relative importance of the
two terms, BeO is as atypical as ZnO while ZnS is a more
typical case.

To proceed further, and according to the above equa-
tions, we need the derivative of u with respect to the
strain and the effective charge of one of the two types
of atoms. The effective charge is obtained again from
Eq. (7) by computing the polarization of the solid for
several values of the parameter u, with a and c fixed at
their unstrained value. The Z* obtained for the three
materials are reported in Table I: they refer to the effec-
tive charge of the anion, which in our coordinate system
is the atom which moves when u is changed. The values
are in agreement with the experimental data reported in
Ref. 4.

The computation of the derivative du/des is the most
difficult part of the calculation. It is equivalent to the
computation of the internal strain parameter of the zinc-
blende structure, which has been shown to be very sen-
sitive to the lattice constant both in GaAs (Ref. 6) and
in CdTe,® and for this reason our evaluation of this pa-
rameter is the quantity which in ZnO and ZnS is mostly
affected by the use of the experimental structure. The ex-
perimental measurement of this quantity is not very pre-
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cise either and the values obtained from indirect deriva-
tions?! usually are too rough to yield meaningful esti-
mates of the piezoelectric constant, particularly in sys-
tems with wurtzite structure.* We have used strain values
up to +£2% and we have computed the equilibrium u for
several values of the strain. The equilibrium u has been
obtained by fitting with a fourth-order polynomial the
total energy computed for seven different values of u.

In Fig. 5 we display for ZnO the values of u at fixed a
as a function of the strain e€3. For comparison we report
also the computed dependence of u upon the strain in the
cases of BeO and ZnS. From the slope of these curves
we obtained the values of du/des reported in Table I.
This figure shows that du/des in ZnO is similar to all
the other tetrahedrally bonded semiconductors, while in
this respect BeO has an extremely anomalous behavior.
A quantitative explanation of this low value of du/de;
in BeO requires further studies, but a qualitative expla-
nation could be found in the extremely small size of the
beryllium ions (see Fig. 3), which, due also to the lack of d
electrons, favors under strain the bond-length relaxation
with respect to the bond-angle one. This interpretation
is supported by a comparative study of macroscopic elas-
ticity in all the tetrahedral compounds, performed many
years ago by Martin,?? and where BeO behaves in a qual-
itatively different way from the other materials.

From the knowledge of the polarization induced by a
variation of ¢ and by a corresponding variation of u we
can compute, using Eq. (2), the total change of polar-
ization due to a macroscopic strain. In Fig. 4 we re-
port our results for several values of €3 (empty squares).
These values have been interpolated by a straight dashed
line around €3 = 0. From the slope of the curve we get
€33 = 0.92, which is within the range of experimental
data. The other theoretical values of €33 for BeO and
ZnS are also reported in Table I. While the agreement
between theory and experiment is very good for ZnS,
in the case of BeO we find a large disagreement. We
point out, however, that the piezoelectric tensor of BeO
is very small and its experimental measurement® is quite
old; we were not able to find more recent data. At this
point this disagreement is an open issue of the present
approach: we have checked that it does not appreciably
depend on the equilibrium geometry used in the calcula-
tions. We simply note that trusting the theoretical value
of é:(,g), the value of du/des compatible with the exper-
imental €33 would be —0.04, one-half of our result, and
this would mean a highly anomalous mechanical behav-
ior of BeO with respect to the other tetrahedrally bonded

TABLE I. Computed and experimental values of the €33 component of the piezoelectric tensor
of ZnO, BeO, and ZnS and of its decomposition in a clamped-ion and ionic contributions. The
computed and experimental effective charges for each compound are also shown.

el? Z&(Theor.) Z& (Expt.?) du/des €33 (Theor.) &s3 (Expt.?)
ZnO —0.44 —2.05 —2.10 —-0.25 0.92 0.76 — 1.18
BeO —0.15 —-1.72 —1.85 —0.09 0.26 0.05
ZnS —0.76 -1.99 —2.00 —-0.19 0.24 0.27

®Reference 4.
PReference 1.
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FIG. 5. Values of u as a function of macroscopic strain €3
for ZnO (filled squares), BeO (empty squares), and ZnS (filled
triangles). The slopes of the solid lines provide the values of
du/des.

semiconductors.

The above analysis shows that the large piezoelectric
tensor of ZnO with respect to the values found in other
materials having the zinc-blende structure is due to the
fact that the internal strain is mostly responsible for the
effect. In this respect BeO has a similar behavior and
this seems to be a characteristic of oxide materials with
small cell volumes and ionic character.

Computations similar to those reported above have
been performed in order to compute e3; in ZnO. In this

case we find that du/de; = 0.24 and égﬁ) = 0.28. From
these results, using the same effective charge of oxygen
we have €33 = —0.39, which is within the range of the
reported experimental values, i.e., —0.47 < €37 < —0.22.

