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A Kohn-Sham approach is presented for analyzing the many-body properties of LCAO Hamil-

tonians. The total electronic energy of the system is shown to be a function of the different orbital
occupancies. Then an exchange-correlation potential is introduced for each orbital, taking into ac-
count extra-atomic and intra-atomic many-body effects. Using this potential, the total energy can
be obtained by calculating self-consistently the orbital occupancies, avoiding the use of a local repre-
sentation as is done in the conventional LDA calculations. The method is applied to the calculation
of the chemisorption energy and the charge transfer for the deposition of Na on Al(100), and the
interaction of H with the GaAs(110) surface. Hydrogen is shown to passivate GaAs(110) surfaces
for a monolayer deposition.

I. INTRODUCTION

Density-functional theory~ s and mainly calculations
based on its local-density (LD) approximation~ s are per-
vading solid state physics. This approach has received re-
cently an important momentum &om the ab initio molec-
ular dynamics scheme. 6

Linear combination of atomic orbitals (LCAO) meth-
ods have not followed the same quick trend. One of
the most important lines of development has been to
obtain LCAO Hamiltonians from local-density approx-
imation (LDA) calculations. v Other methods have tried
to describe semiempirically LCAO Hamiltonians from the
physical and chemical treads of different materials, ~ while
in other works the basic LCAO Hamiltonian is obtained
from the atomic properties of the ingredients forming
the system. Molecular dynamics calculations, based
on LCAO Hamiltonians, have also been developed show-

ing its applicability to complex situations. ~~

The point of view taken in this paper is that, using one
of the methods coaanented on above, one can define the
fundamental LCAO Hamiltonian, including many-body
terms. In particular, this work can be considered as an
extension of Ref. 9 where some of us have shown how
a fundamental LCAO Hamiltonian can be obtained us-

ing the atomic wave functions of the species forming the
system. Our aim is to show how the many-body contribu-
tions can be treated, within a LCAO formulation, using
an extension of the LD approximation in a way similar
to the procedure followed in standard density functional
calculations. The advantage of this approach is that the
formalism for analyzing many-body efFects can be kept
within the LCAO framework, by defining an exchange-
correlation potential for each orbital without having to
resort to conventional LD methods.

II. FORMALISM

In this section, we present the approach we propose
for analyziag the many-body properties of LCAO Hamil-

tonians. First, the general formalism is presented; then,
the exchange energy, as well as the extra-atomic and the
intra-atomic correlation energies, are discussed and ana-
lyzed in successive steps.

A. General formalism

We follow Ref. 9 and take as our starting point the
following Hamiltonian:

H =H" +H™,

where H ' defines the one-electroa contribution

and H the many-body terms

H-'=) U;n;,n;„+- ) (J;,n;.n,,+ J;,n,.n,.),
2',.-~',-

U;, J;, and J;~ being the intrasite and intersite Coulomb
interactions. The small difFerences found in Ref. 9 be-
tween J;s and J;s due to the exchange integrals turn out
to be sxnall and will be neglected in the following discus-
sion (take from now on J;s = J,~). In Eq. (2), E and
T describe the different atomic levels and their hopping
interactions, while their specific values can be obtained
by using the wave functions of the independent atoms
forming the system. 9

Our interest here is to discuss how the many-body
properties of Hamiltoaian (1) can be analyzed using a
LD scheme. The first point to notice regarding Haxnil-
tonian (1) is that we can use the Hoheaberg-Kohn~ ap-
proach in the following way. First, define the interaction
Hamiltonian

0163-1829/94/50(15)/10537(11)/$06. 00 50 10 537 1994 The American Physical Society



10 538 F. J. GARCIA-VIDAL et al. 50

H'"'=) V; n;
t)O'

(4)

V; being an external potential, and obtain the ground-
state energy Eo by the equation

many-body local potential V,-~

Following the standard procedure we write E
EH + Exe with E and Exc being the Har tr ee and
the exchange-correlation energies, respectively. Then

E, = (P, ~

H" + H '+ H'"'
~

Po)

=E-+E-'+) V, .n...

VH

(5)
From Eq. (3) we find that the Hartree energy is given by

Ep[n; ]=E'[n; ]+E b[n; ]+) V; n, , (6)

where the dependence on the other parameters T,), U, ,
and J;~, defining the initial Hamiltonian should be un-

derstood.
At this point, it is convenient to comment that in the

usual density functional approach, Eo is a function of
hn() ) and the parameters defining the operators —2" 7'2

and '
—, ; in our approach T;~, U;, and J;j play the

same role as 5, m, and e2 do in the conventional density
functional scheme.

The actual densities n; associated with Hamiltonian
(1) can be obtained by minimizing Eo[n, ] with respect
to n; . Obviously, the energy for Hamiltonian (1) is given
by Eq. (6) taking V; = 0.

