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The pertinence of fourth-order gradient corrections to the exchange-only energy functional E [n]
for producing accurate exchange potentials v (r) is examined utilizing the exact v (r) s obtained
from the optimized-potential model (OPM) for spherical atoms and jellium spheres (whose inner
regions have slowly varying densities for which the gradient expansion should be valid). It is found
that the fourth-order contributions containing V n represent important ingredients of E, [n] which
should be included in gradient-based nonlocal extensions of the local-density approximation. In
accordance with this observation the v (r) s resulting from the fourth-order gradient expansion are
closer to the exact v (r)'s than those from generalized gradient approximations which do not
contain V' n contributions.

I. INTRODUCTION

In recent years it has become clear that, while the
local-density approximation (LDA) for the exchange-
correlation energy functional E„,[n~, n~] (the key ingre-
dient of Kohn-Sham equations) has been very success-
ful for a large variety of problems, the description of
many interesting systems in atomic physics, quantum
chemistry, and condensed matter physics, s requires
nonlocal corrections to the LDA. The gradient expansion
(GE), the most simple and systematic nonlocal extension
of the LDA, has already been introduced in the seminal
paper of Hohenberg and Kohn. ~ While the GE to second
order (GE2) was found to be inadequate for the descrip-
tion of atoms (for an overview see Ref. 17) and few de-
tailed investigations of its properties for solids (for which
the GE should be more appropriate than for atoms) were
performed, gradient corrected functionals have received
renewed attention since the introduction of generalized
gradient approximations (GGA's). Such GGA's can
be interpreted as partial resummations of the complete
GE including only terms depending on V'n but no higher
gradients. While the expansion of GGA's for small gra-
dients thus reproduces the GE2, it does not contain all
fourth-order gradient corrections, which also depend on
V' n. In this paper we demonstrate that an inclusion
of the V' n contributions of the GE clearly improves the
ability of gradient based functionals to reproduce local
quantities such as the exchange potential v (r).

To this end we reconsider the GE to fourth order (GE4)
for the exchange-only energy functional E [n~, nt] first
suggested by Herman, Van Dyke, and Ortenburger for
spin-compensated systems (n/2 = nt = nt),

x(l+ c 2(+ c 4[@ + c„&rI(+c&,( ]j (1.1)

where

3kF(r) n p4'
kF (r) = [3z n(r )] s
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Ii 2kF (s )n(r ) y

V'n(r)
4kF2 (r)n(r)
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(1 4)

Note that the corresponding spin-polarized functional
can be directly obtained from (1.1) using the general
property

1E [ng, ng] = —fE [2nt]+E [2nt]),

10 146
81 2025

(1.7)

so that we restrict the discussion to E [n] in the follow-

ing.
The fact that, in spite of their early appearance in

the literature, corrections depending on g have not been
used in applications is mainly due to technical difEcul-
ties [compare the exchange potential f'rom (1.1) given in
Appendix A]. On one hand, only the GE's coefficients
obtained &om linear response,
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are known exactly, but not the relative gradient co-
efficients c*& &, which are determined by nonlinear

response. ' ' However, the values of c„*&&, are re-
stricted by the presently available information on the
small momentum expansion of the relevant first-order
three- and four-point functions to a narrow range, the
relative size of the q coefficients being the only source
of uncertainty. The most realistic values for t"*& &, are

7 7

obtained by the assumption that their relative size is
identical to that of the corresponding coefficients of the
noninteracting three- and four-point functions. The
resulting c„*&&, are

'l

c„~ ———1.347; c~g ——0.442, (1.8)

which is somewhat larger than the corresponding values
for the kinetic energy functional T, [n].s~4~

On the other hand, the fourth-order terms of Eq. (1.1)
lead to divergent exchange energies for finite systems
with exponentially decaying densities which makes it dif-
ficult to extract their relative contributions to E 's for
atoms unambigously. In this respect, however, recently
some progress has been made42 by use of a modified GE4
in the form of an extended GGA. In contrast to the initial
suggestions to overcome this problem, this approach
is very xnuch in the spirit of the GE and even allows
higher-order contributions to the GE to be included ap-
proximately. Moreover, the exchange potential resulting
from the GE4 diverges at the nuclear sites for point nu-
clei (although this divergence only shows up very close
to the nucleus). This divergence, however, is easily elim-
inated by the (physically more correct) use of extended
nuclei.

