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We calculate the direct and inverse photoemission spectra of 3d transition metals with fcc or bec
structure. The dynamics of the d electrons is described by an extended Hubbard model including
five canonical d bands in the one-particle operator Ho and all relevant on-site Coulomb and exchange
matrix elements in the interaction Hamiltonian H;. For the ground state a quantum-chemical ansatz
is made taking local spin and density correlations into account. The retarded Green’s functions of
the d electrons are evaluated by using the projection technique of Mori and Zwanzig. Thereby the
dynamics of the additional particle is projected onto local spin and density excitations in analogy to
the ground-state calculation and treated exactly within that restricted operator space. In the case
of Ni the correct satellite position and a reasonable reduction factor of the bandwidth are obtained
by using an experimentally determined parameter set. The numerical calculations for our model
Hamiltonian also predict multiplet structures in the photoemission spectra of Co and Fe.

I. INTRODUCTION

Transition metals provide a good example for a class
of materials in which electronic correlations considerably
influence the excitation spectrum as well as ground-state
properties. When comparing angle-resolved photoemis-
sion data to band-structure calculations based on the lo-
cal density approximation (LDA) a clear reduction of the
d bandwidth due to correlations is observed. The exper-
imental width turns out to be smaller by 10% for Fe and
at least 25% for Ni.!™® Furthermore, measurements on
Ni reveal an additional satellite structure 6 eV below the
Fermi edge,*® a feature impossible to explain within an
independent-particle picture.

An important correlation effect is the screening of a
test charge by the surrounding electrons. Due to this
phenomenon the long-ranged Coulomb forces between
electrons in metals are reduced to a screened interaction
which decreases rapidly with distance. Inclusion of the
screening of the Coulomb interaction is the basic idea of
the GW approximation in which the usual Fock diagram
is replaced by a screened exchange process. By applying
this technique Aryasetiawan® was able to describe ac-
curately the band narrowing and the broadening of the
quasiparticle peaks in ferromagnetic Ni. However, the
satellite structure at 6 eV could not be reproduced.

Most of the theoretical work on one-particle excita-
tions in transition metals is based on (extended) Hub-
bard models.” In addition to the one-particle Hamilto-
nian Hy, which contains the (five) tight-binding bands
of the d electrons near the Fermi energy, one considers
the two-particle operator H; describing local Coulomb
and exchange interactions within single transition-metal
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ions. The validity of this model Hamiltonian relies on
the short-ranged nature of the screened Coulomb inter-
action and on the good localization of the d orbitals in
transition metals (narrow band systems).

The simplest way of including correlation effects in
the Hubbard model is by calculating self-energy correc-
tions in second-order perturbation theory. Along this
line Treglia et al® obtained band narrowing as well as
satellite structures. However, for a quantitative compar-
ison with experiments higher-order corrections have to
be included. The correlation energy of the ground state,
for example, is overestimated by a factor of 2—3 if one
considers only processes up to second order.

In the t-matrix approach of Kanamori® the multiple
scattering of two holes is taken into account up to infinite
order. However, the theory is restricted to the limit of low
charge-carrier concentrations where it finally becomes ex-
act. It has first been used by Penn'® and Liebsch!! to ex-
plain the appearance of a satellite structure in Ni. Later
Liebsch!? and Igarashi!®'* went beyond the low-density
limit by considering also multiple electron-hole scatter-
ing processes. The electron-hole scattering channel is
closely related to the dynamic susceptibility, containing
also contributions from the magnon poles when the sys-
tem is magnetic. Consequently, their results may be com-
pared with calculations based on magnon-hole coupling,
which were performed independently by Roth,'5 Hertz
and Edwards,'® and Matsumoto et al.l” Finally, band
narrowing and a satellite structure for Ni have also been
derived by Davis and Feldkamp,'® who assumed the 3d
self-energy to be the same as that of a core hole.

Besides these analytical calculations there exist also
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numerical approaches to the correlation problem in a five-
band Hubbard model: Victora and Falicov!® calculated
the exact single-particle spectrum for a four-center tetra-
hedral cluster with five d orbitals per site. By applying
periodic boundary conditions the cluster simulates a four-
atom fcc crystal. In this exact diagonalization study a
correctly positioned multiplet structure and reasonable
values for the band narrowing have been obtained for
ferromagnetic Ni. But the details of the quasiparticle
dispersion are beyond the scope of this cluster calcula-
tion which is restricted to the I' and X points of the fcc
Brillouin zone.

Local correlations of d electrons in transition met-
als can also be described using an Anderson impurity
model as starting point. Thereby one considers a sin-
gle transition-metal ion coupled to a sea of conduction
electrons. Following this line Jo et al2® gave detailed
interpretations of the 3d photoemission spectrum of fer-
romagnetic Ni and its resonant behavior at the 2p thresh-
old. As in the cluster diagonalization mentioned before
the quasiparticle dispersion cannot be obtained within
that framework.

The treatment of one-particle excitations in transition
metals presented here uses a quantum-chemical approach
to the correlation problem. For the ground state an
ansatz is made which includes local density and spin cor-
relations. This part of our calculation is based upon
the work of Stollhoff, Thalmeier, and Olés on transi-
tion metals, who applied the local ansatz to determine
the properties of a ground state with paramagnetic?! or
ferromagnetic?? spin order. It was found that electronic
correlations within d orbitals lead to a considerable de-
crease of charge fluctuations and a buildup of local mo-
ments reflecting Hund’s rules. For simplicity, a paramag-
netic ground state is assumed in this work. Recently the
local ansatz has been combined with the Monte Carlo
technique by Takahashi and Kanamori??® to investigate
the ground state of Ni compounds.

In the framework of the local ansatz an accurate
treatment of correlations in excited states is also pos-
sible. This has been demonstrated for semiconductors
in Refs. 24 and 25 where sizable correlation corrections
to the energy gaps of Si, Ge, and diamond were calcu-
lated. Later the treatment of quasiparticle energies was
extended by Becker, Brenig, and Fulde?® to a complete
determination of the excitation spectrum. Thereby a for-
mulation of the correlation problem in the framework of
the projection technique of Mori?” and Zwanzig?® turned
out to be very useful.
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The projection technique is also applied in the present
work for evaluating the retarded Green’s functions of d
electrons. Thereby we project the dynamics onto opera-
tors which generate the additional particle accompanied
by local density or spin excitations. An essential point
is the evaluation of matrix elements in coordinate space,
which enables us to consider the three-particle scattering
problem up to infinite order as in the t-matrix approach.
Furthermore, the interaction operator H; may be taken
to be quite general.