We can take a step further, and use the Kohn-Sham
approach. This is equivalent to solving self-consistently
the following Hamiltonian:

where
~ $0) is the ground state of the total Hamiltonian,

H+H'"'. Now, following the Hohenberg-Kohn approach,
it is easy to prove that, under the usual condition of
a nondegenerate ground state, there exists a biunivocal
correspondence between the sets of parameters (Vi,V2, ...)
and the ocupation numbers (ni, n2, . . .). This shows that
the ground-state wave function

~
Po), can be written as

a function of the total Hamiltonian parameters, E; + V, ,

T;), U, , and J,~, or, alternatively, as a function of n;,
U;, and J,~, with (E, + V, ) replaced by the occupation
numbers, n;. It is obvious that, at this level, E; only plays
the role of a constant, changing the origin of the external
perturbation. On the other hand, it is also convenient
to realize that H'"' is just a mathematical tool that is
used to prove that

~ $0) can be written as a function of
the sets of parameters, n;, T,z, U, , and J,z (this is also
the case in the usual density functional approach for the
perturbation f V() )n() )d)'.

Then, V; + E; appears as a unique function of n,
(V; + E; =V, [ni~, ni~, n2g, n2i, ...]), where the other
sets of parameters T,~, U, , and J,j are understated.
Hence, the occupation numbers n; uniquely determine
the Hamiltonian H + H'" and the ground-state proper-
ties of the system.

In general, Eo can be written down as a function of
the sets of numbers n; as follows:

8E [&,.]=) U, &,,n,, + — ) J;,n;. (n,.+n—,.),
)g gt)

so that

V; = U;n;~+) J,, (n, ~+n, ~).
jwi

(10)

B. Exchange energy

The exchange-correlation energy Exc can be split into
its exchange Ex and correlation E+ contributions. The
exchange term yields

n;, n , =n; g (i, j), .

the application of the sum rule yields

(12)

) g-(i j) =1

with g (i, j) defining the pair correlation function asso-
ciated with the exchange hole. Equation (12) allows us
to write the exchange energy E~ as follows:

xE = —— ) J g(ij)n, . (14)

where n; = (gp ~

c c&
~ Qp) is related to the bond-

order index, a quantity that can be calculated9 Rom the
one-electron properties of the system. Notice that in
defining n, we have. introduced the wave function

~ $0);
this is the ground-state wave function of the one-electron
Hamiltonian, H '+ H'"', that yields the same occupa-
tion numbers n, as the total Hamiltonian. Equation
(11) is obtained from the term J;~.n, n~, by associating
creation and annihilation operators belonging to n; and

n~, respectively.
In order to find the n; dependence of Ex[n; ], it is

convenient to use the following sum rule:9 P.n, n
n; . If one writes

Hg=H '+) V; n, , (7)

gEIIlb f

where V; =
&

'"' .
, here, the occupation numbers

n; are obtained solving Hamiltonian (7) with this local

Thus, Eq. (14) states that Ex is associated with the
interaction between an electron state, having occupancy
n;, and its exchange hole, measured by g (i, j).

To proceed further, it is convenient to approximate
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provisionally Eq. (14) by assuming that the exchange hole
is localized in the i-site nearest neighbors (NN). Within
this approxixnation, the exchange energy is given by

chosen structures. Within the range 0.15 ( n ( 0.85,
a(n) is almost constant, varying smoothly around 0.75.
This suggests that Eq. (15) can be generalized for an
inhomogenous system (if 0.15 & n; & 0.85) to the form

E = ——) Jn;(1 —n;), (15)
Ex=) Ex= ——) Jan; (1 —n; ),

where J; is the Coulomb interaction between an electron
in the iver orbital and another electron in its NN. Notice
that from Eq. (13) we get g.&,. g (i, j) = 1 —n;, since

g (i, i) = n; . Equation (15) yields the interaction be-
tween the n; charge and the hole, (1 —n, ), localized in
the NN: the extra n; hole needed for a total exchange
hole of one is associated with the self-interaction correc-
tion that is automatically included in our formalism.

A more general case can be analyzed by considering
different lattice structures (fcc or sc) having an s orbital
per site and NN interaction. In these cases we obtain
Ex by using Eq. (11) and calculating n; from the one-
electron Green function G, . (ur) of the system. Notice
that for the simple cases considered here, the Hartree-
Fock solution is the Slater determinant formed with the
occupied one-electron states, P, e'" '~s;), where k is the
electron momentum and ~s;) the s orbital for the R; site.
We have written Ex as follows:

Ex =--) ~(n,.)J;n;.(I n;.), —X

where n J~ is the efFective interaction between charges n;
and —(1 —n, )

For the different structures we have considered, n; is
the site independent io occupancy defined by the crystal
Fermi energy. Our calculation yields a(n) as a function
of the site occupancy. Figure 1 shows a(n) for the two

a; being a constant that can be determined for each par-
ticular site using the one-electron properties of the sys-
tem and Eq. (11).