The present analysis is based on spherical atoms
and jellium spheres (often used to model simple metal
clusters whose nomenclature is adopted here to dis-
tinguish them). Explicit results are given for Pd and
Rn, which are characteristic of all atoms for which
we have obtained optimized-potential-model (OPM)
solutions, 4s'2v and for the magic systems Nas2 and Na2s4,
which are being characteristic of closed-shell jellium
spheres. For the purpose at hand the region inside the jel-
lium spheres provides a density which is very slowly vary-
ing [similar to the n(r) in the interstitial region of solids]
so that the GE should be valid. Only for these systems
are optimized-potential-model ' solutions available,
which (by the very definition of exchange-only49 ~s so)
represent the exact results within the exchange-only ap-
proximation and thus serve as an absolute standard for
any approximate E [n]. In particular, OPM calculations
provide the exact exchange potential v (r) which is an
ideal tool for analyzing E [n] (Refs. 51, 46, and 27) as
it gives much xnore detailed information than, e.g. , the
total E which (as an integral quantity) allows for fortu-
itous error cancellation. Moreover, in the present context
v (r) is the only unambigous quality criterion. In view of
the inadequacy of the GE4 to deal with the asyxnptotic
regixne of these finite systems one is necessarily forced to
analyze local quantities like the exchange energy density
e (r) or v (r). But only v (r) avoids all ambiguities aris-
ing from the nonuniqueness of the exchange energy den-

sity. As a functional derivative of (1.1) it is identical for
all versions of e (r) differing by partial integrations and
thus allows for an examination of the interior of atoms
and jellium spheres while ignoring the asymptotic regime
which is irrelevant for solids.

It should be emphasized that atoms and jellium
spheres complement one another in the sense that their
geoxnetry and characteristic scales are completely differ-
ent. Basing an analysis on both systems provides infor-
mation on the universality of approximate E [n]'s, i.e.,
it represents an additional check for fortuitous error can-
cellations. An approximate E [n] which improves on the
LDA/GE2 for both types of systems is much less likely
to fail in real applications to solids than approximations
solely constructed for only one particular type of system.

The paper is organized as follows. As a first step to-
wards the analysis of the complete GE4 we consider (in
Sec. II) a reduced fourth-order gradient expansion includ-
ing only terms arising from linear response (LR4),

E )n) = J d r e" (n) )1+c q(+e 4q ), (1.9)

i.e., those ingredients of the GE4 whose coefficients are
known exactly. It is found that the contribution of the
fourth-order linear response term (g2 term) to v (r) is
almost as large as that of the second-order correction for
both atoms and jellium spheres. For the case of T, [n],
however, substantial cancellation between the individual
fourth-order terxns occurs. Thus, in Sec. III approxi-
mate values for c„& and c&, are used to show that can-

cellation effects between the gz contribution and the non-
linear response terms (which will be called the g( and (
terms in the following) do not reduce the importance of
the g contributions. Some details of our OPM results for
jellium spheres are given in Appendix B.

II. g~ CONTRIBUTION
TO EXCHANGE POTENTIALS

The applicability and convergence of the GE is pri-
marily based on the smallness of the successive terms
in Eq. (1.1), i.e., on the size of ( and )7 as well as sim-
ilar ratios of higher gradients (Note, however, that at
least to low order its convergence is also supported by
the decreasing size with n of the prefactors c „of the
nth order —in addition to c 2 0.1234 and c 4 0.072,
the linear response contribution to the sixth order is
given by c s ——38522/893025 = 0.043). In order to judge
the GE's usefulness and the importance of its various in-
gredients it is worth examining ( and )7 for the systems
under consideration. While ( and )7 for Pd and Rn have
been reported previously [Figs. (la) and (ld) of Ref. 27],
Figs. 1 and 2 show these quantities for Na92 and Na254
(together with the corresponding densities that illustrate
the geometry of these systems —note that f has been
enlarged by a factor of 10 to make it visible on this scale).

One first observes some similarities of ( and g between
atoms and jellium spheres: As already noted, 4s ( and
g decrease in the interior of these finite systems with
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FIG. l. t', Eq. (1.4), and g, Eq. (1.5), from OPM solutions
for Na92 (r, = 3.93, jellium radius R = 17.741 a.u.). To make

( visible on this scale it has been multiplied by 10. Also the
density n(r) normalized to the corresponding bulk value is
given for comparison.
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FIG. 2. Same as Fig. 1 for Na2E4 (r, = 3.93, jellium radius
R = 24.889).

increasing particle number, making Rn and Na254 par-
ticularly useful systems for the analysis of the GE. As
for both atoms and jellium spheres, the density decays
exponentially for large r and both ( and )7 increase expo-
nentially in the asymptotic regime. In solids, however,
this regime is not present such that for our purposes
only the interior of these finite systems is relevant. On
the other hand, one notes fundamental diH'erences be-
tween the two types of systems: While for atoms ( and

g are of similar magnitude, for clusters g is completely
dominating, reBecting the fact that in their interior, jel-
lium spheres should allow for a linear response treatment.
Consequently, atoms and jellium spheres belong to com-
pletely diferent classes of systems and thus their com-
bination represents a stringent test for any approximate
E [nj. For both classes nonlocal corrections are required
due to the very size of ( (for atoms) and )7 (for atoms and
jellium spheres). Moreover, while the r dependence of (
and q is to some extent similar for atoms, these quantities
are almost "orthogonal" for jellium spheres.