The paper is organized as follows. In Sec. II the model
Hamiltonian is introduced. The ansatz for the correlated
ground state is discussed in Sec. III. The correlation op-
erators for the excited states correspond directly to this
ansatz, as shown in Sec. IV. The numerical results for the
ground state are briefly discussed in Sec. V. Subsequently
we present the excitation spectra of Ni in Sec. VI and of
the remaining 3d transition metals in Sec. VII. Details of
the calculation are explained in the Appendixes.

II. THE MODEL

The calculation is based on a model Hamiltonian H
describing a cubic lattice (fcc or bec) with five d or-
bitals at each site. The one-particle term Hj contains
a summation over five canonical d bands m = 1,...,5
with dispersion relations ¢, . The tight-binding band
structure depends solely on the crystal structure and the
total d bandwidth W (for details see Refs. 29 and 30).
Therefore, canonical bands are well suited for a system-
atic treatment of different transition metals. The effect of
hybridization between d and s electrons will be taken into
account by assuming a noninteger occupation number ng
for d electrons. If we neglect the Coulomb interaction V
between orbitals on different lattice sites I the Hamilton
operators H} and Hj can be written in the general form

H(’) = Z Emkdinlw'dmka’ (1)
mko
1
H)= D) Z Z Vijk dzlodlla'dlla'djla' (2)
Ioo' ijkl

Here, the operator dlnka creates a d electron with wave
vector k in band m with spin o. It is related to the local

creation operators d:-'Ia through

djnko' = N_% Z e_ik.nlymi(k) dtTIa' (3)
i

TABLE I. Matrix of exchange constants J;; for the five different d orbitals.
zz yz Ty z? — 4? 322 — 72
2z 0 J—%AJ J—%AJ J——%AJ Jd%AJ
yz J—éAJ 0 J—%AJ J—%AJ J-%AJ
zy J—1iaJ J—1iaJ 0 J-1IaJ J+ 340
z? —y? J—3iaJ J—1iaJ J—1IaJ 0 J+ 340
322 — 12 J—%AJ JﬂgAJ J+%AJ J+%AJ 0
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The index i refers to the five different basis orbitals of
the canonical d bands in unit cell 7 and N denotes the
pumber of unit cells. These atomic orbitals have been
adapted to cubic symmetry, i.e., two are of e; and three of
tag character. The coefficients ymi (k) are obtained from
the eigenvectors of the corresponding canonical structure
matrix given in Appendix A.

All interaction matrix elements V;ji depending on
more than two different orbitals are neglected. Under
this restriction the most general form of V;;x; allowed by
atomic symmetry3! is

Vijkt = Uir0i001 + Jij0udjn + Jij0udji, (4)
Ui =U 4+ 2J — 2J3. (5)

The matrix elements J;; depend upon two different pa-
rameters only, i.e., the exchange constant J and the
anisotropy parameter AJ. They are listed in Table I.

For the following it will be useful to subtract from the
interaction Hamiltonian H} the Hartree-Fock (HF) part
HY. In addition, the canonical bands are assumed to be
the result of a self-consistent field calculation. Therefore
H! will be absorbed in the definition of Ho. Thus the
Hamiltonian is given by H = Ho + H;, where Hy = H;
and

H, = H} — Hy + 3(HY), (6)
HY = Z Z (2Viju —ij)nzd}‘z,dﬂa- (7
Io 15l

The expectation value (...) in Eq. (6) is taken with re-
spect to the ground state |®o) of Ho, in which all single-
particle states are occupied by d electrons up to the Fermi
energy €. The term 1 (H{') ensures that (H;) = 0. Fur-

thermore, 7y = (d};,d;;,) denotes the site occupation
number of a single d orbital with index I.

By varying the Coulomb parameters U, J, and AJ
and the total number of d electrons per site nq, different
transition-metal elements can be investigated. In the fol-
lowing the HF bandwidth W will be used as the unit of
energy.

III. GROUND STATE

The starting point for the construction of the corre-
lated ground state is the corresponding wave function
|®0) of Ho. The Coulomb interaction is thereby taken
into account only in mean-field approximation. A corre-
lation hole, which shows up in particular in the pair-
distribution function of electrons with opposite spins,
cannot be described within that framework. It is com-
mon knowledge that one is able to treat electronic cor-
relations quite accurately in atoms or molecules by ap-
plying quantum-chemical methods. Often they are based
on a variational ansatz for the ground-state wave func-
tion, in which configurations with one- and two-particle
excitations out of the HF ground state are superimposed
on |®o) (configurational interaction). Therefore it seems
natural to use a similar approach to the correlation prob-
lem in crystals.

A complication of calculations with variational wave
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functions for many-particle systems is their possible lack
of size consistency. The ground-state energy E, of a sys-
tem is an extensive quantity, which is proportional to
the number of particles N, in the system. In general,
a variational calculation of the ground-state energy con-
tains also statistically independent processes, which lead
to unphysical terms proportional to higher powers in N..
We circumvent this problem right from the beginning by
using a formula for the ground-state energy Fo, which
remains size consistent when various approximations are
made. As was shown in Ref. 32 the following relation
holds:

. 1
Ey= (HIQ) = (Hll + llg% m——(ﬁ—o—-}-_II-JHI) . (8)

Here the Liouville operator £y acts as a superoperator on
operators A according to the definition £oA = [Ho, A]-.
Important in Eq. (8) is the formation of camulants, which
enters the definition of the round brackets and is abbre-
viated by the subscript c:

(A|B) = (A'B).. (9)

According to their definition cumulants eliminate all sta-
tistically independent processes from Eq. (8). A survey
about properties and applications of cumulants can be
found in Ref. 33. If  is expanded in powers of H; then
E, represents the Rayleigh-Schrédinger perturbation se-
ries. If the expectation values in (8) contain only oper-
ators fulfilling fermionic anticommutation relations as in
this work they can be evaluated by using Wick’s theo-
rem. In that case the formation of cumulants becomes
equivalent to the prescription to consider exclusively con-
nected diagrams. Equation (8) can be viewed as a gener-
alization of Goldstone’s linked cluster theorem3* to cases
where Wick’s theorem does not apply.

The exact ground state of the system |¥,) can be char-
acterized by |Q2) as is suggested by Eq. (8). The opera-
tor {2 resembles the wave operator which transforms |®)
into |¥,), the distinction being that here £ appears only
in connection with the metric form (9). The following
ansatz is made:

1- ZU”A,‘) .
M

Here the operators Ay, p = 1,..., M describe different
kinds of two-particle excitations. The coeflicients 7, are
evaluated using the identity (A|HS) = 0, which holds for
arbitrary operators A (see Ref. 35). The relation seems
plausible, since |Q2) replaces the exact ground state, which
is an eigenstate of H. Therefore the corresponding ex-
pectation value factorizes for any operator A and the
cumulant vanishes. If we use the ansatz (10) for @ and
set A = A, we obtain a system of linear equations, which
determines the parameters 7,,:

Z"’"(A#IHAV)Z(A#IH)» p=1...,M.

