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Quantum Monte Carlo study of the one-dimensional Hubbard model
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We have studied the effects of random-hopping matrix elements and random potentials on the
properties of the one-dimensional Hubbard model. Using a quantum Monte Carlo technique,
disorder-averaged static spin- and charge-density susceptibilities have been evaluated for various
strengths of the disorder. Results for the spin susceptibility at wave number q = 2k& indicate that
this quantity, which is the fastest diverging susceptibility of the pure system, diverges as T ~ 0 also
when there is randomness in the hopping matrix elements, but not in the presence of random po-
tentials. Both types of disorder cause a divergence of the uniform magnetic susceptibility. However,
for random potentials a finite critical strength of the disorder appears to be required. At half-6lling
the transition from Mott (gapped) to Anderson (gapless) insulating behavior has been studied. A

critical disorder strength is needed to destroy the gap, in agreement with Ma's renormalization group
calculations.

I. INTRODUCTION

Real condensed matter systems are always to some
extent disordered, and in many cases the disorder can-
not be neglected when attempting to construct a the-
oretical Hamiltonian for a given physical system. It
is therefore important to know the properties of ba-
sic quantum many-body models, such as the Hubbard
model, in the presence of disorder. The one-dimensional

(1D) Hubbard model constitutes an excellent testing
ground for this problem for a number of reasons. Exper-
imentally, there are quasi-1D tetracyanoquinodimethan
(TCNQ) compounds which are believed to be properly
described by a 1D Hubbard model with randomness in its
parameters. s One-dimensional systems are also attrac-
tive &om a theoretical point of view. Exact solutions can
be obtained in many cases, with the use of, e.g. , bosoniza-
tion techniques and the Bethe ansatz. Furthermore,
quantum Monte Carlo techniques can provide essentially
exact results for large systems at low temperatures, as
the so-called fermion "sign problem" can be avoided in

one dimension. The properties of the pure 1D Hubbard
model are now weH known, which makes this model
particularly appropriate for investigating the relevance
of disorder. In addition, one hopes that insights into the
physics in one dimension will prove useful in understand-
ing higher dimensions as well.

Recent research into disordered interacting 1D fermion
systems has been primarily concerned with understand-
ing the nature of a metal-insulator transition driven by
the interactions. Several theoretical studies indicate that
disorder always leads to localization when the particle-
particle interactions are repulsive, 2 as in the nonin-

teracting case. is A metal-insulator transition is predicted
to occur for strong enough attractive interactions. i

The uniform paramagnetic susceptibility y, (q = 0)
of disordered systems has been the subject of several
theoretical studies. s'4 ' This was motivated by the
discovery that a class of quasi-1D TCNQ compounds
exhibit a low-temperature divergence in the magnetic
susceptibility. ' These systems are believed to be well

described by a half-filled Hubbard model with disorder,
which in the strong coupling limit is equivalent to a spin-

2 antiferromagnetic Heisenberg model with random cou-

pling constants. Various theoretical methods have been
used to study the Heisenberg model with random ex-
change. The results are in qualitative agreement, giving
roughly similar forms for the low-temperature behavior
of the susceptibility. In particular, Hirsch's renor-
malization group scheme gives a divergence of the formi

1

Tl;(T)

with m = 2. Quantum Monte Carlo results are consistent
with this behavior. is On the other hand, experimentally
the susceptibility of some TCNQ compounds is very ac-
curately described by the form

(2)

with o. 0 55 0 9& over a wide range of temperatures.
The reason for the discrepancy between theory and ex-
periment has not yet been accounted for.
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A less studied problem is the effect of disorder on
the q = 2kF spin-density susceptibility y, (2k~) and
charge-density susceptibility y, (2k&). In the pure system

y, (2k~) is the strongest diverging susceptibility, grow-
ing faster than y, (2k~) on account of a logarithmic cor-
rection. The exact asymptotic T ~ 0 form for 1D
fermions with repulsive interactions has been obtained
using bosonization techniques4 ~ and is given by