In this context it is important to realize that a some-
what similar behavior for ( and )7 is foundss in vanadium
metal: In the interstitial region, )7 is much larger than (.
Possibly of more importance is the large anisotropy of g,
while ( is essentially isotropic. Prom these results it is
clear that )7 is much more important than ( in the region

FIG. 3. Nonlocal contributions to the exchange potential
of Pd from the GE2 and LR4, Eq. (1.9), obtained by inser-
tion of the OPM density in comparison to the exact OPM
result. v (r) has been shifted by the difFerence between
the highest occupied eigenvalues from the OPM and the LDA
(see comment in Sec. II).

where metallization occurs. Analogous results demon-
strating that )/I can be large in regions in which ( almost
vanishes have been found for CoO.

In the following, the GE is compared to GGA's whose
general form is given by

E [n] = f 4 e e" (n) I + e eg(()I', (2.1)
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I"IG. 4. Nonlocal contributions to the exchange potential of
Pd from PW91 and EV93 obtained by insertion of the OPM
density in comparison to the exact OPM result. v (r) hasOPM

been shifted by the difference between the highest occupied
eigenvalues from the OPM and the LDA (see comment in

Sec. II).

where g(() is constructed such that the GGA exchange
potential does not diverge for exponentially decaying
densities. Thus GGA's can be understood as partial re-
summations of the complete GE. Note, however, that
in constructing g(() one is not just attempting to make

g(()'s expansion in powers of ( reproduce the (" terms
in the complete GE but, rather, is eH'ectively trying to
include all nonlocal contributions. Prom the comparison
of Eqs. (1.1) and (2.1) it is thus obvious that GGA's are
based on the assumption that all ingredients of the GE
other than ( and, in particular, )7, can be approximately
represented by simple powers of (. Thus GGA's should
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constructed to reproduce atomic v (r)'s as EV93 is not
able to compensate for the missing g2 contributions. The
simple form of GGA's does not contain enough of the
relevant characteristic density gradients to allow for a
universally accurate functional.

From this comparison, it is obvious that for both types
of systems the g contribution is important. Taking to-
gether all systems considered for this study, LR4 approx-
imates the exact vopM(r) better than any GGA. Note
that the independence of LR4's accuracy from the type
of system considered re8ects its systematic origin.

III. RESULTS FROM COMPLETE
FOURTH-ORDER EXPANSION

Using the approximate c„& and c&, from Eq. (1.8) one

can check the importance of the rl( and (2 terms rela-
tive to the g2 term and the ability of the complete GE4
to reproduce vPPM(r) We st.art by separately plotting
the contributions of the three terms to atomic v (r)'s
in Figs. 11 and 12 (again obtained by insertion of exact
OPM densities). From these figures it is obvious that in
the interior of atoms the il!c term contributes almost as
much as the ri term, while the P contribution is some-
what smaller. However, due to their relative signs one
finds considerable cancellation between the g( and (
potentials. As a consequence, the complete vG~4(r) does
not difFer substantially from vLR (r), as can be seen from
the comparison of Figs. 3 and 5 with Figs. 13 and 14. In

FIG. 11. Nonlocal contributions to the exchange potential
of Pd from the individual components of the GE4:
and ( contribution. For c'& &, the values of Eq. (1.8) have
been used.

the latter, the vGK4(r)'s resulting from two slightly dif-
ferent sets of relative gradient coeKcients, the values of
Eq. (1.8) (GE4a), and those for T, [n], i.e. , c

&

———9/8
and c&, ——1j3 (GE4b) are plotted together with the ex-

act v+PM(r) Comp.arison of the two sets of c
& &, gives

an estimate of the uncertainty left in the approximate
evaluation of these coefficients. Figs. 13 and 14 show
that both sets of relative gradient coefficients lead to al-
most identical v (r)'s (apart from the irrelevant asymp-
totic regime). Although this extreme agreement might
be somewhat fortuitious, it seems that the accuracy to
which c„& and c*, is known is sufficient for actual appli-
cations of the E4. Comparing either GE4a or GE4b
with the LR4, Figs. 3 and 5, then demonstrates the net
effect of the g( and (2 terms. In fact, the complete GE4
is very similar to the LR4. Consequently, the GE4 pro-
duces superior v (r)'s compared to PW91, while being
almost as accurate as EV93 which was constructed kom
atomic vopM(r) by use of the virial relation.