12) = (10)

(11)

The Hamiltonian H; creates two important types of
two-particle excitations on a lattice site I, namely spin
excitations S;; S;; and density excitations n;rn;;, where
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1
SiI: 52‘13117”00"1;'10'7 (12)

nir = Z Nilo = Z dL,dua- (13)

In the first equation, o denotes the usual Pauli spin ma-
trices. As in the application of the local ansatz to tran-
sition metals by Stollhoff and Thalmeier?! and Ole$ and
Stollhoff?2 we therefore introduce the following set of op-
erators A,:

20m;1,0m;1 1=7
L) = T
A1) {&m bnir, i4, (14)
A% (I)=SiS;1, i #j. (15)

Here, the multi-index p has been replaced by p = (¢, 1, j),
where t = 1,2 distinguishes between density and spin ex-
citations and ¢, j are indices of atomic orbitals on site
I. Furthermore, the ground-state expectation values of
the density operators have been subtracted according to
dn=n—(n). As a consequence the operators A};(I) cre-
ate exclusively two-particle excitations. In order to avoid
redundancy we require ¢ > j. The total number of corre-
lation operators A, therefore equals 15 + 10 = 25. The
corresponding operators for the lattice are constructed by
simply summing over the lattice sites: A% = 3", AL (I).

As mentioned before the operators A, appear in the
interaction Hamiltonian H;. In terms of these operators
H, is given by

1
H, = 1 Z[(2Uij-Jij)A}j—4Jij(A§j+A?j)]. (16)
ij

The operators A?j, which are ignored in the ansatz for
the correlated ground state, transfer two electrons from
orbital ¢ to orbital j and vice versa:

A (D) = 3(dl.dly d;pdjr, + He), (17)
The described ansatz leads to a considerable reduction of
charge fluctuations in comparison with the unperturbed
ground state |®¢) and to the formation of local moments.
For details see Refs. 21 and 36.

When evaluating the expectation values for the ground
state in local space hopping processes between different
unit cells are neglected (R = 0 approximation®7), i.e., it is
assumed that (d:.’ladj Jo) =01 J(d:.rladj 7o)- This approxi-
mation corresponds to the neglect of momentum conser-
vation when evaluating the diagrams in k-space represen-
tation and becomes exact in infinite dimensions.3® In fact
without it the calculation of third-order diagrams would
not be possible since it would involve threefold integra-
tions over a three-dimensional Brillouin zone. The error
seems to be less than 5% in those cases where it can be
checked. Consequently, it suffices to consider the inter-
action processes within a single transition-metal atom in
unit cell I. The matrix elements in Eq. (11) depend only
on the parameters U, J, and AJ, the orbital energies e;
and the occupation numbers n; (see Appendix B).
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IV. EXCITED STATES

Having described the correlated ground state of our
model system we now turn to its excitation spectrum.
The one-particle excitations of d electrons may be calcu-
lated by considering the corresponding retarded Green’s
functions G, (k,t), which are defined as

Gy (k,t) = —i0(t)(o|(Bl(k,t), B, (k,0)]+[To).  (18)

Here B} (k,t), B, (k,0) denote arbitrary operators in the
Heisenberg picture, 6(t) is the step function, and |¥,)
represents the exact ground state. If we replace BY,(k,t)
and B, (k,0) by d_,,.(¢) and d! , _, respectively, the ex-
citation spectrum of the corresponding type of d electron
can be determined from the imaginary part of the re-
tarded Green’s function.

As in the previous section we choose a formulation
which is inherently size consistent. It has been shown
by Becker and Brenig3® that the Laplace transform of
G . (k,t) can be written in terms of cumulants as

ﬂ. (19)

Thereby L represents the Liouville operator of H. It
should be mentioned that the expression [w — £]~!B, (k)
has to be viewed as an entity when cumulants are formed.
As before the exact ground state [¥o) has been replaced
by ).

Equation (19) is in a proper form to be evaluated
by the projection technique of Mori?” and Zwanzig.?®
Thereby the propagator [w — L]™! is projected onto
a relevant operator space spanned by the set R =
{Bi, ..., Bi}. Within this space the dynamics is treated
exactly. If one neglects the influence of the remaining
part of the operator space the matrix G of correlation
functions within the relevant set R is given by

G(k,w) = X [wX - F]X

1

w —

B} (k),

%ﬁw:@ 7 B.(k)

(20)

For a derivation see Forster.*® Two quantities enter the
projection equation (20), namely, the frequency matrix
F and the susceptibility matrix X:

F#V = (Ql [BL’ ['Bv]+ Q)’ (21)

Xuw = (9| [Bf,B,]+ Q). (22)

As before, LB, has to be treated as an entity with re-
spect to cumulant formation. In Egs. (21) and (22) the
correlated ground state will be approximated by inserting
the ansatz of Eq. (10) for |Q2).

The final step in the calculation of the excitation spec-
trum for transition metals consists in the proper choice
of the relevant operator set R. Obviously, the operator
d:nka itself has to be included in that set since one is in-

terested in its spectrum. Operators coupling to dfnka are
found as in the usual equation-of-motion method by con-
sidering the commutator Eldjnko, where £, represents
the Liouville operator of H;. We choose the following

relevant operator set B, (m,k) which is directly related
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to the two-particle excitation operators of the ground
state A,:

B°(m,k)=d ., (23)
BY;(m,k)=N"% Z e~ MR AL (I),d],)-. (24)

I

According to their definition the operators Bf;(m, k)
consist of a lattice sum over local operators B;(I) =
(A% (1), d:.'h]_. At a given site I the local operators cre-
ate an additional electron which is accompanied by one-
particle excitations of spin and density type:

2d!, &n;p i=j
BL(I)=y " b o (25)
d;r.0n;p, 1 # 7,
BZ(I) = L(dl,, S5 + dl;,Sf;), i#3, (26)
Bi(I)=1 d}ud;fhd,-u, i# . (27)

In Eq. (26) 8§%;=4(nj1,—n;1,) is the z component of the
d electron spin operator for orbital j and S;}:d} 1951,
represents the corresponding spin-flip excitation. The
total number of operators B, (m, k) for fixed band index
m and wave vector k equals 1 + 25 4 20 4 20 = 66.

As in the ground-state calculation we apply the R = 0
approximation to the frequency matrix elements of the
one-particle Hamiltonian H, in order to avoid twofold
integrations over the three-dimensional Brillouin zone.
Furthermore, all those expectation values have been ne-
glected which contain products of more than three op-
erators of the form H,, A%, or Bj; for t = 1,2,3. The
results for the frequency and susceptibility matrices as
well as further details of the calculation can be found in
Appendix C.

