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We study the convergence and the stability of fictitious dynamical methods for electrons. First,
we show that a particular damped second-order dynamics has a much faster rate of convergence to
the ground state than first-order steepest-descent algorithms while retaining their numerical cost per
time step. Our damped dynamics has eRciency comparable to that of conjugate gradient methods

in typical electronic minimization problems. Then, we analyze the factors that limit the size of the
integration time step in approaches based on plane-wave expansions. The maximum allowed time

step is dictated by the highest frequency components of the fictitious electronic dynamics. These

can result either from the large wave vector components of the kinetic energy or from the small wave

vector components of the Coulomb potential giving rise to the so called charge sloshing problem.

We show how to eliminate large wave vector instabilities by adopting a preconditioning scheme in

the context of Car-Parrinello ab initio molecular-dynamics simulations of the ionic motion. We

also show how to solve the charge sloshing problem when this is present. We substantiate our

theoretical analysis with numerical tests on a number of different silicon and carbon systems having

both insulating and metallic character.

I. INTRODUCTION

The introduction of a fictitious dynamics for the
electrons ' with driving forces obtained &om the total
energy within density functional theory (DFT) (Ref. 3)
has provided a convenient approach to minixnize the to-
tal energy of condensed matter systexns and to perform
ab initio molecular-dynamics simulations of the ionic mo-
tion. These techniques have been applied successfully to
a variety of insulating, semiconducting, and xnetallic sys-
tems involving a large number of atoms in the context
of structural optimization problems at zero temperature
and of dynaxnical simulations of the atomic motion at
finite temperature. 4

It is a subject of current interest to study the factors
that limit the eKciency of fictitious dynamical methods
for electrons in order to improve their numerical eK-
ciency. This depends on the choice made for the dy-
namics and on the size of the time step that can be used
to integrate numerically the equations of xnotion.

When discussing how to choose a specific dynamics, it
is convenient to consider total energy minimization sep-
arately &om molecular dynamics. It has been shown by
Car and Parrinello that to simulate the classical adia-
batic motion of the atoms it is useful to adopt a second-
order Newtonian dynamics also for the electronic de-
grees of &eedom, since this exploits oytimally the con-

cept of continuous simultaneous evolution of electronic
and atomic degrees of freedom. Newtoniaa dynamics
conserves energy. Different approaches should be used to
minimize the electronic energy, as it is required to start a
molecular-dyaamics simulation or to solve aa optimiza-
tion problem at zero temperature. The simplest approach
to minimization is provided by steepest-descent dynam-
ics, which can be viewed as a dynamics of the first order
in the time derivative. Steepest-descent dynamics, which
requires only knowledge of the gradients of the energy
functional, is aot very efficient, particularly in metallic
situations. Better schemes require some knowledge also
of the secoad derivatives of the energy functional either
explicitly or implicitly. Conjugate gradient methods have
been developed in this context and have been showa
to be superior to steepest-descent methods, particularly
when the full energy functional was used in the line min-
imizations and full account was taken of the orthonor-
mality constraints on the wave functions.

In this paper we show that a minor modification of a
steepest-descent algorithm, namely, replacing first-order
dynamics with a specific damped second-order dynam-
ics, improves substantially the rate of convergence of
the wave functions to the ground state. The resulting
scheme, which we call damped molecular dynamics, has
efEciency comparable to that of the best conjugate gra-
dient algorithms when used in typical electronic mini-

0163-1829/94/50(15)/10561(13)/$06. 00 50 10 561 1994 The American Physical Society



10 562 F. TASSONE, F. MAURI, AND R. CAR

mization problems, with the additional advantage of hav-
ing basically the same numerical complexity as simple
steepest-descent algorithms.

We then investigate what determines the maximum
allowed time step for numerical integration when using
steepest-descent (SD), damped (D), or Newtonian molec-
ular dynamics (MD). In all cases the time step is limited
by the need to integrate the high frequency components
of the fictitious dynamics. These arise either &om the
large wave vector components of the electronic kinetic
energy or &om the small wave vector components of the
Hartree energy due to the divergence of the Coulomb po-
tential at small wave vector. In the latter case the related
numerical instability is usually referred to as the "charge
sloshing" problem and it is expected to become serious
when the size of the system becomes very large.

The large wave vector instability can be eliminated by
preconditioning the equations of motion, since at large
wave vectors the wave functions are dominated by the
kinetic energy and are to a large extent &ee-particle-like.
Indeed, it was already suggested earlier by several au-
thors that this property could be used to speed up it-
erative schemes for electronic minimization. In partic-
ular, Ref. 9 proposed an analytical integration scheme
for the large wave vector components of the wave func-
tions within second-order dynamics. This scheme was
subsequently extended in Ref. 10 to first-order steepest-
descent equations. Since this approach can be less sta-
ble than standard steepest-descent algorithms we will
not discuss it any further. A successful preconditioning
scheme in the context of conjugate gradient minimiza-
tion of the electronic total energy has been proposed in
Ref. 7. This has some similarities with the quasi-Newton
step proposed in Ref. 11 and with the residual minimiza-

tion/direct inversion in the iterative subspace described
in Ref. 12.

In this paper, we propose a preconditioning scheme
which is appropriate to all the dynamical methods re-
ferred to above, namely, SD, D, and MD dynamics. It
consists in properly scaling the fictitious masses associ-
ated with the large wave vector components of the elec-
tronic wave functions, in order to compress the high &e-

quency spectrum of the electronic dynamics and to use a
larger integration time step. Our preconditioning method
is similar in spirit to those of Ref. 7 but it is formulated
as a modification of the differential equations leading to
SD, D, and MD dynamics. In particular, we apply it here
to the Car-Parrinello MD equations, which provide an
efficient approach for O,b initio molecular-dynamics simu-
lations of the ionic motion. In this context our precondi-
tioning scheme allows us to use a time step which is two
to three times larger than in previous applications of this
method, resulting in a considerable saving of computa-
tional time.