In Figs. 15 and 16 the individual fourth-order contri-
butions are given for Nas2 and Na2s4 (note the enlarged
scale). These figures demonstrate explicitly that jellium
spheres allow for a linear response treatment: The ii(
and (2 contributions to v (r) are negligible, the!!i2 term
dominates completely. The resulting total vG~ (r)'s are
indistinguishable from the v R4 (r) 's given in Figs. 7 and 9
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ing the exact e 2 4, Eq. (1.7), and the approximate c
of Eq. (1.8) in electronic structure calculations for metals.
Since an equivalent analysis is not yet available for the
correlation energy functional, we recommend combining
the GE4 for E [n] with the LDA for E,[n] for preliminary
investigations of the eKect of the g contributions.
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APPENDIX A: EXCHANGE POTENTIAL
FROM GE4

For completeness, the potential arising &om the GE4,
Eq. (1.1), is given:

GE4( ) ID%( ) 1 +
3 c.,
2 (2k~)'

(V'2n) 2 (V'n) 2

n +3n2
3 c 4 t'(V4n)

2 (2tcF)4 & n

+c(. l
(A1)

—4 —3 +6(]9;n) (0;V'2n) (V'2n) 2 (V'2n) (V'n) 2 5

i=1

(V'2n)' . (8;B,n)(B;B,n) i. (]9;n)o];(Vn)' (Vn)4)
n4

L)g 1 i=1

(V'2n)(V'n)2 . (o];n)o],(Vn)2 (Vn)4)
~3 ~3 ~4

i=1

where Oi denotes the partial derivative with respect to
r; The po. tential for LR4 is obtained from Eq. (Al) by
setting c„&

——c&, ——0. Note further that the exchange
potential of spin-dependent systems,

b
v, ([n ], r) = E [ng, ng]

ng r

can be obtained from the spin-compensated v (r)
v ([n], r), Eq. (Al), using (1.6),

TABLE I. Total ground state energies Et t, total exchange
energies E, eigenvalues of highest occupied orbital e q (in
hartrees), and differences between E and the right-hand side
of the exchange virial relation, Eq. (Bl), (in mhartrees) from
numerical OPM calculations for closed-shell jellium spheres
(r. = 3.93).

b
v, ([n ],r) = (E [2']+E[2vzg]j,

= v ([2n ],r).

APPENDIX B: OPM RESULTS
FOR JELLIUM SPHERES

In this Appendix we give some further information on
our OPM solutions for jellium spheres (with r, = 3.93).
In Table I the total ground state energies, total E 's, and
the eigenvalues of the highest occupied orbitals are listed
for a number of closed-shell systems. As already empha-
sized earlier, 4s the virial relation for E [n] (Ref. 56; see
also Ref. 57),

Size

2
8

18
20
34
40
58
92

138
186
198
254

—Rot
(hartrees)

0.0994
0.3735
0.8074
0.8978
1.5247
1.7460
2.6088
4.1317
6.1615
8.3117
8.7645

11.3572

(hartrees)
0.2214
0.8799
2.0177
2 ~ 1987
3.8435
4.4018
6.5650

10.4056
15.5893
21.2070
22.3432
28.9642

(hartrees)
0.1813
0.1626
0.1444
0.1300
0.1331
0.1207
0.1271
0.1273
0.1150
0.1168
0.1017
0.1141

Error
(mhartrees)

0.0001
0.0001

-0.0014
-0.0004
-0.0043
0.0001
0.0042
0.0106
0.0182
0.0334
0.0243
0.0526

E.[n] = frpr u [r] 3n(v) +v . 'Vn(r),

is also valid for external potentials for which the con-
ventional virial theorem V = 2T does not hold—(as,
e.g. , jellium spheres) and provides an ideal quality cri-
terion for OPM solutions for finite systems. Thus, in
order to demonstrate the accuracy of our OPM solutions
for jellium spheres, the difFerence between E and the
right-hand side of Eq. (Bl) evaluated using the numeri-

cal v (r) is also listed in Table I. Even for the largest

systems, this error is 2 x 10 smaller than the corre-

sponding E,which is the same relative accuracy as

obtained for spherical atoms.
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