Finally, the connection of the present approach with
Kanamori’s t-matrix approximation as well as second-
order perturbation theory should be discussed briefly. If
we replace in Eq. (24) the local d operators by their
Fourier transforms the operators B};(m, k) can also be
viewed as double k sums over operators which create
three-particle states consisting of two d electrons and
one d hole. When one omits the double summations
and uses instead of the B};(m, k) these three-particle op-
erators depending on three different momenta directly
as projection operators the calculation becomes equiv-
alent to a complete solution of a three-particle scatter-
ing problem in k space. Starting from these equations
Kanamori’s t-matrix approximation is derived in the low-
density limit by taking only the multiple hole-hole scat-
tering processes*! (ladder diagrams) into account. How-
ever, in order to go beyond the low-density limit one has
to consider the electron-hole scattering channel as well.
Second-order perturbation theory is obtained if one ne-
glects the Coulomb interaction in the frequency matrix
elements of the three-particle operators completely, i.e.,
if one replaces £ by L, in Eq. (21).

For a one-band Hubbard model describing the case
of strongly ferromagnetic Ni the complete three-particle
scattering problem can be solved,'® which leads to quite
accurate excitation spectra. Since it is impossible to solve
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the corresponding problem for a Hamiltonian containing
multiplet splittings as in the present work, the substi-
tution of the general three-particle operators by the in-
tegrated versions Bf;(m, k) is reasonable as long as the
number of charge carriers is not too high. However, near
half filling this local approach is not applicable any more
for the excitation spectra. (For tests of the accuracy of
the local approximation, see Ref. 42.)

V. GROUND-STATE PROPERTIES
AND PARAMETER VALUES

In the ansatz (10) for the correlated ground-state den-
sity and spin excitations are added to the HF state, which
considerably lowers the ground-state energy Ey. For a lo-
cal Coulomb repulsion of U =0.5 and half filling (nq=35),
for example, the correlation energy E. = Eg — Egr
amounts approximately to 30% of the HF ground-state
energy Eyp. Away from half filling the relative contribu-
tion of E. becomes smaller and finally vanishes for empty
or completely filled bands.

Furthermore, ground-state correlations drastically re-
duce charge fluctuations on single transition-metal ions
in the lattice. If N = Zia n;1o denotes the local particle
number operator the expectation value for charge fluctu-
ations is given by (6N2) = (N2) — (N)2. It is shown in
Fig. 1 with respect to the correlated (full lines) or uncor-
related ground state (dashed lines) for (a) the fcc and (b)
the bcc structure. As a result of correlation effects the
local occupation number fluctuates only between ng + 1.

Finally, results for the total effective moments (S?)
with 8 = Y, S;; are presented in Figs. 1(c) and 1(d)
for the fcc and bee structure, respectively. The large in-

2.5 S 2.5 —
(a) , \ fee { (®) , \ bee
2.0 / \\ 2.04 / \
’ 1 / \
/ \ / \
o 1.5 / \ o~ 1.5+ / \
£ 1 N ' '
\
Viod ! L [ Y104 7 \
i / \
) \ ’ \
0.5 \ 0.5+, \
0.0 T o 0.0 — Y
0.0 2.5 .0 7.5 100 00 25 50 75 100
6.0 Ng 6.0 Ng
(c) fce (d) bee
1 1
4.5 4.5
S
% 3.04 %, 3.0
v
]
1.5 P S~ 1.5 PN
7 N 7 N
N\ v N
0.0 —— 0.0 ——
0.0 25 50 7.5 100 0.0 25 50 7.5 10.0

ng Ny

FIG. 1. (a) Charge fluctuations (§N?) as a function of
electron number ng4 in the correlated ground state (full line)
in comparison with the HF state (dashed) for the fcc struc-
ture. (b) The same for the bcc structure. (c) In contrast to
the reduction of the charge fluctuations the total effective mo-
ment (5?) clearly increases in the correlated state (full line) as
compared with the HF state (dashed) in a fcc structure. (d)
The same as in (c) but for the bcc structure. The parameter
values are U = 0.5, J =0.12, and AJ = 0.017 for all figures
(a)~(d).
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crease in the expectation values for the correlated state
(full lines) as compared with the HF ground state (dashed
lines) reflects the formation of local moments. For a pa-
rameter set of U = 0.5, J = 0.12, and AJ = 0.017
as in Fig. 1 one is approximately halfway between the
uncorrelated values and the maximum spin polarization
predicted by the first Hund’s rule.

Before we turn to the presentation of the calculated ex-
citation spectra we discuss the choice of the parameters
U, J, and AJ, for the series of 3d transition metals. As
mentioned before the simplified canonical bands, which
are used in the present work, solely depend upon the
crystal structure and the bandwidth W. The HF band-
widths are determined from the relation W = cu~1s72,
where u is called the intrinsic band mass and s is the
atomic sphere radius. Values for 1 and s for different 3d
transition metals can be found in Ref. 44. The constant
c is fixed by assuming a bandwidth of 4.3 eV in the case
of Ni. The spin-averaged LDA bandwidth of Ni has been
taken from Ref. 46. As can be seen from Table II the 3d
band width W slightly increases from Sc to V and then
constantly drops up to Ni.

The Coulomb parameters U, J, and AJ are simple lin-
ear combinations of the Slater-Koster integrals F°, F?,
and F*, which have been tabulated for various kinds
of atoms. However, in a solid the conduction electrons
screen heavily the local Coulomb repulsion of the 3d elec-
trons thereby reducing the values of F° by more than a
factor of 10. (In the case of the integrals F> and F** there
is only a reduction of 10%-20%.) Since an accurate in-
clusion of the screening effect is difficult the best choice is
to take the parameter values directly from experiments.
By measuring the multiplet structure of transition-metal
ions embedded in simple metallic hosts like Cu or Ag the
screened Coulomb parameters can be obtained directly.
This way van der Marel and Sawatzky*® deduced inter-
polation formulas for F°, F2, and F* which lead in our
case to the parameter set

U=1.22+0.174(Z — 21), (28)
J =0.49 +0.062(Z — 21), (29)
AT =J/T. (30)

Here, the energies of U and J are given in eV and 7 is
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the atomic number of a 3d transition metal element. The
resulting parameter values in units of the bandwidth W
are also listed in Table II. As expected, the Coulomb
repulsion U has its maximum value for Ni and decreases
for Co, Fe down to V.

VI. EXCITATION SPECTRUM OF NI

The electronic excitation spectrum of Ni has been com-
puted numerically by using the experimentally deter-
mined parameter set of Table II. The results are shown in
Fig. 2. The spectrum is divided into a renormalized one-
particle density of states of fcc form between —0.5 and
0.5 (in units of the HF bandwidth W) and a multiplet
structure below —0.5, which contains 14% of the total
weight. Obviously, the width of the quasiparticle band
structure has been reduced by 15% as a consequence of
correlation effects. The position of the Fermi energy is
marked by a dotted line. Furthermore, the center of grav-
ity of the canonical band structure has been taken as the
zero point of energy.