On the other hand, the limit n; ~ 0 (n; ( 0.1),
for the lattice structures analyzed above, makes contact
between our approach and the usual LDA method. No-
tice that in this limit, electrons only fill a small pocket
of states around k = 0; then, the relevant filled states
have the typical parabolic dispersion relation as in the
&ee electron case. As Fig. 1 shows, for n ~ 0, a(n) goes
like ns, Eq. (13) yielding the ns-typical behavior of the
exchange energy.

In the two examples just discussed, we have assumed
to have a single orbital per site. More general cases cor-
respond to having several orbitals per atom. For these
cases, calculations performed for solid bulk crystal or sur-
faces (see Sec. III) show that the exchange hole for an
orbital is basically localized outside its atom: then, Eq.
(17) yields a good description of the exchange energy, if
J; is taken as the mean Coulomb interaction between the
i orbital and the orbitals located in the nearest neighbor
site; n; is close to (but smaller than) one (if n; is neither
close to zero nor one), measuring how the exchange hole
is spread around the neighboring atoms.

For most practical cases n; can be taken constant;
then, we can use Eq. (1?) and the exchange potential
Vx takes the form

0.8

x dE [n;~] dE,~[n;~] J (i — ). (18)
dn; dn;
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FIG. 1. o'(n) as a function of the orbital occupancy for
different lattice structures [see Eq. (16) and below). In the
range (0,1) o.(n) is symmetric with respect to the point 0.5.

C. Extra-atomic correlation energy

We proceed now to discuss the correlation energy. In a
first step, we shall concentrate our discussion in the extra-
atomic effects; this means that the intra-atomic corre-
lation energy will be provisionally neglected by assum-
ing that the exchange-correlation hole is localized outside
the orbital atom. We start our discussion for the extra-
atomic correlation energy by considering the occupancy
fiuctuations for a given io level. The occupancy n; rep-
resents the mean value for the different occupation num-
bers, 0 or 1. The mean Hartree energy associated with
the mean electron charge n; and its screening hole —n;
is given by (—2I;n2 ), where I; is the Coulomb inter-
action between an electron in the io. level and another
electron distributed like the screening charge; the fac-
tor 2 is due, as usual, to the adiabatic switching of the
interaction and includes the electron kinetic energy asso-
ciated with the screening efFects. Due to Buctuations,
we have a probability n; of having the io level filled,
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E, = —2In, (1 —n, ) (19)

Now, as we are analyzing the extra-atomic correla-
tion effects, we assume that the mean screening charge
spreads out around the io level like the exchange hole,
localized outside the io atom. This means that we take
I, =ca;J;, andE~ =E».

E~ represents the static approximation to the
Coulomb hole energy associated with the io level. In
a general formulation, i4 the exchangwcorrelation energy
Exc is given by the screened exchange interaction E» sc
plus the Coulomb hole energy, ECH. It is well-knowni3
that, for metallic densities, dynamical efFects reduce the
static value of the Coulomb hole energy by around 25%.
Thus, we can write

E "=pEf =p) E, withe= 4. (20)

The screened exchange interaction should be obtained
by screening the a;J; factor in Eq. (17). We have cal-
culated E»sc for 0.15 & n; & 0.85 by assuming, as
mentioned above, that the screening charge spreads out
around the io level like its exchange hole. Our analysis
yields that E; ' = P;E», with 0.70 ) P; ) 0.30 for
0.65 & n; & 0.95 (P; is found to depend almost linearly
on n;). Thus,

and a probability (1 —n, ) of having it empty. As the
Hartree energy associated with these two cases, weighted
with their probabilities, is given by —2I;n, , we find that
the energy associated with the occupancy Huctuations of
the itr level is given by

Ex+ can have an inaccuracy not larger than 5%; this
is still good enough since the energy Exc per orbital is
typically 1 eV (with J, 6 eV).

It is also convenient to make contact for the correla-
tion energy with the LD approximation. To this end we
consider the tA'igner approximation for the correlation
energy that offers an exact analysis of the low density
limit. For the Wigner-correlation energy per electron we
have the following equation:

0.44 f 4p) '
, -+~~0 —

i

—
i

0.44 a.u. , (25)
1.0+(—,':) ' &' )

p being the electron density. This equation should be
compared with the exchange energy per electron (LDA),
E = —4(~)~ a.u.