We now turn our attention to the charge sloshing prob-
lem. This has been discussed previously in the con-
text of self-consistent diagonalization of the Kohn-Sham
Hamiltonian. The onset of this kind of instability de-
pends on the algorithms used and is expected to occur
at significantly large sizes in the context of fictitious dy-
namical methods since in these approaches the wave func-

tions change little over a single time step. Indeed, recent
MD simulations for metallic liquid silicon have shown no
sign of a sloshing instability up to cubic cells contain-
ing 216 silicon atoms. However, one expects that for
sufficiently large cells the sloshing instability should ap-
pear, although a quantitative theoretical analysis of it in
the context of fictitious dynamical methods for electrons
has so far been missing. Sloshing instabilities have been
found numerically within some iterative schemes for elec-
tronic minimization in the case of systems having a long
linear dimension. In this paper we present a theoretical
analysis of the charge sloshing problem in the context
of SD, D, and MD equations of motion. We find that
the sloshing instability is absent for insulators, but it is
present for metals. This is in accord with previous results
of Ref. 13. A practical scheme to control the sloshing in-

stability is discussed in the paper.
To summarize, we improve the numerical efficiency

of fictitious dynamical methods for electrons in several
ways. First, we replace steepest-descent dynamics by a
more efficient damped second-order dynamics to mini-

mize the total energy. Second, by preconditioning the
fictitious electronic masses we increase the integration
time step for total energy minimization and for simula-
tion of the adiabatic ionic dynamics. Third, we show

that in the context of fictitious dynamical methods the
so-called charge sloshing problem, which is expected to
arise for large systems, is less serious than expected. We
support our theoretical analysis with detailed numerical
tests on several systems involving Si and C atoms.

The paper is organized as follows. In Sec. II we dis-
cuss first-order SD dynamics and second-order conserva-
tive MD for the electronic degrees of &eedom. In Sec.
III we introduce a damped second-order dynamics which
is substantially more efficient than SD and is competi-
tive with the best conjugate gradient schemes for elec-
tron minimization. In Sec. IV we discuss large wave

vector instabilities and the charge sloshing problem. In
Sec. V we discuss the preconditioning of large wave vec-
tor components. In Sec. VI we present some details of
the numerical implementation. Finally, in Sec. VII we

present the results of realistic numerical tests on silicon
and carbon systems. Section VIII is devoted to our con-
clusions.

II. FICTITIOUS DY'NAMICS FOR THE
ELECTRONS

Dynamical methods for minimizing the electronic total
energy and for simulating the adiabatic motion of the
atoms are based on a fictitious dynamics of the electronic
degrees of freedom. Within these approaches the forces
acting on the electronic degrees of freedom are derived
from the total electronic energy E[(g}]in the DFT local
density approximation (LDA) form

&[O'N = &~'-[(@N+E-tb]+ E~[~l+ &xc[~] (~)

vrhere Ek;„, E „t, Eh, and Ex~ denote kinetic, exter-
nal potential, Hartree, and exchange-correlation energy,



50 ACCELERATION SCHEMES FOR AB INITIO MOLECULAR-. . . IO 563

respectively. The local density approximation is adopted
for the last. The electronic charge density p is given by

p(r) = 2H"lr)(rl@')

and

lb&') = —Kv lb&~) (9)

and those for the second-order dynamics are

~l@') = --
b

+ ~'~l&')
1bE[B)1

(4)

where we have assumed that the wave functions Ig) are
real. Here and in the following the indices i and j run
over the occupied states only. The symmetric matrix A;~
of the Lagrange multipliers enforces the orthonormality
condition, i.e., (@;lg~) = b;~. The derivatives of E[jg)]
with respect to the I@;) define the Kohn-Sham Hamilto-
nian:

»EN~M = 2IIKS i ~

The parameter p, is a fictitious electronic mass. It is
used to tune the speed of the electronic dynamics and
does not describe any other physical property. When
the ions are held fixed, this mass can be included in the
definition of the time step and it is irrelevant. However,
when we allow the ions to move, the ratio between p, and
the physical ionic masses is important since it de6nes the
relative speed of the ionic and of the 6ctitious electronic
motion.

Now let us suppose that the wave functions are close
to the minimum of the energy E[(g~ l j],

I@') = I@.'")+ lb@')

where I@,. ) are the wave functions at the minimum and
lb/;) are the corresponding deviations. We notice that
Ibsen;) have to fulfill the orthonormality condition to lin-

ear order, i.e. (@~ lib@~) = 0. To linear order in Ib@;),
the Lagrange multipliers A;~ are the same for 6rst- and
second-order dynamics, and are given by

~v = 2(@'IIfKs I&').

Thus, by retaining only the terms up to linear order in
lb@;) in the equations of motion (3) and (4) we obtain

where the occupied orbitals lg, ) are orthonormal. The
factor of 2 accounts for the occupation numbers, which
here and in the following are supposed to be all equal to
2. Summation over repeated indices is understood.

In order to ensure the orthonormalization of the elec-
tronic orbitals during a dynamical evolution it is con-
venient to add appropriate forces of constraints. These
do not perform work on the electronic system, and can
be conveniently calculated in terms of Lagrangian mul-
tipliers. The corresponding equations of motion for the
first-order dynamics are

~14') = --, + ~"I@.)
1bE[(@H

respectively. Here K;~ is a linear operator, which acts on
the single-particle Hilbert space and which has the same
form for both first- and second-order dynamics. In the
following we will use the notation K to indicate a matrix
of operators having for elements the K;~. Notice that K
is a positive definite linear operator since Eqs. (8) and
(9) result from a quadratic expansion of E[(Q)] in lb/;)
about the minimum E[(@0)],i.e.,

EH@H —E[BoN = I (b4'IK'~lb&') + o(b4') (»)
The equations of motion (8) and (9) can be formally in-
tegrated, yielding

(t)) = [exp( —Kt)];, lb@, (0))

and

(t)) = (cos WKt)' lb@, (O))

+(K '~ sin VKt);,.Ibg;(0)),

respectively. In the case of first-order evolution the
wave functions decay exponentially towards the mini-
mum E[gs], while in the second-order evolution they
perform small oscillations around it. These motions
take place with characteristic decay rates and frequencies
which are equal to the eigenvalues K of the operator I
and to the square root gK of these eigenvalues for first-
and second-order dynamics, respectively.

In numerical implementations the electronic states are
expanded on a finite basis set, so that only a finite num-
ber of eigen&equencies and eigenmodes occur. Let K;
and K be the minimum and maximum eigenvalues of
K. The maximum allowed time step for numerical inte-
gration is proportional to the smallest period of the sys-
tem, i.e., to 1/K or to 1/gK „for first- and second-
order dynamics, respectively.