For the chosen parameter set we find the maximum of
the satellite structure at —1.16, approximately 1.57W =
6.75 eV below the top of the d bands. This value is
in good agreement with photoemission experiments, in
which the center of the multiplet structure has been
observed? around 6.3 eV. Angle-resolved photoemission
experiments also reveal a strong reduction of the Ni band-
width, where a spin-averaged value of 3.4 eV has been
found?3 by several groups. When compared with the
LDA width*® of 4.3 eV this implies a reduction of 20%.

Due to the ferromagnetic polarization of Ni there is an
exchange splitting between majority and minority spin
bands. In optical experiments? a splitting of approxi-
mately 0.3 €V at the Fermi energy €, has been observed.
The energy differences between majority and minority
spin states decrease as one goes to lower-lying states and
cannot be resolved any more at the bottom of the d
bands. Spin-polarized LDA calculations, however, over-
estimate the exchange splittings and find values around
0.8 eV near €,. Therefore, if one compares the total spin-
split d bandwidth of LDA calculations with experiments
the reduction is even larger, i.e., around 30%. Such high
reduction factors can also be obtained for the param-

TABLE II. Parameter values for the series of 3d transition metals. The respective HF band-
widths W have been derived by using data of Andersen and Jepsen (Ref. 29) for canonical band
structures. The parameter values for U, J, and AJ in units of the bandwidths W are based on
optical measurements (Ref. 45). In the bottom line the crystal structures of the 3d transition-metal

elements are listed.

Sc Ti A\ Cr Mn Fe Co Ni

ng 2.2 3.4 4.4 5.4 6.3 7.4 8.4 9.4
W (eV) 5.8 6.9 7.7 7.5 6.4 5.5 4.9 4.3
U (W) 0.20 0.20 0.20 0.23 0.30 0.38 0.45 0.56
J (W) 0.08 0.08 0.08 0.09 0.12 0.15 0.17 0.22
AJ (W) 0.012 0.011 0.011 0.013 0.017 0.021 0.025 0.031
str. hep hep bcce bec sc bce fee fec
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12.0 In conclusion, the experimental parameters of Ref. 45
lead to the correct satellite position but the obtained re-
10 duction of 15% is somewhat too small. However, such
— 80 a relatively weak band renormalization has also been
S found in exact diagonalization studies'® and in calcula-
2 6.0 tions based on Kanamori’s t-matrix theory.'"17 There-
g fore it seems to be a deficiency of the simplified model
E 40 Hamiltonian rather than of the approximation scheme
used. The inclusion of Coulomb interactions between
2.0 o neighboring ions, for example, increases the band nar-
rowing whereas the satellite position is not changed very

0.0+ o 15 1o _o- oS o much, as has been pointed out by Aisaka et al%®
' Energy (W) ’ ' In order to obtain more insight into the composition of
the multiplet structure we show in Fig. 3 the Ni spectrum

FIG. 2. Single-particle excitation spectrum of Ni for the

parameter values U = 0.56, J = 0.22, AJ = 0.031, and an
electron number of ng=9.4. The position of the Fermi energy
is denoted by a dotted line. Energy is measured in units of
the HF bandwidth W.

agnetic case when the comparably large paramagnetic
LDA bandwidth of 4.8 eV from Moruzzi, Janak, and
Williams*? is used as reference value. Finally, it should
be mentioned that the neglected 4s band of Ni leads to
a rather flat density of states extending from —9 eV be-
low € up to 2 eV above €,. This constant background
should simply be added to the spectrum of Fig. 2.

7 @
A
1 /\A}V\J
] 1

N M \
1@
10.0 A
19 0 A
0.0 A

Intensity (W)

T T T T
-25 -20 -15 -10 -05 0.0 05 1.0
Energy (W)
FIG. 3. Analysis of the Ni spectrum. (a) Full excita-

tion spectrum of Ni for the parameters U = 0.56, J = 0.22,
AJ=0.031 as in Fig. 2; (b) HF density of states for the fcc
structure; (c) spectrum for U =0.56, J=AJ=0; (d) spectrum
for U=0.56, J=0.22, AJ =0; (e) excitation spectrum of Ni
for parameters as in (a) but without ground-state fluctuations
taken into account.

for different choices of the parameter sets. By comparing
the HF density of states for the fcc lattice in Fig. 3(b)
with the full Ni spectrum of Fig. 3(a) it becomes appar-
ent that the shape of the quasiparticle density of states
above —0.5 remains the same when correlation effects
are included. There is only a reduction of bandwidth. In
Fig. 3(c) the Ni spectrum is presented for U = 0.56, but
without exchange interactions, i.e., for J = AJ = 0. In
this case there is only one quasiparticle and one satellite
peak at each k point for fixed band index m. For that
reason the shape of the multiplet structure just reflects
the flat dispersion of the satellite peaks and their eg-ta,
splitting due to the cubic ligand field.

Upon turning on the J parameter two new features
appear in Fig. 3(d) near —2.1 and —0.7, respectively,
beside the main structure around —1.1. The shape of
the spectrum reflects the form of the atomic d? multiplet
for the same parameters, which shows a splitting into
three peaks corresponding to a 1S state, the degenerate
singlet states !G,'D, and the degenerate triplet states
3P3F. The energy difference between 1S and G equals
5J and there is a singlet-triplet splitting of 2J between
!G and 3F. The three structures at —2.1, —1.1, and
—0.7 show a comparable energy spacing. Furthermore,
the states at —2.1 and —1.1 are mainly of singlet charac-
ter, whereas the peak at —0.7 has triplet character. The
singlet (triplet) character of the structures in the spec-
trum can be checked by looking at the spectral weight
distribution of the operators B},—4B? (BL+4B?), which
create predominantly singlet (tripletf states for low car-
rier concentrations. Finally, the anisotropy parameter
AJ splits the main structure around —1.1 into smaller
substructures as can be seen by going back to Fig. 3(a).

The plot Fig. 3(e) presents the Ni spectrum for the
complete parameter set of Table IT but without ground-
state fluctuations, i.e., the # parameters in Eq. (10)
have been set equal to zero. In this case the weight of
the states around —0.75 with triplet character is much
higher. Obviously, ground-state fluctuations have the
tendency to lower the weight of the triplet states. Fur-
thermore, the reduction of the bandwidth equals 18%
without ground-state fluctuations, a value which shrinks
to 15% when the full ground-state ansatz is used.