(2k ) yK 1
~

I
—P ) [1/2

with a model dependent K~. For the Hubbard model,
Schulz recently calculated K~ as a function of the dop-
ing and the interaction strength using the Bethe ansatz, r

and the form of the divergence is hence known exactly.
Renormalization group techniques in the "g-ology" for-
malism, as well as the bosonization method, have been
used to study the q = 2k+ susceptibilities of 1D inter-
acting electrons in a random potential. In the parame-
ter regime corresponding to the Hubbard model, Suzu-
mura and Fukuyamaii predict that with a strong enough
on-site interaction strength U, the system exhibits an-
tiferromagnetic behavior [i.e., power law decaying spin
correlation functions and diverging y, (2k~)] even in the
disordered case. Their calculation is valid only at weak
coupling and in the limit of vanishing disorder however.
Giamarchi and Schulz, i2 taking into account the effects
of finite disorder, found that the renormalization equa-
tions scale to a strongly disordered regime, where they
are no longer valid. The disordered system is predicted
to be similar to a random antiferromagnet, with local-
ized spins. The antiferromagnetic Heisenberg model with
random exchange is of some relevance in understanding
this problem. Quantum Monte Carlo results indicate
that the staggered susceptibility of this model diverges,
but slower than for the pure system. is For the Hubbard
model, quantum Monte Carlo results show a suppression
of y, (2k~), i9 2 but no numerical results for the temper-
ature dependence have been reported so far.

Numerical evaluations of disorder-averaged expecta-
tion values require a considerable computational effort,
as one has to carry out calculations for a large number of
realizations of the disorder in order to obtain meaningful
results. In Ref. 20 an alternative method for studying
the sensitivity to randomness was suggested and applied
to the 1D Hubbard model. For finite disorder, the brute
force averaging method is the only reliable method how-
ever. Using this approach, we have studied the 1D Hub-
bard model with random-hopping matrix elements and
random potentials. The computations were carried out
on a parallel computer, 2 which allowed us to run 96 dis-
order realizations simultaneously. Here results for the
temperature dependence of y, (2k~) and y, (q -+ 0) are
presented both for half-filled and doped systems. In ad-
dition, at half-filling the charge response y, (q ~ 0) is
studied in order to obtain information on the eKect of
the disorder on the Mott-Hubbard gap.

In Sec. II, the model Hamiltonian is introduced and
the quantum Monte Carlo technique used is brie8y de-
scribed. In Sec. III, the results are presented. The main
results are summarized and discussed in Sec. IV.

II. MODEL AND METHOD

The model Hamiltonian we have studied is the stan-
dard 1D repulsive Hubbard Hamiltonian with an impu-
rity term added to it. In standard notation

N

H= t)—) (c, c+i +c+, c; )
t

i=1 ~=/, $

+U) n;pn; g+ H,

where H is the term containing the disorder, with a = t
for random hopping

N

H, = —ei) ) b,'(c,+. ~c;+i ~+ c,++, ~c, ~)
i=1 cr=t,$

and a = p for random potentials

Hp —— e~ ) bf (n;g + n;g). (6)

Jh

where (A)g is the expectation value of A for a given re-
alization b of the disorder,

A disorder average ((A)) can be estimated by averaging

(A)g for a number of randomly selected realizations of
the disorder. The desired accuracy of the final result
determines the number of realizations needed, which es-
pecially for 1D systems can be very large. This type of
calculation is ideal for carrying out on a parallel com-
puter, with each processor running its own simulation of
a randomly generated disorder realization.

For the calculation of individual expectation val-
ues (A) g we have used a generalization22 24 of
Handscomb's quantum Monte Carlo technique. With
this method the "Trotter error" of standard techniques
is avoided. The application of the technique to the 1D
Hubbard model is described in Ref. 23. A complete tech-
nical account of the method, including recent improve-
ments, and its application to various models will be pre-

The disorder strength is controlled by e and the random
variables (h; ) are drawn from normalized symxnetric dis-
tributions p . Here we take for p a constant distribution
in the interval [

—1, 1].
Physical observables of finite disordered systems de-

pend strongly on the particular realization of the dis-
order. In order to obtain meaningful results, one must
therefore average operator expectation values over the
disorder realizations. The averaged expectation value of
an operator A is
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sented elsewhere. A brief outline of the technique is
included here for completeness.

Consider the Hamiltonian (4) written as

H(S) =) ) Hb,
a=1 b=1

no approximation in practice (the value of L needed is

roughly proportional to the system size and the inverse
temperature). Defining an operator Ho o ——I, the unit
operator, one can construct a configuration space with
index sequences SL of a fixed length L, by allowing (b' j =
(oj. The weight then becomes

Hl b = —(t + Et8b)(cb feb+1 r + cb+i tcb $),t

H2 b = —(t + Etbb)(cb gcb+i $ + cb+i icb $),t

(10)

H3, b —&(nb, gnb, g 1) + &g(&b + & )(nb, t+ nb, g 2),

H4b = (t+e—,hb) .

The constant 6 „ in the definition of Hs b is the maxi-
mum value for the disorder variables b',". The operators

H4, are constant operators added to the Hamiltonian
for purposes of the Monte Carlo updating scheme. The
Hamiltonians (4) and (9) difFer by a constant which plays
no role in the simulation.