This shows that

E = 0.959E for p ~ 0. (26)

We recover a very similar Eq. (E+ = E») from our
approach by neglecting all the screening effects in the
exchange interaction and the Coulomb hole energy, as
should be done in the very low electron density limit.
This suggests that P m 1 for n; ~ 0, a result consistent
with the values given above for P, ; a linear extrapolation
of these values shows that P, = 1 for a; 0.4. Also
for electron densities much smaller than typical densities
VM1

D. Intra-atomic correlation energy

E, ' =P;E, = ——'n;J;n, (1 —n, ).

Equations (20) and (21) yield the following extra-
atomic exchange-correlation energy per orbital:

E~; = ——(p+P;)o.;J;n, (1 —n, ),
xe (22)

and shows that

Ec (P 1)E» (23)

C.= —(~+ P')~'J'(2 —n'-) (24)

with (p+ P;)n; 1. From the difFerent approximations
made to obtain Eq. (22), we deduce that our ansatz for

for 0.15 & n; & 0.85.
Equation (22) yields the exchange-correlation energy

as 2i of the dynamically screened interaction between the
charge n; and its exchange-correlation hole, is (1 —n;).
The extra n; hole needed to complete the total holei4
of one is still associated with the self-interaction correc-
tion. Notice that for 0.15 & n; & 0.85, (p+ P;)a; is
close to one: this implies that the exchange-correlation
hole is practically localized in the NN. Equations (8) and
(22) yield our basic result for the extra-atomic exchange-
correlation potential

Up to this point we have only considered extra-atomic
correlation contributions to Exc Intra-ato. mic effects
are negligible for very electropositive atoms (typically, al-
kali atoms), but they can be very important for the very
electronegative ones (extreme cases are O,F, etc.). Intra-
atomic correlation effects are associated with having the
exchange-correlation hole (1 —n; ) extended to the atom
of the orbital. In the following discussion, we shall as-
sume that all the orbitals inside the atom interact with
each other with the same Coulomb interaction U (small
difFerences between these interactions are not relevant to
the discussion presented here). Then, it is convenient
to rewrite the extra-atomic exchange-correlation energy,
Eq. (22), as follows:

Eo, = —
—,'Jp, ;n; (1 —n; ), (27)

where Jo; represents the effective interaction between the
n, charge and its exchange-correlation hole (1 —n, )
Intra-atomic correlation e6ects appear when part of the
total exchange-correlation hole is transferred to the same
atom of the

iver

orbital. If a &action, say f (f & 1), of this
hole is located in the atom, the intra-atomic correlation
energy should be given by

EI, = ——Un;(1 —n;), (28)

where U, is the intrasite Coulomb interaction between
orbitals, f being, in general, a function of U;, T,~, and
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n; .At the same time, the extra-atomic correlation energy
should be reduced due to having only a fraction, (1—
f)(1 —n; ), of the hole outside the atom. Then, the
total exchange-correlation energy is given by

1 f= —-(1 —f)J, ;n;.(1 —n;.) ——U;n,.(1 n,—.)

= —3i Jp;n; (1 —n; ) ——(U; —Jp;)n; (1 —n; )2 2
(29)

This equation shows that intra-atomic correlation
effects can be added to the extra-atomic exchange-
correlation energy by considering an effective interaction
(U; —Jp;) and the hole-fraction f that is localized inside
the atom.

We have calculated this parameter f by considering
difFerent cluster models that try to simulate the condi-
tions we are interested in. Figures 2 and 4 show the cases
we have considered in order to obtain the correlation ef-
fects associated with atoms of difFerent valency. All these
cases have been solved exactly using the corresponding
configurational space. Thus, for monovalent atoms we
have used the clusters shown in Fig. 2. The first case
[Fig. 2(a)] corresponds to an atom chemisorbed on a
metal surface simulated by three atoms, with the cluster
having four electrons; its Hamiltonian is given by

H = ) EMn~~ + )'t(ci~c3~ + c&~c30 + c.c.)
i=1,3o' CJ

+) Gpnp&+ ) T(cp c3g + c3&cp~)

+U,gnptnpg. (30)

Q. +Ueff

The case shown in Fig. 2(b) corresponds to a similar
condition, but the metal is simulated only by an atom.
The case shown in Fig. 2(c) tries to simulate a monova-
lent atom inside a metal. In all these cases, correlation
effects are localized in a single atom. By solving the
model Hamiltonian of Eq. (30), we expect to obtain in-
formation about the intra-atomic correlation energy and
the correlation hole that is localized in the same atom.

In our calculation, ls
ep the adatom level is changed

and the total energy Ep and the level occupancy np are
calculated for the ground state. Then, the one-electron
energy of Hamiltonian (30) is obtained by solving inde-
pendently the one-electron Hamiltonian

A,H' = ) eMni~+ ) t(clec3~+ cz~c3~+ c.c.)
i=1,3' CT

+) Vpnp +) T(cp c3 +c3 cp ), (31)

with Vp adjusted to give the same charge np as the one
obtained for Hamiltonian (30). The one-electron kinetic
and potential energies for Hamiltonian (30) are calcu-
lated using the ground-state wave function of Hamilto-
nian (31); the correlation energy is given by the difference
between the total energy Ep and the one-electron ener-
gies. Obviously, the other cases shown in Fig. 2 have
been solved following the same steps.