An interesting question to raise at this point is the
following: how “tetrahedral” are the piezoelectric prop-
erties of this material? The piezoelectric tensor has only
one independent component in the zinc-blende struc-
ture and one expects therefore an approximate relation-
ship between e33 and e3; to hold in our material. As-
suming noninteracting tetrahedral units,?® one guesses
eas = —2e3;. This relationship is in fact satisfied to a
rather good approximation, despite the fact that ZnO
has a very distorted structure with respect to the ideal
wurtzite one.

V. SPONTANEOUS POLARIZATION
OF ZINC OXIDE

Last but not least, we briefly discuss spontaneous po-
larization, which is in fact a by-product of the present
calculation. From Fig. 4 its value is clearly —0.05 C/m?Z,
about the same as that previously found for BeO.18:24
Given the strong piezoelectricity of ZnO, the theoretical
value is rather sensitive to the structural data used in the
calculation.

Spontaneous polarization in a nonferroelectric material
has never been directly measured, while one invariably
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measures polarization derivatives. One obvious example
is the piezoelectric tensor, calculated and compared to
experiment throughout this work. As for the “absolute”
polarization of a given material, there is some debate
whether it is a property which can be defined at all as
a bulk property, independent of sample termination.!%25
Our favorite viewpoint has been to conventionally define
the spontaneous polarization of a low-symmetry crystal
as the polarization difference with respect to an high-
symmetry structure of the same material. In the case of
wurtzite structure our reference choice is the zinc-blende
structure, as explained in Ref. 18, and this choice leads to
the value reported above for the spontaneous polarization
of ZnO. This choice is unique upon symmetry grounds,
but it must be agreed that it is a theoretical assumption,
bearing no relationship to a real experiment: the only
observed bulk quantities are in fact polarization differ-
ences. In our viewpoint, an identical statement applies
even to ferroelectric materials, although in this case the
reference structure exists in nature.

It is therefore quite surprising—in view of the present
theoretical understanding'*—that some experimental es-
timates of the spontaneous polarization in BeO and ZnO
do indeed exist.?6 Even more surprising, the estimated
absolute values are in embarrassing agreement with our
calculations, both for BeO and ZnO, where this figure is
in fact 0.07+0.02 C/m?%. We therefore briefly discuss the
idea upon which these estimates are based.

The quantities that have been measured are optic con-
stants and the estimated absolute value of the sponta-
neous polarization is extracted from the ratio between
suitable nonlinear and linear constants. The underly-
ing theory is based on the Landau expansion of the free
energy for ferroelectrics, in terms of which the relation-
ship between spontaneous polarization and nonlinear op-
tic constants is almost trivial.2” The Landau expansion
is known to describe pretty well the behavior of many
ferroelectrics. Furthermore, in ferroelectrics one can in-
dependently measure the spontaneous polarization (via
polarization reversal) and the nonlinear optic constants:
it is found that the relationship between the two kind of
measurements agrees well with the predictions of Lan-
dau theory. The embarrassing point is that wurtzite-
structure materials are not ferroelectric, their polariza-
tion is not reversible, and no kind of Landau expansion is
meaningfully devisable. However, if one naively applies
in this case the same relationship as for ferroelectrics,
one finds very good agreeement between the experimen-
tal estimate and our theoretical result. We do not have
any explanation for this agreement and in fact we remain
with an open question on this issue. Spontaneous polar-
ization is a nontrivial phenomenon whose real nature has
been unveiled only very recently.!314:25 According to the
present understanding and to our calculations, the spon-
taneous polarization is a Berry phase of the electronic
ground state. It is at present unclear which relationship
(if any) might link nonlinear optics to such a geometric
quantum phase.

VI. CONCLUSIONS
We have shown that using modern ab initio techniques
it is now possible to predict the value of the piezoelec-
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tric tensor in a computationally delicate material such as
ZnO. We have shown that its large piezoelectric tensor
is due to the low value of its clamped-ion contribution.
This characteristic is shared also by BeO and seems to
be typical of oxide materials, which have a ionic bond
and a small unit cell. By comparison with ZnS, which
has characteristics more similar to other previously stud-
ied II-VI zinc-blende compounds, we have demonstrated
that the piezoelectric behavior of ZnO and BeO is very
unusual among the tetrahedrally bonded semiconductors.
In both these compounds the piezoelectric tensor is dom-
inated by the internal relaxation of anion and cation sub-
lattices induced by the macroscopic strain. Besides this
similarity, ZnO is different from BeO in that under strain

10 721

the former has a stronger tendency to conserve the bond
lengths. Finally, we have discussed the calculated spon-
taneous polarization and the puzzling agreement between
a very indirect—as a matter of fact arbitrary—estimate
of the same quantity and our result.
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