In the case of first-order dynamics, the minimum eigen-
value dominates the long-time behavior of the decay to
the ground state, so that a rough estimate of the conver-
gence time is given by 1/K; . Recalling that the size of
the time step is proportional to 1/K, one finds that
the number noq of integration steps needed to converge
satis6es the condition

rioi ~ Kmnx/Kmin.

In the case of second-order dynamics we usually start
a simulation &om an electronic con6guration close to the
minimum. of the electronic energy. Then if the ionic and
the electronic frequencies are well decoupled, ' the elec-
trons remain adiabatically close to the instantaneous en-
ergy minimum during the ionic evolution. Let u; be a
typical ionic &equency. The adiabatic condition requires
it to be much smaller than the minimum electronic &e-
quency i.e.

Ibg;) = —K;, lb/~) (8) idion ++ V Kmin. (14)
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A meaningful measure of the simulation's workload is
given by the number of time steps necessary to integrate a
full ionic oscillation. Thus, recalling that the time step is
inversely proportional to v K, we find that the num-
ber n~2 of steps necessary to integrate a typical ionic
oscillation satisfies the following condition:

nO2 OC QKmax/Kmin

W+ = i~~+ K —~2&.

A,

The real part of W~ gives the &equencies of the oscil-
latory motion, while its imaginary part gives the decay
rate to the minimum. In order to maximize the rate of
convergence, we must use the maximum value of p for
which the argument of the square root remains positive.
This optimal value of p is given by

'Yopt = 't/Kmini (19)
III. DAMPED SECOND-ORDER DYNAMICS

FOR MINIMIZATION

In the preceding section we showed that the number
of iterations necessary to minimize the electronic en-

ergy within steepest-descent dynamics is proportional to
K /K; . In this section we present an improved min-
irnization dynamics in which the typical number of iter-
ations is instead proportional to gK /K;„, i.e. , a
number significantly smaller than K „/K;„. We at-
tain this goal by inserting in Eq. (4} a damping term as
follows:

~l&') = —
2 h

—»&I&') + ~'~ I&g)

This equation defines a damped second-order dynamics.
As in the preceding section we study the resulting motion
close to the energy minimum. We find that the deviations
of the wave functions from the minimum are subject to
damped oscillations given by

Ih~'(t)) = exp(t~+t)'il~j ) + exp(t —t)'iI~j ).
(17)

Here Ig
+

) and Ig ) are determined by the initial con-
ditions, and

since this value corresponds to critical damping of the
smallest eigenvalue of K. In this case the imaginary
part of all the eigenvalues of Wg is equal to p ~t and
the time of convergence to the minimum is of the or-
der of 1/gK;„. The integration time step is related to
the maximum norm of the eigenvalues of W'~, which is
equal to gK . Thus, the number of integration steps
necessary for minimization is given by

K
'ftDp2 OC OC +Boy.

min
(2o)

IV. SECOND-ORDER EXPANSION OF THE
LDA ENERC Y' FUNCTIONAL

In this section we compute explicitly the eigenvalues
of the operator K. For this purpose we consider the
expansion of the energy functional around its minimum
Q~oj up to second order in bvP. This is given by

From this formula we see that a relevant gain of effi-

ciency is obtained when using damped dynamics instead
of steepest-descent dynamics to minimize the electronic
energy. The gain is particularly important when a large
number of iterations is needed to converge to the ground
state, which is typically the case of metallic systems.

&lB'k] —&((&")]= 2(h&'IH I~&*) —2(h&'Ih& )(&,'" IH

b2Eh b2Exc
+ dr dr'bpr, +, bpr' +0 b (21)

The second term on the right-hand side (rhs) of this equa-
tion comes from the Lagrange multipliers I'see Eq. (7)],
and

»(r) = 4H.'"Ir)(rib&*) (22)

gives the variation of the electronic density to Erst order
in (hg). We recall that (Q) and (hvP) are supposed to
be real.

exchange-correlation potentials, we recover the expansion
of the total energy appropriate to a non-self-consistent
Hamiltonian. Then we can expand the /~os and bg in
terms of the the real eigenvectors Iy&) of HKs, which
have eigenvalues c~. Since the total energy is invariant
under unitary transformations in the subspace of occu-
pied states, we can suppose without loss of generality

A. Non-self-consistent case IbV') = ).cil&~)

If we neglect the last two terms in Eq. (21), i.e.,
the terms corresponding to variations of the Hartree and

where c& are real coeKcients. Here and in the follow-

ing the indices i and k refer to occupied and unoccupied
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states, respectively. Hence, as shown in Ref. 15, we ob-
tain for bENs~, i.e., the second-order variation of the

energy in which the self-consistency of the potential is
not taken into account,

the numerical integration becomes unstable and the time
step has to go to zero when E,„t goes to infinity.

B. Self-consistent case: charge sloshing

~ENsc = 2) (ci,) (s's —s;)r (24)

where ei and eg are respectively the occupied and the
unoccupied eigenvalues of HKs. By comparing Eq. (24)
with Eq. (10) we see that the eigenvalues of K are given
by

K( E0) =2
p

and the lowest eigenvalue of K is given by K;
2Es ~/p, in terms of the energy gap Es ~ separating the
lowest unoccupied from the highest occupied electronic
level.

In the case of an insulator, the energy gap has a finite
positive value which, above a certain size, is independent
of the simulation cell. In the case of a metal instead,
the energy gap is still finite and positive for a finite sized
system but it is no longer independent of the simulation
cell. In fact the energy gap and Km;„ tend to zero for a
cell size going to infinity. However, many properties of
interest do not require an infinite energy resolution for
the states around the Fermi energy. Typically a small
but finite energy resolution E„, is sufficient. E„, does
not depend on the size of the system, and K„,= 2E „/p
replaces K;„in Eqs. (13), (20), and (19) to estimate the
convergence rates n~q, no~2 and the optimal damping
parameter p,~t. Since E„, is much smaller than a typi-
cal energy gap of an insulator, the number of iterations
needed for ground state convergence is much larger in
metals than in insulators. For the same reason, a per-
fectly adiabatic separation between ionic and electronic
motions is not possible for metals. However, as shown
in Ref. 16 a satisfactory solution to this problem, in the
context of Car-Parrinello simulations, can be obtained
by using two Nose thermostats to control separately the
respective temperatures of the ions and of the electrons.