Let us, first of all, discuss the results obtained for the
cluster shown in Fig. 2(a). The first point to comment is
that f [Eq. (29)] has been found to depend on np and
g' as shown in Fig. 3(a), with a negligible dependence

on t, for t not much larger than T. For values of
smaller than 8, f is practically proportional to g', its
behavior as a function of np being in this region basically
the same, except for a constant, for all values of g'. This
is the region of major interest as p ) 8 corresponds to
a physical condition of very small bonding. It is also
convenient to rewrite the intra-atomic correlation energy
in the following way:

(c)E„

T2

r—N k

i 1P,

Q, +Ueff

EI; ————U,irn; (1 —n; )

1U.a~ (U.ir) c ( U.s~
( )2 4

"
I T I I

I
"P~~ T)

where the factor &i+ is normalized to one at np ——3, and
A embodies all the dependence on {P) at this point.
Figure 3(b) shows e&+ as a function of np for different
values of z., for z ( 8, the region of major interest
cia changes very httle, wh le for Ur ~ ~, eic is deformed
developing a cusp around the point np ——3. Figure 3(c)
shows A as a function of g'. notice the linear behavior

up to around T" ——8, and the saturation to 1 when
~ oo. It is interesting to see that the intra-atomic

correlation potential Vl,

FIG. 2. Showers diferent clusters used to calculate the in-
tra-atomic correlation energy for a monovalent atom. Clus-
ters (a), (b), and (c) have 4, 2, and 4 electrons, respectively.
The total spin of each cluster is chosen to be zero.

dEa U z d~c

d 8 d (33)

goes to + 2" around np ——2, for T ~ oo. This re-
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0
I I I I T I I I I I
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1.0-

O.B-

suit is related to the fact that for a very small coupling
between the atom and the metal, if the Fermi energy is
located between the atomic ionization and afBnity lev-

els, the correlation potential tends to align the effective
atomic level and the Fermi energy; the reason is that that
solution yields the z occupancy of the atomic level. It
should also be noticed in this regard that, in this limit
(UTr' m oo), the intra-atomic correlation energy per spin

is s" as it should be. It should be noticed that the limit

+g' ~ oo does not prevent having no spanning the full

range (0,1): the reason is that Vo can always be chosen to
fix the no value. For instance, for Vo ——— ~" we always

~(U, )) f U~Ir)
EI =):EI,*-=—

2CF

U.Ir~ t'U. Ir) ) -,c(„)
8 T )

T
)E

get no~ ——~, and for Vo && ~", no~ approaches one.
Once we have discussed the results found for the clus-

ter of Fig. 2(a), we shall comment on the ones found for
the other clusters of Figs. 2(b) and 2(c). The main point
to notice is that these two cases yield results similar to
the previous one; in particular the cases of Figs. 2(a)
and 2(b) are almost completely equivalent: this suggests
that the small cluster of Fig. 2(b) embodies the main
properties of the larger cluster of Fig. 2(a) and, prob-
ably, of similar clusters with more atoms in the metal
chain. Regarding the cluster shown in Fig. 2(c), its cor-
relation properties are found to be equivalent to the ones
of the cluster of Fig. 2(a) for the same effective couplings
between the atom and the metal; in this regard, the ef-

fective coupling of the Fig. 2(c) cluster is found to be

T,s = (T~~+ T~~) ~ as corresponds to the atom coupled to
two metal atoms with the hoppings, Tq and Tq.

The case of divalent atoms interacting with metals has
been analyzed using the simple case of Fig. 4(a); this
is equivalent to the Fig. 2(b) cluster that embodies the
main properties of a monovalent atom coupled to a metal.
Notice that in Fig. 4(a), the two metal levels are decou-

pled to each other: this decoupling allows us to prevent
exchange effects to appear inside the atom, as is the usual
case in crystals. Correlation effects are introduced by
means of the Coulomb interaction acting between dif-

ferent levels: in our model all these interactions are set
equal to U,Ir(Uq ——Uq

——Jzq ——U,Ir). The solution for
the cluster of Fig. 4(a) has also been obtained using the
method explained above for the clusters of Fig. 2(a).