By looking at the parameter dependence of the satellite
structure in the Ni spectrum its relation to an atomic
d? multiplet becomes apparent. However, the detailed
shape of the peaks especially within the main structure
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FIG. 4. Renormalized quasiparticle bands of fcc Ni (full
lines) in comparison with the HF band structure (dotted)
along lines of high symmetry in the Brillouin zone. The
dashed line shows the position of the renormalized Fermi en-
ergy. Parameters are the same as in Fig. 2.

is clearly affected by the dispersion of the satellite peaks
as well as by the eg-t24 splittings. The spectrum deviates
in this region from a simple atomic picture.

Figure 4 shows the dispersion of the five canonical d
bands for the fcc structure (dotted lines) together with
the renormalized band structure of Ni (full lines) along
directions of high symmetry in the Brillouin zone. The
dashed line marks the position of the Fermi level. Obvi-
ously, there is no change in the shape of the band struc-
ture, i.e., the renormalized bands are just quenched by
15%. The shift of the bands is strongest at the bottom of
the d bands and is constantly decreasing up to the Fermi
energy.

In Fig. 5 the corresponding curves are shown for the
bcce structure thereby using the same parameters as in the
previous figure. Also in this case the shape of the bands
remains unaffected by correlations. There is only a slight
perturbation of the renormalized bands near the H point
due to satellite peaks which appear in an energy region of
—0.4 up to —0.3. The reduction of the bandwidth equals
11%, somewhat smaller than in the fcc case.

05

Energy (W)

0.5 —

0.75
H N P r N H P

FIG. 5. Renormalized quasiparticle bands for the bcc
structure (full lines) in comparison with the HF band struc-
ture (dotted). The position of the Fermi energy is marked by
a dashed line. Parameters are the same as in Fig. 4 (bcc Ni).
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VII. 3D TRANSITION-METAL SERIES

In the following section the dependence of the exci-
tation spectrum on the electron number n, will be dis-
cussed. In Fig. 6 a series of transition metals with fcc
structure is presented with the following electron num-
bers: (a) nqg = 9.4 corresponding to Ni, (b) ng = 8.4
corresponding to Co, (c) nqg = 2.2 corresponding to Sc,
and (d) ngy = 0.6. Figure 7 shows the spectra for bcc
metals with (a) nqg = 9.4, (b) ng = 7.4 corresponding to
Fe, (c) nq = 1.6, and (d) ng = 0.6. In the cases of Co and
Fe the exchange parameters J, AJ have been reduced as
compared with the experimental values of Table II in or-
der to lower the satellite weights. Furthermore, Sc has
a hep structure in reality but the overall shape of the
one-particle density of states differs not very much from
that of the fcc structure.

Apparently, the spectra show some kind of electron-
hole symmetry: For ng > 5 a multiplet structure ap-
pears on the low-energy side of the photoemission spec-
trum and for ng < 5 on the high-energy side of the in-
verse photoemission spectrum. Increasing the number
of charge carriers, i.e., holes in the first case and elec-
trons in the latter, results in an increase of the spectral
weights of the satellite structures. Especially the triplet
peaks grow appreciably. Simultaneously the reduction of
the bandwidth becomes more pronounced. The weight of
the satellite structure in Fig. 7(b) for Fe is stronger than
in Fig. 7(a) although the Coulomb repulsion U has been
lowered from U = 0.56 to U = 0.38. Obviously, the influ-

(a) Ni
—
(b) Co
=
2 -
g (c)
=]
10.0 —
(d)
0.0 T T T T 1
-1.5 —1.0 -0.5 0.0 0.5 1.0 1.5
Energy (W)
FIG. 6. Series of 3d transition metals with fcc structure:

(a) Ni spectrum, nqg = 9.4, U = 0.56, J = 0.22, AJ = 0.031;
(b) Co spectrum, ng = 8.4, U = 0.45, J = 0.10, AJ = 0.015;
(c) “Sc” spectrum, nqg = 2.2, U = 0.20, J = 0.08, AJ = 0.012;
(d) spectrum for ng = 0.6, U = 0.20, J = 0.08, AJ = 0.01.
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(b) Fe
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FIG. 7. Series of 3d transition metals with bcc structure:
(a) Spectrum for ng = 9.4, U = 0.56, J = 0.22, AJ = 0.031;
(b) Fe spectrum, ng = 7.4, U = 0.38, J = 0.10, AJ = 0.015;
(c) spectrum for ng = 1.6, U = 0.20, J = 0.08, AJ = 0.01;
(d) spectrum for ng = 0.6, U = 0.20, J = 0.08, AJ = 0.01.

ence of the charge-carrier concentration is the dominat-
ing effect. In conclusion, the present model Hamiltonian
treated by the local ansatz distinctly predicts satellite
structures and band narrowing also for Co, Fe, and Sc.
A reduction of the LDA bandwidth has indeed been
found experimentally’ for Co (about 20%) as well as for
Fe (about 10%). However, photoemission measurements
clearly reveal that correlation effects become weaker if
one goes from Ni to Co to Fe in contradiction with our
findings. Furthermore, there is no convincing evidence
for atomiclike multiplet structures in these transition
metals, although their weight increases in our model cal-

1.0 1.0
(a) fcc 4 (b) bee
0.94 0.9
=
0.8 Tx0.84
=
0.74 0.7
0.6

T T 0.6 T T
7.5 8.0 85 9.0 9.5 10.0 7.5 80 85 9.0 9.5 10.0
ng ng

FIG. 8. (a) Ratio between the renormalized bandwidth
W, and the HF bandwidth W as a function of electron number
ng for the fcc structure. The three curves refer from top to
bottom to the parameter sets (U=0.2, J=0.06, AJ=0.008),
(U=0.3, J=0.1, AJ=0.015), and (U=0.5, J=0.1, AJ =
0.015). (b) The same for the bcc structure.
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culation from Ni to Co and Fe.

The ratio of the correlated to the HF bandwidth
W, /W as a function of electron number ng is shown
in Fig. 8 for the three different Coulomb parameters
U=05,U=0.3,and U = 0.2. Lowering the Coulomb
strength certainly increases the bandwidth. But in the
case of Fe there is still a reduction of 29% for U = 0.2.
Similar findings hold for the share of the satellite weight
I, with respect to the total weight I;, which is shown
in Fig. 9 for the same parameter sets as in the previ-
ous figure. Also in that case the increase in the number
of charge carriers (holes) clearly enhances the satellite
weight. For that reason even a drastic reduction of the
Coulomb parameters cannot eliminate the fundamental
discrepancies.