When expanding the wave functions in terms of plane
waves, we can define an efFective cutofF energy E,„q given
(in a.u. ) by q2 /2, where q is the largest wave vec-
tor in the basis set. The band of empty states is usually
much larger than the band of occupied states. Thus when
in Eq. (25) the index k refers to the highest unoccupied
states, the eigenvalues K(i ~) of K have a negligible de-
pendence on the occupied state index i. Ruthermore,
since the highest unoccupied states are free-particle-like,
the energy difFerence ep —ci is dominated by the kinetic
energy of the state k, i.e.,

We now consider the terms of Eq. (21) that we ne-
glected in the preceding subsection in order to see if they
afFect the maximum eigenvalue of K. In this case K is
not diagonal in the representation of the c& and, for an
arbitrary system, it is not possible to diagonalize it an-
alytically. Thus we need some simplifying assumptions.
Let us consider a crystal of given periodicity and use a su-
percell containing an arbitrary number of replicas of the
crystal unit cell. In this case the (g()) are linear com-
binations of Bloch functions with the crystal periodicity
whereas the fiuctuations (b@) may have all the wave-
lengths compatible with the supercell. In other words,
we are restricting the periodicity of the unperturbed state
but not the periodicity of the Quctuations. Based on the
above simplifying assumption we find that charge slosh-
ing affects metallic and nonmetallic systems differently.
A numerical example presented in Sec. VII suggests that
this result should hold also for nonperiodic systems.

In order to find out whether the maximum eigenvalue
of K diverges when the supercell size tends to infinity, we
restrict our analysis to the Hartree term since the LDA
exchange-correlation energy is well behaved and typically
has a negligible efFect compared to the kinetic energy on
the maximum eigenvalue of K. The second-order varia-
tion of the Hartree energy is given by

bErr = f dr f dr b'p(r) 'bp(r')
lr —r'I

= ).).~ G, l~)o(p+ G)I'.
G p

Here p is a vector belonging to the first Brillouin zone of
the crystal, G is a vector of the reciprocal lattice of the
crystal, and the sums extend over all the nonzero wave
vectors p + 0 = q —q' where q and q' are two generic
plane waves of the basis set used to represent the electron
wave functions in the supercell of volume D. bp(p + G)
is the Fourier transform (FT) of bp(r).

When a linear dimension L of the supercell becomes
very large, (p + G),. = (p);, i.e., the smallest
nonzero q —q' vector, tends to zero like 1/L. If, cor-
respondingly, the maximum eigenvalue of K diverges, we
have the so called charge sloshing scenario. To study the
efFect of p; on the maximum eigenvalue of K we con-
sider only the terms with G = 0 in Eq. (27). Then since
hp(r) is «» l(~p(p) I

= l~p( p) I
and bEH(G = 0) can be

written as

sg —s;-q /2,2 (26)
(28}

where q is the wave vector associated with the state k.
The maximum eigenvalue of K is therefore approximately
given by K 2(q2 /2)/p, = 2E,„q/p, . It is this
eigenvalue that limits the maximum allowed time step
for numerical integration in a non-self-consistent case:

where

~~(p) = ).4[(x'I 'os(p ') Ix~}ci,
ile

+~h,'1»n(p. r) l~') c' l. (29)
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Notice that Eq. (28) is a quadratic form in terms of
the c&. The real coefficients c& can be considered as the
components of a real vector ~c). Similarly we can intro-
duce two real vectors ~A(p)) and ~B(p)) whose compo-
nents, labeled by the composite index (ik), are given by

(y,'[cos(p. r)~yi, ) and by (x,'~ sin(p. r) ~x'„), respectively.
In this notation bp(p) = 4[(c~A(p)) + i(c[B(p))] and Eq.
(28) becomes

&8~(G =0) = ). „„,[(clA(p))(A(p)lc)
p. )0""
+(clB(p))(B(p) lc)]. (30)

where p, p' & 0 and the static structure factor S(p) is
defined by

1
S(p) = —).h,'le "'IX')(X'le"'IX,')

ik

(32)

Hence ~A(p)) and [B(p)) are the vectors that diagonal-
ize the quadratic form in Eq. (30). The corresponding

eigenvalues of K are given by

128m
KA( ) KB(p) = (A(p)IA(p))pOp'

„„,(B(p)IB(p)) = 64~ S(p)
p

Therefore, when a linear dimension L of the supercell
tends to infinity and, correspondingly, p;„goes to zero,

K~(~ ) and Kis(z ) do not diverge if S(p) is of order

0(p )
We now consider a jellium model as a representative

metallic system. In this case the y,- are plane waves and
one finds s S(p) = p[l —(p/p~) /12]pzz/8z, where p~ is

the Fermi momentum, and p ( 2pF. As a consequence,
for L going to infinity, K~~z ~

and K~~p ~
diverge as

L and the time step for numerical integration has to be
reduced accordingly: this is a charge sloshing situation.

When the system is a periodic insulator one finds in-

stead that S(p) goes to zero as p (see Appendix). As

a consequence, for I going to infinity, K~~z . ~
and

Kn(& ) tend to a constant and the time step™Fornu-

merical integration is independent of L: charge sloshing
is absent here.

We stress that the above conclusions apply only if we

consider small Quctuations around the ground state: this
is the typical case of ab initio molecular-dynamics simu-

lations of the ionic motion. However, in the initial steps
of an electronic minimization procedure, the wave func-
tions may be far from the ground state. In this case
it is possible to observe sloshing efFects also in periodic

Using the fact that the y& are eigenstates of a periodic
crystal, it is easy to showir that the vectors ~A(p)) and

~B(p)) constitute an orthogonal set:

(A(p)IA(p')) = 4,~ -", S(p)
(B(p)IB(p')) = 4,~ zS(p)
(B(p)IA(p')) = 0

systems having an insulating ground state.
Since charge sloshing is a consequence of the singular-

ity of the Coulomb potential at small p, a simple way
of eliminating charge sloshing instabilities consists in re-
placing the Coulomb potential 4vr/p with a Yukawa po-
tential 4z /(p +a ), where 2vr/a is a typical decay length
of the order of the system size L;„that corresponds to
the onset of the sloshing instability. In the case of an in-
sulator we can use this technique to stabilize the numer-
ical integration during the initial steps of an electronic
Ininimization run. Then when we are sufficiently close to
the ground state we can set n = 0 and converge to the
exact ground state. We will show with a numerical ex-
ample in a subsequent section that this technique allows
us to converge to the exact ground state of a disordered
insulating system with a number of steps independent of
the system size. In the case of a metal it is not possi-
ble to set o, equal to zero, not even in the proximity of
the ground state. However, we notice that L;„is usu-

ally much larger than the typical screening length of a
metal. The results of a numerical simulation for a large
but finite metallic system should not change appreciably
if the Coulomb potential is replaced by a Yukawa poten-
tial that is equal to the Coulomb potential for distances
smaller than L

V. PRECONDITIONING THE EQUATIONS OF
MOTION

The numerical efficiency of all the fictitious dynamical
methods previously introduced can be improved by pre-
conditioning the dynamics in order to reduce the ratio
K /K;„. This can be achieved by replacing the con-
stant fictitious mass parameter p in Eqs. (3), (4), and

(16). with an arbitrary positive definite operator p. The
resulting increased arbitrariness in the choice of p, can
be exploited to compress the highest frequency compo-
nents of the spectrum of the fictitious electron dynam-
ics. Recalling that these are due basically to the high

energy unoccupied states which are free-particle-like [see

Eq. (26)], we choose an operator y, which is diagonal in

q space with eigenvalues p(q) given by

p(q) = po
(34)

V(q) = I o,~„ if ,'q' & Ep-
Below a certain cutofF energy Ez, it is worth considering
a constant mass po, because the low energy eigenstates
have a relevant potential energy contribution and are not
free-particle like. The preconditioning cutofF E„ there-
fore represents the threshold above which the states are
dominated by the kinetic energy.

It is easy to show that the solutions of the preconch-
tioned equations of motions for small displacements are
still given by Eqs. (11), (12), and (17) if the operator K
is replaced by the operator K characteristic of the pre-
conditioned dynamics. All the relations (13), (15), and
(20) found for first- and second-order dynamics with and
without damping hold therefore also in the case of the
preconditioned dynamics but, in the latter case, K
and K;„have to be replaced by the maximum and min-
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im»~ eigenvalues of K, i.e., by K~ and K~;„.
The preconditioning cutofF E~ that minimizes the ratio

K /K; is called the optimal preconditioning cutofF.
It depends strongly on the atomic species, i.e., on the
pseudopotentials, and on the plane-wave cutofF that are
used in the calculation. It depends only negligibly on the
physical environment. Thus, for a given atomic species,
it is possible to 6nd the optimal preconditioning cutofF
by performing calculations on a simple reference systexn.
We present a typical example in Sec. VII.

VI. NUMERICAL IMPLEMENTATION

In our numerical implementation we adopt the stan-
dard procedures described in Refs. 2 and 4 to integrate
the equations of xnotion for first- and second-order dy-
naxnics. In the case of damped second-order dynamics
we follow the procedure introduced in Ref. 16 to inte-
grate Car-Parrinello dynamics in the presence of a &ic-
tion term. We obtain for 6rst- and second-order and
damped dynamics, respectively,

I@'(t+ &)) = I@'(t)) —2P '&Ksl@')& +&'&p 'l&&(t))

I+'(t+ &)) = —IW'(t —&)) + 21&'(t)) —2S '~Ksl@')&'+ &',p 'ling(t))

'(t+ +)) = I+*(t —+)) +
I I+'(t)) —I+;(t —+)) p'~~—I;);~ I

+ xr b, ') 2

2 y 1+pb,

(@*(t+&)14.(&+ &)) = b*.. (38)

where 6 is the integration time step and X;~ is a symmet-
ric matrix equal to A;~ 4 for first-order dynamics, equal to
A;~A for conservative second-order dynamics, and equal
to A;&E2/(1 + pb, ) for damped second-order dynamics.
The matrix X is found by imposing the orthonormality
of the wave functions at time t + 6:

B,X~"+'~ + X~"+'~B,

Here X& & is the solution of the equation

B.X&'i + X&'&B, = 1 —A (44)

= 1 —A —X~"~MX~"~ —B X~"~ + X~"~B . (43)

We notice that the inversion of the mass operator p is
straightforward in q space where it is diagonal. For the
calculation of X;~ we define the wave functions ~g; (t+6))
as the rhs of Eqs. (35)—(37) without the orthonormaliza-
tion terms X;~p, ~~gz(t)). Then Eq. (38) becomes

XMXt+ BXt+XBt = 1 —A,

where the matrices M, B,A are given, respectively, by

M', = H*(t)lp 'I& (t)) (4O)

&,, = (@;(&+&)lp 'l0 (t)) (41)

&;, = (0'(&+ &)l@~(t+&)). (42)

The scalar products are easily evaluated in q space where
the xnass operator p, is diagonal.

Equation (39) is formally identical to the matrix equa-
tion that expresses the orthonormality condition for Car-
Parrinello dynamics when using Vanderbilt's ultrasoft
pseudopotentials. 9 It can be solved as described in
Ref. 19. The matrix B can be conveniently split into a
symmetric part B, and an antisymmetric part B . The
antisy~~etric part B is 6rst order in 4, while X and
1—A are flrst (second) order in b, for first- (second-) or-
der dyn~~~cs. Using these properties, we can solve Eq.
(39) iteratively in terms of increasing powers of E (b,2):

and the left-hand sides of Eqs. (43) and (44) are inverted
after transforming to the basis where B, is diagonaL

An alternative approach based on an unconstrained to-
tal energy functional which avoids explicit orthonormal-
ization has been recently proposed in Refs. 20 and 21.
The electronic mass preconditioning scheme discussed in
the present paper can be easily applied to the uncon-
strained energy functional method without any overload.

In some applications of fictitious dynamical methods
for electrons the orthonormalization of the electronic
wave functions can be achieved via a Gram-Schmidt pro-
cedure. We stress that this approach is not justified
in connection with the mass preconditioning scheme de-
scribed above. Indeed, if the Gram-Schmidt orthogonal-
ization procedure is used within preconditioned steepest-
descent dynaxnics, one is not guaranteed that the energy
will decrease at any integration step for a sufFiciently
small time step. The origin of this instability is related
to the nonholonomic character of the constraints imposed
via a Gram-Schmidt procedure. We found that this in-
stability is rather severe in practical numerical applica-
tions, where it spoils all the eKciency gains of the mass
preconditioning scheme.