Figures 5(a) and 5(b) show the intra-atomic correlation
energy EI as a function of nq~ and nq~ for z" ——3
and 6. We have found that EIc can be written, in the
range 0.1 ( nq~, nq~ & 0.9 with a very good accuracy as
follows:

0.6-

0.4-

UT =U2=Ueff= J12

02-
(c)

I I I I I I I I I I I I I I I

0 10 20 X 40 50 60 70 BO N) 100 110 120 IX 140 150

(U ff/r)

FIG. 3. (a) f(no, g'), see Eq. (28), is shown as a func-

tion of ns for different Tff values for the cluster of Fig. 2(a).
(b) The same for eI (ns, &~), see Eq. (32). (c) A( gf), see

Eq. (28), is shown as a function of Trf for the cluster of Fig.
2(a).

UT =U2=U3= J12=J13=J23=Ueff

FIG. 4. Shows different clusters used to calculate the in-

tra-atomic correlation energy for (a) a divalent atom and (b)
a trivalent atom.
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where el (n, ) is the function shown in Fig. 6(a), practi-
cally independent of P (if P & 6), that embodies all
the dependence on the orbital occupancies, n; . Equa-
tion (34) yields the intra-atomic correlation function as a
sum of the contributions coming from each independent
atomic orbital. We should stress that Eq. (34) is found
to be valid only if the charges n; are not too close to ei-
ther 0 or 1. In particular, if, say, n2 ——0, the correlation
energy coincides with the case discussed for a monovalent
atom, with el+ given above in Fig. 3(c). Notice that for
the divalent case, the curve shown in Fig. 6(a) is a little
broader than the ones shown in Fig. 3(b): this is the re-
sult of a larger intra-atomic correlation energy associated
with the increasing valency of the atom.

Figure 6(b) shows A( &"), the function that embod-
ies all the dependence on &". Compare this curve with
the one shown in Fig. 3(c) to see the important effects
introduced by the larger atomic valency. As the values

P & 6 cover most of the cases of physical interest, the
results of Fig. 6 are sn+cient to allow us to analyze the

jeff (Uerl ) c( ) (35)

where, as in the divalent case, E&+ is written as the sum of
the independent orbital contributions. el (n) is shown in
Fig. 6(b); here, we see that ez+ can be very well approx-
imated by 4n; (1 —n; ), in the range 0.1 & n; & 0.9.

intra-atomic correlation effects for a divalent atom using
the almost "universal" curve el+(n), and the A values of
Fig. 6(b). Let us mention that as g' increases, the
e&+(n ) curves get narrower as discussed for the monova-
lent case.

Finally, we consider a trivalent atom interacting with
a metal. This has been analyzed using the cluster drawn
in Fig. 4(b), with the three atomic levels interacting
with three independent levels that simulate a metal. The
results we have found for this case can also be embodied
in the equation (for g' & 6),
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I I I I I I I I I I

0.0 0.1 G2 03 Q.4 R5 I 0.7 080.9 19
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n, .
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(Ueff/T)

I

35
I

40

FIG. 5. The intra-atomic correlation energy EI for the
divalent model of Fig. 4 is shown as a function of nq for
difFerent values of ns (0.05, 0.2, 0.3, and 0.5). Curves ns
are symmetric with respect to nz ——0.5 of (1 —n2 ) curves.
We take T=l. (a) Here ~e = 3.. (b) P = 6.

FIG. 6. (a)el (n ) for the divalent (full line) and trivalent
(dashed line) models of Fig. 4 is shown as a function of n . (b)
A ( T~) for the divalent (full line), and the trivalent (dashed
line) models of Fig. 4 is shown as a function of
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This shows that

.Uee~ (Uea'
t

Ai in;(1 —n;), (36)

Summarizing this section, the total exchange-
correlation energy for a given level can be written as
follows:

with A g' j as given in Fig. 6(b).
The iscussion presented here for intra-atomic corre-

lation effects has focused on different atoms interacting
with a metal. If the matrix with which the atom is in-
teracting is a semiconductor, things are slightly different
because the semiconductor energy gap tends to increase
the intra-atomic correlation energy. This has been an-
alyzed by means of the cluster shown in Fig. 7(a), for
a monovalent atom. The correlation energy per spin has
also been calculated as in previous cases. Using the same
equation as defined above

Ec U.~& (Uee t 'I
I, '

8 i T )U i~I n& )~
efr j

(37)

we have determined A for different " and ' parame-T Ueff

ters. For U ~ 0 we recover the case already discussed

[see Fig. 3(c)j. For increasing values of U', EI, in-

creases as shown in Fig. 7(b), where A is given as a func-
tion of g' for different U' values. Typically,Ueff U ff 3'
and Fig. 7(b) shows a slight increase (less than 20%)
in the correlation energy due to the semiconductor gap
effects. Let us also mention that el (n, ) in Eq. (37)
practically coincides with the curve found above for the
monovalent case.