The starting point of the Monte Carlo method is to

Taylor expand e H~sl and to write the traces in (8) as
sums over diagonal matrix elements of strings of the op-
erators H b. One then obtains an expression suitable for
importance sampling,

A(a, S„)W(a, S„)
W(a, S„)

Here W(a, S„) is the weight of the "configuration"

(a, S„) specified by a direct-space state

W( S )
( &) (I )

~ \4 ~i=1
(15)

where n now denotes the number of non-(o) elements in

SL
The form of the measuring function A(a, Sl') depends

on the type of operator A under consideration and is
most conveniently defined in terms of the index sequence
S„obtained by omitting the (oj elements in SL. For an

operator A which is diagonal in the real-space occupation
number basis, the corresponding measuring function can
be writ ten as

A( S-) = „,):( (p)IAI (p))' p=o
(16)

where la(p)) is the state obtained by operating on la) =
la(0)) with the first p non-(oj operators of the string,

p

a(p)) = r H. b la)
~ 1 ~ ~i=1

(r is a normalization factor). Here our main interest is
the q-dependent spin- and charge-density susceptibilities

(q) = —) e "("' "')1

,,k

la) = l», t n~, ~) 8 lni, ~ niv, ~)

and an index sequence

Eb r E'r

(12)
x d~ n, t. ~ kn~4

x [nb t(0) + nb g(0)]

(n, g + n, g) (n—b t + nb g) ) (18)

which refers to a string of operators Q,".
i H, b, . The

weight is given by

(14)

(nt —n~ ——spin, ng + n~ ——charge). One can show that for
Jh

any diagonal operators A and B, the measuring func-
tion y~~(a, S„) corresponding to the response function
operator

which is positive definite with the definition of Hs b in

(10) (this is true for open boundary conditions and, for
example, for antiperiodic boundary conditions when the
number of sites and spin-t and spin-$ particles are all
even). The suiinnation in (11) is over all powers n. For a
Rnite system at 6nit e temperature, only n wit hin a well

defined regime contribute signi6cantly to the expectation
value. The Monte Carlo sampling can be carried out in a
space with n unbounded, but cutting the sununation
at some maximum n = I allows for the construction of
a faster up dating scheme. An L large enough to make
the truncation error negligible can be chosen in a self-

regulatory fashion and the restriction n ( L is then

drA(r)B(0)
0

(19)

is given by 2 2

X~a(a, S.) =
)n n + 1

-
)n —1):(a(p) IAla(p))

(n —1

x ' ) (a(J)IBla(p))

n—1

+ Q(a(p)IAla(p))(a(p)IBIa(p)) . (20)
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ib)'
'

(4~ /3)

&') '

(I) t'l1 (4l (4l
&b) ' ~b) ' ~b) ' &b) '

(21a)

(21b)

(21c)

Hence, with this simulation scheme the integration over

imaginary time does not have to be carried out numer-

ically, which is the case with standard quantum Monte
Carlo methods. s

In a Monte Carlo procedure one starts &om some con-
figuration (a Sl, )p with nonzero weight (15) and pro-
ceeds by making a series of changes in ]a) and S~ in order
to generate a series of configurations (n, SL,) 1, (n, Sl,)2, ...
A configuration (a, SL,)„+i generated from (a, Sl,)„ is
accepted or rejected in a standard manner (heat-bath
or Metropolis algorithm) based upon the weight ratio
W(a, SL,)„+i/W(a, Sl,)„.The simulation is started with

~n) randomly generated and with an index sequence SL,
containing only (o) elements. The updating scheme
is constructed such that no attempts to generate zero-
weight configurations are made. The following types of
"moves" involving the index sequence are performed:

sequent averaging procedure is carried out by a "master"
processor.

In a simulation of a pure system, the number of Monte
Carlo steps needed to bring the simulation to equilibrium
is normally small compared to the total length of the sim-
ulation. When estimating a disorder average, one clearly
wants to do runs for as many realizations as possible
within a given amount of computer time. It is statisti-
cally advantageous to do a large number of short runs
for different realizations instead of doing a few long ac-
curate calculations. The time needed for equilibration
is here of some concern, as this is the minimum time
needed for a run. In order to check that equilibrium is
reached, it is useful to calculate expectation values as
functions of Monte Carlo "time." In Fig. 1 some re-
sults of such a calculation for a 32-site system are shown
during a run consisting of 5 x 104 equilibration steps fol-
lowed by 10s steps for measurements. The values shown
as functions of time represent averages of the results from
the 96 computer nodes used simultaneously. The initial
rapid changes and subsequent leveling off as equilibrium
is reached are clearly visible. The time needed for equili-
bration increases with the system size. Based on available
computer resources we decided to study 32-site systems.
This is not quite large enough for observing the exact
asymptotic behavior of pure systems. In Fig. 2 results
for the q = 2k~ spin susceptibility [given by Eq. (18)]

f2) t'2l (4l (4l
&b) * &b» ib) ' ibr '