The existence of multiplet structures in the photoe-
mission spectra of Co and Fe has also been predicted in
earlier works for similar model Hamiltonians by applying
the t-matrix approach!®!! or second-order perturbation
theory.® The local approach used in the present calcu-
lation takes all three-particle scattering diagrams into
account, i.e., it includes the second-order perturbation
theory as well as the series of ladder diagrams of the ¢
matrix approach. Furthermore, a correlated ground state
has been used as starting point instead of a simple HF
state. On the other hand the scattering processes have
been treated in an integrated fashion due to the use of
local excitation operators Bf;(I) as pointed out at the
end of Sec. IV. Consequently, the peaks in the excitation
spectra show no damping effects. In Ref. 42 it has been
demonstrated that the local approach is quite accurate
for low carrier concentrations as in the case of Ni. With
increasing electron or hole density, however, the neglected
broadening of the satellite and quasiparticle peaks be-
comes more important. Therefore one can expect that
instead of the discrete peaks in the multiplet structure of
Fe in Fig. 7 one would just obtain a broad hump. In ad-
dition, the broadening of the § peaks would increase the
quasiparticle bandwidth and lower the satellite weights.
Nevertheless, due to our model Hamiltonian clear mul-
tiplet structures should be found experimentally in Co

0.4 0.4
(a) fec (b) bee
0.34 0.3 4
= =
<,0.24 =,0.21
1 1
0.14 0.1 4
0.0 T T T T 0.0 T T T T
7.5 80 85 9.0 95 10.0 7.5 80 85 9.0 9.5 10.0

Ng Ng

FIG. 9. Ratio between the spectral weight of the satellite
structure I, and the total spectral weight I; as a function of
electron number ny4 for the fcc structure: Starting with the
topmost full line the three curves have been calculated using
the parameter sets (U =0.5, J=0.1, AJ =0.015), (U =0.3,
J=0.1, AJ=0.015), and (U =0.2, J=0.06, AJ =0.008) as
in Fig. 8. (b) The same for the bcc structure.
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and Fe just as in Ni provided that the chosen parameter
values of Table II are applicable. However, if the values
of the Coulomb parameters U and J are lowered drasti-
cally the broadening of the quasiparticle peaks leads to
qualitative changes. For example, in the case of Ni the
satellite structure disappears for U < 0.2 in second-order
perturbation theory.®

There is another feature which lowers the satellite
weights in the photoemission spectra of Co and Fe.
Second-order perturbation theory shows the existence of
a second multiplet structure at the high-energy edge of
the inverse photoemission spectrum. The spectral in-
tensity of this satellite increases with increasing charge-
carrier concentration. For Ni it has practically no weight
but in case of Fe about 25% of the total satellite inten-
sity will be transferred to the inverse spectrum. In order
to obtain this structure in a local approach one has to
extend the set of projection operators ij (I). For that
purpose the local creation operator of a d electron in or-
bital i at site I is decomposed into d:-’IU = E;—r I0+J3Iav
where

dif, = N73 S 0(er—em)e ™ Rin (k) dly,. (31
mk

The distinction of the two types of local operators 33 Io

and JIIG leads to two new operator sets 1-3’,‘1 () and E:j (I
(corresponding to the operator combinations dtdtd and
dddt, respectively). They produce satellite structures at
both edges of the quasiparticle density of states of the
d electrons. Note that the use of the described operator
sets is complicated by the fact that the creation and an-
nihilation operators of Eq. (31) at different lattice sites
do not anticommute any longer. Although the second
multiplet structure will reduce the spectral weight of the
satellite in the photoemission spectrum it will not alter
the strong band narrowing of Fe.

VIII. DISCUSSION AND SUMMARY

Having discussed the advantages and disadvantages of
a local approach to the correlation problem in transition
metals we consider the limitations of our model. In the
HF part of the Hamiltonian the most serious deficiency
is the neglect of the 4s electrons. The detailed form of
the 3d bands is clearly altered due to hybridization with
the 4s band. If the 4s states are included in (1) and the
canonical band structures are scaled carefully for each
transition metal element they deviate only by a few per-
cent of the total bandwidth from accurate self-consistent
field calculations. The HF results influence the correla-
tion calculation by the form of the dispersion curves €,,x
and the occupation numbers n; of the 3d orbitals. With
respect to the occupation numbers the effect of the hy-
bridization between 3d and 4s electrons has already been
taken into account by using the correct values of the d
electron numbers ng in the calculation. Therefore the
inclusion of the 4s electrons will mainly lead to a rather
flat and extended background in the excitation spectra.
For these reasons we can conclude that improvements on
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the HF level will not cause qualitative changes of the
presented results.

With respect to the interaction part of the model
Hamiltonian the situation is different. Here the dynam-
ically screened interaction W between 3d electrons in
transition metals has been replaced by a static intra-
atomic Coulomb interaction V. The frequency depen-
dence as well as the k dependence of W are approximated
by a constant. The intra-atomic interactions between
electrons in the five 3d orbitals are sufficiently described
by our model Hamiltonian. For symmetry reasons they
are determined by the three Slater-Koster integrals F°,
FZ%, and F* so that the absolute values of these parame-
ters for different transition-metals are the only unknown
quantities here. Interatomic interactions between neigh-
boring transition-metal ions, however, can influence the
excitation spectra even if the interaction strengths are
small since the number of nearest neighbors is high in
these closely packed solids.

If one considers the screening of 3d holes in transition
metals one expects qualitative differences between Ni and
Co or Fe since a hole in a Ni ion is only screened by 4s
electrons whereas in Co or Fe also the other 3d holes
within the same ion participate in the screening. There-
fore, the screened interaction W could be considerably
weaker in Co or Fe than in Ni. However, these consider-
ations are in conflict with the experimental results of van
der Marel and Sawatzky.*® Furthermore, the ferromag-
netic phase becomes unstable if the Coulomb parameters
U and J are drastically lowered for Co and Fe.22

The dominating frequency dependence of the screened
interaction W results from plasmon excitations, which
appear 25 eV below the Fermi energy in Ni. These
plasmon poles in connection with a continuum of single-
particle excitations reduce the HF bandwidth of Ni by
about 20% when the Fock diagram is replaced by a
screened exchange.® The 6 eV satellite of Ni, however,
is missing in the GW calculation. As has been shown
in Sec. VI this satellite structure will further narrow the
bandwidth of Ni by 15%. By combining both effects a
measured reduction of 30% of the d band width in Ni (in-
cluding spin splitting) can be understood. It would be
interesting to perform similar GW calculations also for
Co and Fe in order to obtain better insight into the form
of the screened interaction between 3d electrons in these
materials.