+Ueff V Q +Ueff

O.S-

0.4—

0.2—

8 10

Uef f/T

I

12
l

14
1
18

FIG. 7. (a) Model used to calculate the semiconductor gap
effects in the intra-atomic correlation energy. Here 2t yields

the semiconductor gap. (b) A ", ' is shown as a func-

tion of for different ' values.
U ff

XCE, = —
—,Jo;n; (1 —n; ) —~(U; —Jo;)n; (1 —n, )

= —
—,Jo;n, (1 —n, ) — '*

Aei (n; ),
(U' —1o,*) c

with two terms yielding the contributions coming from
the extra-atomic and intra-atomic effects. For very elec-
tropositive atoms, intra-atomic efFects are negligible and
we only get the extra-atomic contribution, —

2 Jo;n, (1—
+CCT

In more general cases, the intra;atomic correlation en-

ergy, —
2 (U, —Jo;)n, (1 —n; ) is important. It should

also be kept in mind that there is a particular balance be-
tween intra-atomic and extra-atomic efFects, as the limit
U, -+ oo shows. Here f ~ 1 and the total exchange-

correlation energy reads —~2n; (1—n, ); this only means
that in this limit the exchange-correlation hole is com-
pletely localized inside the atom.

III. RESULTS

As an application of the previous formalism we have
analyzed two cases, the adsorption of Na on Al(100), a
case where the intra-atomic correlation effects are negli-

gible, and the adsorption of H on the GaAs(110) surface,
a case for which those intra-atomic effects get relevant.
In this last case, we shall also discuss how H interacts
with the semiconductor surface at long distances, when
the extra-atomic many-body effects are negligible. The
Na case has been analyzed by using the LCAO Hamil-
tonian defined above, with the parameters calculated as
explained in Ref. 9.

In our approach, we have considered different Na cov-

erages 0 = 1, 2, and 4 (8 = 1 is a monolayer, with a
Na atom per Al unit cell), and have introduced many-

body efFects as explained above by taking P; = 0.7, as
the exchange energy is found to be given by Eq. (17)
with o.; = 0.65. In our treatment, the metal surface
is described by using a semiempincal approach, and
the fully LCAO-consistent method is applied to obtain-
ing the interaction between the Na layer and the metal
surface. The aim of this calculation is to analyze the
charge transfer between the Na atoms and the metal.
Figure 8 shows the chemisorption energy per Na atom as
a function of the distance between the alkali layer and
the last metal layer (in the calculations presented here,
the Na atoms move along the surface fourfold position).
Our results show a strong evolution of the chemisorp-
tion energy as a function of the coverage; this is mainly
due to the repulsive interaction between the alkali atoms
for large coverages and is in good agreement with LDA
calculations. We should mention that the correct treat-
ment of the extra-atomic exchange-correlation energy is
crucial for obtaining a positive binding energy: in our
calculations E per adsorbed atom is 2.34, 2.38, and
2.88 eV for 0 = 1, 2, and 4, respectively.

We should also mention that our calculations yield the
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FIG. 8. Chemisorption energy per adsorbed atom for Na on
Al(100) as a function of the distance between a Na atom and
the last metal layer. Different curves correspond to different
coverages, 8 = 1, 8 = 0.5, and 8 = 0.25.

following electronic charge per Na atom: 0.97, 0.82, and
0.7 electrons for 8 = 1, 2, and 4, respectively. This
shows an important evolution from a very covalent regime
(8 = 1) to an intermediate case (8 = 4) where Na has
0.7 electrons. It is important to notice that we do not
recover the pure ionic limit, with the alkali atom com-
pletely ionized, in the low coverage regime: this is also in
agreement with the results of Refs. 17 and 18. Our self-
consistent approach, with the treatment of the exchange
and correlation efFects as discussed above, offers a very
convenient way of analyzing how the electron charge is
transferred between the adsorbate and the metal; the
problem associated with the usual LDA method is re-
lated to the difficulty in obtaining the ion charge from
the total charge density.

We have also applied the previous formalism to calcu-
late the interaction between a H atom and the GaAs(110)
surface. The semiconductor surface is described using
Vogl et al. 's parameters, i and the method discussed here
is applied to the calculation of the interaction between
H and the semiconductor. The exchange-correlation
potential introduced in this paper allows us to obtain
in detail the H-chemisorption energy not only for H-
semiconductor distances around the energy minimum,
but at large distances, too. Notice that at these large dis-
tances, the intra-atomic correlation energy should cancel
very accurately the intra-atomic Coulomb interaction en-

ergy appearing between electrons having opposite spins:
the correlation potential introduced in Sec. II yields this
cancellation with good accuracy.