VII. NUMERICAL RESULTS

We tested the diferent dynamical schemes described
above on various physical systems within a DFT LDA
formulation. In particular we considered Si and C
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systems. We used pseudopotentials of the Bachelet-
Hamann-Schluter type, with s and p nonlocality in the
Kleinmann-Bylander form. 2 The cutoK for the plane-
wave expansion of the electronic orbitals was 12 Ry for
silicon, and 35 Ry for carbon. We carried out all the
calculations at the I' point of the Brillouin zone only.
Moreover, in order to compare the dynamical schemes
with conjugate gradient minimization, we used a tight-
binding energy functional for carbon. 2

A. Preconditioning

We start by presenting the results obtained with pre-
conditioning. In order to determine the optimal pre-
conditioning cutoff E„we had to minimize the ratio
K „/K;„. We measured K and K;„within first-
order and second-order dynamics, by giving a small dis-
placement to the system &om its energy minimum. In the
case of 6rst-order dynamics, the numerical integration of
Eq. (35) becomes unstable and results in an exponential
increase of the energy, when b ) 2/K . Therefore
the maximum allowed integration time step provides an
accurate way of estimating K . K;„,i.e. , the lowest

eigenvalue of K, gives instead the slowest rate of decay
of the energy. This rate is conveniently sampled at large
times, i.e., when only the slowest exponential is left in
the decay.

We report in Fig. I the ratio K „/K;„as a function
of E~ for a Si3 molecule. We notice that for the high-
est Ez values the ratio decreases linearly with decreasing
E~ The beh.avior of the ratio K /K;„ in this range
is explained by the following considerations. First, the
minimum frequency is unchanged, since it is related to
the lowest excited state which has small components at

high q. Second, all the excited modes at energies higher
than E„are compressed to the same maximum frequency
2E&/pp, as long as they are kinetically dominated. In-
stead, in the range of low preconditioning cutoffs E„,the
minimum frequency K; decreases and the highest ex-
cited modes become less eKciently compressed. Thus a
minimum value of the ratio K „/K; is found, as we
can see in Fig. 1. This minimum occurs at E~=1 Ry. The
corresponding reduction of the ratio K /K;„ is by a
factor of 5 compared to the nonpreconditioned case. We
obtained very similar results for a sample of crystalline
silicon in the diamond structure, where the optimal E„
was also close to 1 Ry.

In the case of second-order dynamics gK „and
gK;„can be found as the maximum and minimum fre-
quencies of the power spectrum of the 6ctitious electronic
dynamics. This is easily evaluated by computing the ve-
locity autocorrelation function corresponding to the wave
function dynamics. The power spectrum of the velocity
autocorrelation function corresponding to the electronic
6ctitious dynamics is given in Fig. 2 for the case of the
Si3 molecule. In particular, we show results obtained
with optimal preconditioning (E„=I Ry) and unprecon-
ditioned dynamics. In calculating the spectra we chose
the value of po in such a way that the lowest frequency

gK;„of the preconditioned dynamics coincided with

gK;„, i.e., the lowest frequency of the dynamics with-
out preconditioning. This is achieved by setting p,p=260
a.u. when the mass associated with the dynamics with-
out preconditioning is p,=300 a.u. The signiicant com-
pression of the high frequency modes resulting &om pre-
conditioning is clearly evident in Fig. 2.

For a sample of crystalline carbon in the diamond
structure we found an optimal value of E~ equal to 2.7
Ry. This reduced by a factor of 9 the ratio K „/K
compared to the unpreconditioned case. In this case in

order to make the lowest frequencies gK;„and gK
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FIG. 1. K /K;„as a function of the preconditioning
cutoÃ E„ for the Si3 molecule. A periodically repeated cu-
bic cell of 20 a.u. is used in all the calculations for the Sis
molecule.

500 1000
Frequency (THz)

FIG. 2. Spectra of the electronic frequencies for the Si3
molecule. The solid line refers to second-order dynamics with-
out preconditioning. The dashed line refers to second-order
dynamics with preconditioning (E~=1 Ry) .
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coincide, the mass p of the unpreconditioned dynamics
had to be rescaled by a factor of 0.93 in order to obtain
the mass po of the preconditioned dynamics.

We notice that in a diferent context the authors of
Ref. 7 proposed using a preconditioning cutoK E„equal
to the expectation value of the kinetic energy divided by
the number of electrons. In the cases discussed above
this corresponds to a value of Ez ——0.8 Ry and E„=2
Ry for Si and C, respectively. These values are close to
the optimal values of E„.

B. Ionic molecular dynamics

In order to test the efFect of preconditioning on ab irutio
molecular-dynamics simulations of the ionic motion, we
considered the coupled set of equations given by Eq. (4)
for the electronic degrees of freedom and by

I I I I
[

I I I I
)

I I I I
)

I I6—

b&N&) Rj
(45)

for the ionic coordinates R, . Here M; are the physical
ionic masses and the mass p in Eq. (4) has to be replaced
by the mass operator p in the preconditioned case. Equa-
tions (4) and (45) reproduce the adiabatic dynamics of
the ions when the appropriate decoupling condition, Eq.
(14) discussed in Sec. II, is satisfied. ~ 2 We considered
the vibrational motion of a Si3 molecule during a time
span of about 0.3 ps. In the unpreconditioned case we
used a time step 6=7 a.u. to integrate the equations
of motion. This is close to the maximum allowed time
step for a fictitious electronic mass @=300a.u. Precondi-
tioning allowed to increase this time step to b, =15 a.u.
for a mass po ——260 a.u. and a preconditioning cut-oH'

E„=1Ry. In spite of the significantly larger time step the
preconditioned dynamics proceeded adiabatically in the
same way as the one without preconditioning. In particu-
lar, any systematic energy transfer from the ionic system
to the electronic one was absent. We plot in Fig. 3 the
temporal evolution of the ionic kinetic energy and of the
longest side of the Si3 molecule as a function of time in
both the preconditioned and the unpreconditioned cases.
Differences between the two dynamics are not noticeable.