(21d)

15 —' ~ s ~ I
s s s ~

I
s s s s

I

Moves of particles in the state ~a) can also be carried
out, but are actually not needed in the canonical ensem-
ble, since all states with a given number of spin t and
spin 1, can be generated by the moves (21a)—(21d). With
the moves in (21) one can generate all contributing in-
dex sequences for an open chain. With periodic bound-
ary conditions additional, more complicated moves are
needed to sample configurations with a nonzero "wind-
ing number. "s These moves are important only for small
systems, as they are associated with the boundary condi-
tions. Details of the updating scheme are given in Refs.
23 and 24. During the equilibration part of the simula-
tion, the length of the index sequence is increased as long
as n [the number of non-(o) elements] is growing and is
always kept larger than the maximum n reached. In this
way, the restriction n ( I does not in practice affect the
accuracy of the results.

A Monte Carlo step is defined as a series of the moves
(21a) and (21b) attempted at all positions of SL, and a
number of moves (21c) and (21d) resulting in approxi-
mately 30—50%%uo of the elements involved being changed.
Measurements are carried out with an interval of 10—20
Monte Carlo steps. The number of operations performed
in one Monte Carlo step scales linearly with the system
size and approximately linearly with the inverse temper-
ature.

The implementation for parallel processing is trivial in
this case. We simply run the same Monte Carlo code on
96 "worker" processors, each with its own realization of
the disorder. The distribution of the tasks and the sub-
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FIG. 1. The 2k~ spin susceptibility (top) and the potential
energy (bottom) versus Monte Carlo "time" for a half-filled
32-site system with site disorder strength c~ = 2 at P = 12.
Each point represents an average of the results of 96 simul-
taneous simulations over a number of Monte Carlo steps cor-
responding to the horizontal distance between the point and
the preceding point. The MC steps ( 0 are equilibration
steps, during which the length of the index sequence may be
increased. The dashed lines represent the averages over the
"measurement steps" (MC step ) 0 in the graphs).
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FIG. 2. The spin susceptibility y, (2k+) versus the inverse
temperature for system sizes N = 32 (open squares) and
N = 64 (solid squares) at fillings (n) = 1 and (n) = 0.75.
Statistical errors are of the order of the size of the symbols.
The curves are the known low-temperature forms given by
Eq. (3) with K~ = 0 for (n) = 1 and K~ = 0.70 for (n) = —.

In this section results for the Hubbard Hamiltonian (4)
with random-hopping matrix elements and random po-
tentials are presented for both half-filled and doped sys-
tems. Simulations were carried out for several strengths
of the disorder, with the on-site Coulomb interaction U
kept equal to the bandwidth 4t. The disorder variables
e h; in (5) and (6) were chosen uniformly distributed
in an interval [

—e, e ]. For random hopping, disorder
strengths e& ——0.3, 0.6, and 0.9 were studied, and for ran-
dom potentials e„=l, 2, and 4 (all in units of t). For pure
systems, all results shown are for N = 64, whereas the
results for disordered systems are for N = 32.

Below, the q = 2A,~ spin susceptibilities are compared
to the asymptotic form (3) for the pure Hubbard model,
in order to determine whether this form still is relevant,
with a K~ which may be renormalized by the disorder.
The uniform magnetic susceptibility y, (q -+ 0) is also
studied. In the half-filled case another interesting aspect
is the effect of disorder on the charge gap. The results
in Ref. 20 for the effect of weak disorder on the charge
susceptibility g, (q) in the limit q ~ 0 indicate that a
finite amount of disorder is needed to destroy the gap,
in agreement with renormalization group calculations. 2

Here y, in the presence of finite disorder gives informa-
tion on the transition from Mott (finite gap) to Anderson

(gapless) insulating behavior.

for pure systems with U = 4t, N = 32, and N = 64
are shown versus the inverse temperature P = t/T, along
with the known asymptotic form (3). At half-filling the
N = 64 points quite accurately follow the asymptotic
form, whereas the N = 32 data initially rise slightly too
fast before leveling off due to the finite size. At a fill-

ing (n) = 0.75 the finite-size effects are even stronger.
Again, the increase with P is too rapid before the low-

temperature saturation and even N = 64 is not large
enough to give the correct form over a wide range of
temperatures. The finite-size effects are smaller for dis-
ordered systems, however, and 32 sites should be large
enough for capturing the efFects of the disorder. Most
results presented here were obtained in simulations con-
sisting of 5 x 104+10s Monte Carlo steps on 96 com-
puter nodes. In some cases longer equilibration times
were needed and in some cases several runs had to be
made in order to obtain accurate enough final results.
We believe that most of our results are &ee &om system-
atical errors due to insufBcient equilibration. However,
for the strongest disorder strengths studied (e| ——0.9 and
c„=4) there are probably slight efFects of this nature.
Some results obtained with very long equilibration times
indicate that this error is comparable to the statistical
errors.