In this paper, me present results for the chemisorp-
tion of half a monolayer of H deposited on the As site (a
monolayer corresponds to two atoms per semiconductor

10- .(o)

5-
0)

Q-

C
QJ

—15

(c)

(b)
I

1.5

r~

~ ~

~I'

r

~t

distance ( A )

I

2.5

FIG. 9. Chemisorption energy (full line) per adsorbed atom
for H on GaAs(110) as a function of the H-semiconductor
distance. This energy is split into its different contribu-
tions: (a) repulsive energy, (b) hybridization energy, (c) ex-
change-correlation energy, and (d) the intrasite Coulomb in-
teraction for H, 4 .

»»it cell). It is well known that H chemisorbs on both
As and Ga atoms with similar bond strengths, then,
we can expect the H atoms to be equally deposited on
the two semiconductor dangling bonds. Our interest in
analyzing the case of a H monolayer deposited on the
As dangling bonds is addressed to understanding how
the As-H bond is formed, and how the As-like dangling
bonds are modified by the H deposition. In particular,
the H-H distances inside the monolayer is large enough
to practically deeouple the H-H interaction. Thus, the H
semiconductor interaction is very similar to the one be-
tween independent H atoms and the As dangling bonds.

Figure 9 shows the chemisorption energy per H atom
as a function of the H-semiconductor distance. In the
same figure, we also show the difFerent contributions to
the chemisorption energy: the repulsive energy is due
to the overlap between the electron charge clouds of H
and the semiconductor; the hybridization energy is as-
sociated with the hopping integrals T and also includes
the Coulomb interaction between charges, except for the
intrasite Coulomb interaction 4 that is shown indepen-
dently; finally, the exchange-correlation energy is also
shown in Fig. 9.

From this figure, we deduce that the H-As coupling
starts to appear for distances smaller than 2.6 A, while
the energy minimum is obtained for d = 1.9 jt. For d )
2.6 A., the H-As interaction is practically zero, with a
very good cancellation between all the different terms
contributing to the total energy. For distances larger
than 3.2 A, the exchange-correlation energy is cancelling
out the intra-atomic repulsive energy 4 and all the other
interactions start to be negligible.

In order to show how the H-As bond is formed, we
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show in Fig. 10 how the local density of states on the H
and the last semiconductor layer evolve as a function of
the H-semiconductor distance. For d = 3.4 A. , Fig. 10(a)
shows a H-prominent peak associated with the atomic
level; the semiconductor layer shows the two peaks as-
sociated with the As-like and the Ga-like surface states.
For d = 2.6 A, when the H and As starts to form the
bond, we find that the H peak has been shifted upwards
in energy due to the As interaction, while the As-like
peak has also been displaced downward due to the same
effect. Eventually, Fig. 10(c) shows the case d = 1.9 A. ,
for the chemisorption energy minimum: in this case the
strong H-As interaction has evolved to its full strength,
and the H and As peaks of the decoupled system [see Fig.
10(a)j have been completely removed &om the semicon-
ductor gap. We only find the surface band associated
with the Ga-like dangling bonds.

Similar results have been obtained for Ga. For the
Ga-H bond we find that the Ga-like initial states located
around the semiconductor gap are also removed &om this

region by the Ga-H interaction. Accordingly, a full H
monolayer is found to passivate the semiconductor sur-
face. Finally, let us mention that for this full monolayer,
the chemisorption energy per adsorbed atom is obtained
to be = 2.5 eV, this result showing a strong interaction
between the hydrogens adsorbed on the Ga and As dan-
gling bonds.

IV. CONCLUSIONS

In conclusion, we have presented a self-consistent
LD approach for analyzing LCAQ Hamiltonians. The
method is always kept at the level of the initial atomic
orbitals basis, the exchange-correlation energy being de-
scribed as a function of the orbital occupancies. Equation
(38) defines the many-body energy as the contribution of
two terms: one is related to the extra-atomic exchange-
correlation effects, the second one to intra-atomic corre-
lation processes. Both energies are described in the pa-
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50 DENSITY-FUNCTIONAL APPROACH TO LCAO METHODS 10 547

per, and the parameters defining these contributions are
calculated using simple, but reasonable, approximations.

The scheme derived in this paper has been applied to
two different systems: in the first one, only extra-atomic
many-body efFects are important. This is the case of an
alkali atom, Na, on Al(100). Our results offer a conve-
nient way to analyze the problem of the charge transfer
between the alkali atom and a metal. In the second sys-
tem, we have analyzed H chemisorbed on GaAs(110) and
have described how the bond between the H and As is
formed. Our procedure has been applied to the calcula-
tion of the H-As chemisorption energy for long distances,
too, a limit where intra-atomic correlation effects are very
important. Our results for the H case suggests that H is
strongly bonded to the different semiconductor dangling-

bonds, and that a H monolayer would tend to passivate
the surface leaving no density of states in the semicon-
ductor energy gap.

The good results obtained for the different systems an-
alyzed in this paper give strong support to the method
introduced here.
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