C. Damped dynamics in insulators
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In order to assess the efBciency of the various minimiza-
tion dynamics discussed in this work, we considered a 64
atom amorphous Si sample generated by ab initio molec-
ular dynamics. zs We notice that this system has a finite
gap, and therefore a nonzero K; . In all our total energy
minimizations we used the same set of starting trial wave
functions. These were obtained by minimizing the total
energy with a very small energy cutofF E,„q of 2 Ry. We
then minimized the total energy with a cutofF of 12 Ry
using four types of dynamics, namely, steepest-descent
and second-order damped dynamics both without and
with optimal preconditioning. We report the results in
Fig. 4. In particular, we found that, when using the
optimal value p ~t of Eq. (19), the rate of convergence
of second-order damped dynamics is faster than that of
steepest-descent dynamics by the amount expected &om
the theoretical analysis in Sec. III. Preconditioning ac-
celerated further the rate of convergence, so that finally
the rate of convergence of preconditioned second-order
damped dynamics was 14 times faster than the one of
unpreconditioned steepest descent.

We determined the value p ~& by a rough estimate of
X; based on steepest-descent dynamics. In particular,
a three point fit of the exponential decay of the total
energy gives

0 0.1

I I I I I I I I I I I

0.2 0.3
time (ps)

(EI —&2 l
tb, —ln!

2 gE2 —Esp
' (46)

FIG. 3. Ionic dynamics of the Siz molecule without (solid
line) and with (dots) preconditioning. In (a) we report the
oscillations of the long side of the Siq molecule, and in (b) the
oscillations of the ionic kinetic energy as a function of time.

where E~, E2, E3 are the energies at three successive
steps of steepest descent. We waited until only the slow-
est exponential was left in the decay. If faster exponen-
tials are still present, Eq. (46) overestimates p ~qb, . In
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FIG. 4. Total energy minimization for a 64 atom amor-
phous silicon sample, using nonpreconditioned steepest-
descent (SD NP), preconditioned steepest-descent (SD P),
nonpreconditioned damped dynamics (D NP), and precondi-
tioned damped dynamics (D P). We plot the logarithm of the
difFerence between the energy per atom (E) snd the ground
state energy per atom (Ep) in Hartree units vs the number of
integration steps.

Steps

FIG. 5. Total energy minimization for a 64 atom liq-
uid silicon sample, using nonpreconditioned steepest descent
(SD NP), preconditioned steepest-descent (SD P), nonpre-
conditioned daxnped dynaxnics (D NP), and preconditioned
damped dynamics (D P). We plot the logarithm of the difFer-
ence between the energy per atom (E) and the ground state
energy per atom (Eo) in Hartree units vs the number of inte-
gration steps.

a practical calculation, we therefore suggest starting the
minimization with a few steps of steepest descent and
using Eq. (46) to obtain an upper bound for the opti-
mal pA. Then, we suggest proceeding with the damped
second-order minimization, readjusting pA in order to
achieve the optimal limit of critical damping. As we can
see &om Fig. 4, it is indeed convenient to use steepest
descent in the first steps of minimization when the high-
est &equency components dominate the deviation of the
energy &om the minimum. Subsequently, when only the
slowest &equencies are left, damped dynamics becomes
much more convenient, especially in those cases of ex-
tremely slow convergence rate.

D. Damped dynamics in metallic systems

In order to test the efBciency of our damped dynami-
cal scheme for minimization in the case of metallic sys-
tems we applied it to liquid silicon which is a metal. We
use a 64 atom sample generated by ab initio molecular
dynamics. As explained in Sec. IV, the damping con-
stant p can be fixed on the basis of the required energy
resolution E„„for which we chose here a value of about
20 meV. We minimized the total energy with a cutoff of
12 Ry using four types of dynamics, similarly to what we

did in the insulating case. Again the starting trial wave

functions were obtained by a minimization using a small
cutoff of 2 Ry. We report the results in Fig. 5. Notice
that, in the present metallic case, steepest-descent dy-
namics is particularly ineKcient, while damped dynam-
ics is very effective, since it improves by many orders of
magnitude the convergence rate of steepest descent. A
further gain results &om preconditioning.

E. Comparison with conjugate gradient minimir ation

In this subsection we compare our damped dynamical
method with a conjugate gradient minimization scheme.
The standard conjugate gradient procedure, described,
e.g. , in Ref. 5, cannot be directly applied to a con-
strained functional, unless some additional simplifying
assumptions are invoked which can reduce the minimiza-
tion eKciency. 6'" To fully exploit the power of the conju-
gate gradient procedure the authors of Ref. 8 proposed
use of an unconstrained energy functional. We adopt the
same procedure of Ref. 8 but we use a different form for
the unconstrained energy functional. We use the form
suggested in. Refs. 20 and 21 in the context of electronic-
structure calculations with linear size scaling but with-
out imposing any localization constraints on the elec-
tronic orbitals. For reasons of numerical simplicity we

adopt here a total energy functional based on a non-self-
consistent tight-binding Hamiltonian. This choice simpli-
fies considerably the line minimization in the conjugate
gradient scheme, which can be performed exactly.

We used a tight-binding Hamiltonian for carbon, and
we considered an ionic liquid configuration of 64 atoms
at a temperature of 5000 K. For this configuration the
system is metallic. Our results are reported in Fig. 6
where we plot the logarithmic error in the total energy
per atom versus the number of iterations for various min-
imization schemes, namely, damped dynamics, conjugate
gradient, and steepest-descent minimization. In the case
of conjugate gradient minimization the number of itera-
tions was multiplied by a factor of 2 in order to take into
account the increase in computational cost arising from
line minimization. From Fig. 6 it is evident that the nu-
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FIG. 6. Total energy minimization for a 64 atom liquid

carbon sample, using steepest-descent (SD), conjugate gradi-

ent (CG), and damped dynamics (D). The total energy cor-

responds to a parametrized tight-binding Hauu&tonian (see

text). We plot the logarithm of the difference between the

energy per atom (E) and the ground state energy per atom

(Eo) in Hartree units vs the number of integration steps. The
number of integration steps of the conjugate gradient calcula-

tion has been multiplied by 2 to take into account the increase

in computational cost compared to the other methods.