In conclusion we have calculated the electronic single-
particle spectrum of 3d transition metals for a model
Hamiltonian, which includes realistic d band structures
(fcc and bec) as well as all relevant Coulomb matrix ele-
ments between the five d orbitals at a given site. Using
experimental values for the Coulomb parameters, the cor-
rect position of the satellite structure in the photoemis-
sion spectrum of Ni has been obtained. The band narrow-
ing by 15% is smaller than the experimental value. This
discrepancy is reasonable since the dynamical screening
of the Coulomb interaction in the first-order exchange
diagram leads to an additional reduction by the same
amount. The numerical calculations also predict pro-
nounced multiplet structures in the spectra of Co and
Fe for Coulomb parameters determined by optical exper-
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iments. Their absence in photoemission measurements
raises the question whether a model with static intra-
atomic Coulomb interactions between d electrons con-
tains the essential physics of all of the 3d transition-metal
elements.
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APPENDIX A: CANONICAL BANDS

The dispersion relations ¢,,,, (m =1,...,5) of the five
d bands in Hy are obtained by diagonalizing the canonical
structure matrices S(k) for a bec or fec lattice:

(k)= i N eikRriy, [ B _3_5

S:J(k) m; n(i—J)(lRll) (lRII) ,
(A1)

gij = (_1)i+11_0 [(4+i‘j)!(4—i+j)!]% (A2)

3 [(2+9)1(2=9)(2+)'(2-5)5

The index i refers to spherical harmonics Y;; with orbital
momentum ! = 2 as basis functions. Furthermore, s =
(3V/4x)3 is the radius of the atomic sphere, which has
the same volume V as the unit cell.

The canonical structure matrix depends exclusively
upon the crystal structure and the only free parameters
of the five resulting d bands are their total width W as
well as their center of gravity, which we choose as the
zero point of energy. For further details see Refs. 29 and
30.

APPENDIX B: GROUND STATE

In order to determine the correlated ground state the
coefficients 7, in Eq. (10) have to be calculated. For
convenience we introduce the matrices

Lf;kt = (AfleAi,),
Mitj = (Afle)-

(B1)
(B2)

By inverting Eq. (11) we obtain a relation of the form

N = Z[L_I]f;qutt-

tkl

(B3)

The matrix elements depend upon local occupation
numbers n; and orbital energies e; = E;/n;. The hole
occupation numbers are denoted by 7; =1—n;. Further-
more, the orbital energy of a hole €; is given by €; =E; /7,
where E;(ng)=E;(10)— E;(nq) and

=N"1 §O(ep—emk)lvma(k)lz, (B4)
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~ €mse) [ Ymi (K) P €pmic (B5)

E;= N1 29(6,,
mk

The k summations are performed numerically by us-
ing the tetrahedron method?® to integrate over the ir-
reducible wedges of the Brillouin zones. For convenience
we introduce the following abbreviations:

Wi =2Ui; - Jij
m; =7, fi; = mimy, I = mi(R; —ng)

Xij=(& &) fij »

—ei+éj—

Y;jk = (e,~ +e; — Ek)n,-njﬁk + (é,’ +€; — ek)ﬁiﬁjnk .

The matrix elements L},;, M/; are real and fulfill sev-
eral symmetry relations. For example Lk, = Ly, Fur-
thermore, one can commute the density or spin operators
in A%, whlch leads to A}; = A%;. Consequently, the sym-
metry relations Lf}, = L&}, = Lty = L,,,k are valid.
In the following we list oniy one representative of each
equivalence class and leave out all vanishing matrix el-
ements. Different labels i, j,] denote different orbitals,
ie., t# j,t #1,j # 1. From Ref. 22 we obtain

M} =2U; i, (B6
M} =2W;;f,;, (B7
M2 __%Jijfija (BS
L = 4Xs + UL, (B9

Lu 4W,-J-m,~f,-j, B10

N N N e N N N S

(
Liiij = 3J;;m; fij, (B11
,-J-,-J- =4X;; + 4fi;(Uum;+Ujjm;) + 2W;;5l; l;, (B12

L}y = 4Wm; fi, (B13
L,-ﬁ-j %Jijl;lj, (B14)
LE; = EX,-,» + 3QUi; + i)l + 3735 fij (nim +7in;)

4 i (Usimi+Ujmy), (B15)
Ly = —3Tamifit. (B16)

APPENDIX C: EXCITED STATES

The one-particle excitations of the system are deter-
mined from the retarded Green’s functions of the d elec-
trons in band m =1,...,5:

G*(m, K, t) = —if(t)(Lo|[dpmscr (), AP, (0)]+ o).
(C1)

These functions depend upon the susceptibility and fre-
quency matrix elements

quz(m k)= (Q| [B (m k), Bkl(m: )+ @), (C2)
ijkz(ma k)= (9| [B (m k), [‘Bkl(m, k)]+ Q), (C3)

where s,t = 0,...,3 refer to the type of operator [see
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Eq. (24)] and 4,5,k,l = 1,...5 are the the indices of the
atomic d orbitals. They are simply related to the local
susceptibility and frequency matrix elements evaluated
at a fixed site I:

X%(m, k) = 1, (C4)

XBO( ) 'sz( )X:;Ou (05)

z]tl( ) 1._7117 (06)
00 01
F (mv ) €mk + - 4 Z I’Y‘"U W‘”Xru

Z l7M1 X?z_l',a

i#E]

E;O (m’ k) = 7‘""' (k){ X:J(:. 1W"X:1111.

+= Z[W‘lk J;k 4Jik( 1_11,k + X’L]lk)]
k;/:z
(C8)

Ff]t” (m,k) = F;’]tlJ (C9)
We list only nonvanishing local matrix elements. As in
the case of the ground state, different labels ¢, j,! imply
different orbitals (¢ # j, j # [, i # l). For simplicity we
set nf; = nt; in case of i < j,t=1,2.

X5 = 4m, (C10)
X = —8fimi;, (C11)
Xz]_-711_7 - 2mj - 8fjjn}j7 (012)
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Xijiu = —8fumj, (C13)
X35 = 1 fam, (C14)
X = 3mi — 3 figmg; + $famlys (C15)
XGa = —3fimk, (C16)
X35y = 1(mnf + nin?) —mj(nj;m; — nymi),  (C17)
Xzozt = 81,( 77" +Z fi(Ri—n; [4(711]) +%(77i2j)2]a
Jj#i
(C18)
X335 = 8Li(m;)* + ) fu(m; —ns)[4(njn)* + 5 (7)),
I#3
(C19)
Fiiii 4Yi: + 2Wiil;, (C20)
Flii = 255 + Wiily, (C21)
Fijij = ‘lJijlj’ (C22)
FZ5 = Y5 + $Wijli + §755(R: — ni)m;, (C23)
Fl = Jiyma(nj — 1), (C24)
F3 = J'-mj(n,-nj —m;n;), (C25)
F{'ﬁ; = 4 Yjii + WJJ (m; — "J’)("iﬁ?‘ +ﬁi”§) (C26)
+31Wii[min? — nn? + m;(nin; — min;)],  (C27)
le = 1J(m — nz)(nﬁ? + ﬁ,nf) (C28)

From these matrix elements F' and X can be calcu-
lated, which determine the Green’s function matrix G
in Eq. (20).
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