FIG. 7. Total energy minimization for two randomized
crystalline silicon samples using preconditioned steepest-
descent. The continuous line refers to a 32 atom cell with

a long side of 41 a.u. The dashed line refers to a 64 atom
cell with a long side of 82 a.u. We plot the logarithm of the
difference between the energy per atom (E) and the ground
state energy per atom (Es) in Hartree units vs the number of
integration steps. In (a) we use a Yukawa potential to com-

pute E and Es, while in (b) the Yukawa potential is replaced

by a Coulomb potential (see text).

merical efficiency of both conjugate gradient and damped
molecular dynamics is considerably superior to that of
steepest-descent minimization. In the present example
the numerical efficiency of conjugate gradient and that
of damped molecular-dynamics minimization are practi-
cally the same.

We expect that the results that we have found here
should remain valid also in the case of a self-consistent
LDA Hamiltonian.

F. Charge sloshing on very long cells

In order to study charge sloshing effects we used a
tetragonal supercell having a long side. In particular,
we considered crystehhne silicon in the diamond struc-
ture and we constructed two supercells by repeating four
or eight elementary cubic cells along the crystallographic
(100) direction. The resultiag supercells contain 32 aad
64 atoms, respectively. Then we broke the translational
invariance of the diamond lattice by giving the silicon
atoms a random displacement of about 5% of the bond
length. This did not modify the insulating character of
the system.

In the present example we have considered only precon-
ditioned steepest-descent minimization. As in the pre-
vious subsections we prepared the initial trial state by
minimizing the total energy with a small cutoff of 2 Ry
starting &om a set of random wave functions. Severe
charge sloshing instabilities immediately showed up dur-
ing this initial minimization in which the starting ran-
dom wave functions were very far &om the converged
insulating ground state. In particular, already for the 32

atom cell the time step for numerical integration had to
be reduced by an order of magnitude compared to the
time step that we could use in an equivalent situation
with a smaller cell. Such instability was completely elim-
inated by replaciag the Coulomb by a Yukawa potential
as described in Sec. IV. We adopted here a parameter
2z'/o, ' = 20.5 a.u. for the Yukawa potential. Once we ob-
tained the initial trial state, we performed a total energy
minimization on the 32 and on the 64 atom cell with a
cutoff of 12 Ry. The results are shown in Fig. 7 which
reports the deviation from the converged ground state
energy as a function of the number of numerical time
steps. During the initial 30 steps we used the Yukawa
potential. This allowed us to use for both 32 and 64
atom cells an integratioa time step equal to the one usu-
ally adopted for the same system when usiag cells suffi-
ciently small that ao charge sloshing effects are preseat.
Then we switched from Yukawa to Coulomb potential.
After 30 minimization steps with the Yukawa potential
the system was insulating and already very close to its
exact ground state. In this case, as shown analytically
in Sec. IV, charge sloshing instabilities are not expected
to occur in a periodic system. Indeed, not even in our
disordered sample did they occur. Therefore we could
use in the Gnal 30 minimization steps the same time step
used with the Yulmwa potential. The overall convergence
rate, as can be clearly seen in the 6gure, is independent
of the cell size.

VIII. CONCLUSIONS

We have presented a detailed analysis of the stabil-
ity and of the convergence rate of 6ctitious dynamical
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methods for electrons. We have succeeded in improving
considerably the efficiency of currently used algorithms
for total energy minimization and for ab initio molecular
dynMIllcs.

In the case of ab initio molecular-dynamics simulations
of the ionic motion we have introduced a precondition-
ing scheme which gives rise to an overall saving of CPU
time of the order of 2—3 in typical applications. In the
case of total energy minimization we have introduced
an optimal damped preconditioned dynamics which has
a convergence rate substantially faster than steepest-
descent algorithms and comparable to that of the best
conjugate gradient schemes for electronic-structure cal-
culations. This is especially important in metallic situa-
tions.

Although in this paper we confine our analysis to elec-
tronic minimization, we stress that the damped dynamics
algorithm can also be applied to ionic minimization. In
this case the optimal ionic damping parameter is related
to the phonon frequencies of the system under study.

In addition, we have presented a detailed analysis of
the charge sloshing instability and we have indicated a
practical way to control it. We have shown with a numer-
ical example that, in the case of insulators, our approach
allows us to converge to the ground state with a number
of iterations that is independent of the system size.

Note added in proof. In Sec. VII E we have shown nu-
merically on a specific example that conjugate gradient
minimization and our daInped dynamics scheme have
similar convergence rates. Recently, we became aware
that this can also be shown analytically. In fact, the
convergence rate of the conjugate gradient approach is
proportional to gK; /K „, as is that of our damped
dynamical method. An analytical estimate of the con-
vergence rate of conjugate gradient minimization can be
found in Jennings and McKeown, Matrix Computation,
2nd ed. (Wiley, Chichester, 1992) and in Stoer and
Bulirsch, Introduction to Numerica/ Analysis (Springer-
Verlag, New York, 1992). This has been extended to
the minimization of the DFT-I DA functional in Annett
(unpublished).
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APPENDIX.

In this Appendix we show that for a periodic insulator
the function S(p) given in Eq. (32) goes to zero like p
for p going to zero.

= —). 1 —) &x,'le "Ix,'&h,'le"'I&,'&

(Al)

where the indices i and j refer to occupied states and
the index k refers to empty states. In Eq. (Al) we used
the completeness relation gh lgs&(yohl = 1—P . Iy &(y I.
Let us suppose for simplicity that we have a single occu-
pied band. Since the expression in Eq. {Al) is invariant
under unitary transformations on the occupied subspace,
we can write it in terms of Wannier functions, i.e.,

S{p) = 1
1 —).1&w I

' 'I~R&l

where WR is the Wannier function centered on site R,
and 0;„ is the volume of the elementary cell. The
Wannier functions are exponentially localized in the case
of an insulator: this allows us to expand the exponen-
tials in Eq. (A2) in a Taylor series for p going to zero,
In particular, if we consider the term with R = 0 in
Eq. (A2), and expand the exponentials in p r around

p ' (r) = p &WolrlWo& we get

This term tends to zero as p . In a similar way one can
show that the terms with R different from zero in Eq.
(A2) also go to zero as p .

1 —l&~ole "'l~o)l' =1—I&~oil —ip (r —(r))
-lp. (r - &r&)j'/2l~o) I'

+o(p')
=+(~o lh (r —(r))j'l~o)+o(p').
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