At the lowest temperatures studied, more than 30 h of
computer time were needed for each set of N = 32 runs.
For this type of simulation, the total computing power
of the 96 nodes used corresponds to approximately 10
DECstation 5000 workstations.

A. Half-filled systems

We first discuss the half-filled case ((n) = 1). In Fig.
3 the spin susceptibility y, (q) [Eq. (18)] is shown versus
the wave number q for systems with difFerent strengths of
hopping disorder at a low temperature (P = 16). As ex-
pected, the antiferromagnetic peak is strongly suppressed
and the long-wavelength susceptibility is enhanced, the
effect increasing with increasing disorder strength. In
Fig. 4 the temperature dependence of y, (q = 2A,'~ = z)
is compared to the asymptotic form for the pure system
Eq. (3). If this form applies, y, (2k~)/~ ln (P)] ~ graphed
versus ln (P) should produce points falling onto straight
lines with slopes 1—K~. This seems indeed to be the case
for all hopping-disorder strengths studied here, with an
exponent K~ which depends on the disorder strength. In
the pure system K~ = 0 at half-filling, as for the 1D spin-

2 Heisenberg chain. 4 Least-squares fits of straight lines to
the low-temperature points in Fig. 4 gives the exponents
Kp = 0.00+0.02, 0.22+0.02, 0.39+0.04, and 0.50+ 0.04
for ez ——0, 0.3, 0.6, and 0.9, respectively. The highest
temperature at which the asymptotic form 6ts the data
decreases with increasing disorder, probably refiecting an
energy scale associated with the weakest hopping matrix
elements of the disordered systems, t;„=t(1 —eq). One
cannot completely rule out the possibility that the be-
havior observed in the temperature regime studied here
is only relevant down to a low temperature at which y, (z )
saturates. The energy scale of such a crossover must be
very low, however, as there are no indications of satura-
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tion for P ( 18 for any of the disorder strengths studied
here.

Since the systems studied have fixed numbers of spin-t
and spin-f electrons, the simform magnetic susceptibil-
ity y, (q = 0) vanishes identically. Results are therefore
shown for the lowest nonzero value of q, i.e., qi ——2s'/¹
The susceptibility at q = qi will approach the uniform
susceptibility if the system is large enough since g, (qi)

FIG. 3. The spin susceptibility at half-filling in the short-

(top) and long- (bottom) wavelength regimes for hopping dis-
order strengths cs ——0 (open squares), 0.3 (solid squares), 0.6
(open circles), and 0.9 (solid circles). The inverse temperature
is P = 16.

roughly corresponds to the uniform susceptibility of a
system of size N/2 I.n Fig. 5 in[ps(qi)] is graphed ver-
sus ln(P). For all disorder strengths a linear behavior
is seen at low temperatures, indicating a temperature
dependence of the form (2), i.e. , the form observed ex-
perimentally in some TCNQ compounds. Values for a
reported for these systems are in the range 0.55 —0.9.i s

Here least-squares fits give a = 0.29 + 0.07, 0.72 + 0.04,
and 0.89 + 0.04 for ei ——0.3, 0.6, and 0.9, respectively.
The results are not well described by the form (1) with
m ~ 2r

Results for the q-dependent spin susceptibility in the
presence of random potentials are shown in Fig. 6.
The behavior in this case is markedly difFerent from the
random-hopping case. For the weaker disorder strengths,
virtually no efFects are seen at long wavelengths, while
the response at q = 7r is suppressed as before. In addi-
tion, g, (q) is also suppressed over a wide regime around
the peak, where Fig. 3 shows an enhancement in the
random hopping case. In Fig. 7 the temperature depen-
dence of y, (s) is analyzed. For e~ = 1, the behavior is as
in the pure system up to approximately P = 10, where
the increase becomes slower. As shown in Fig. 1, at this
temperature finite-size efFects are visible in pure 32-site
systems. However, in that case the N = 32 susceptibility
actually grows faster than the asymptotic form, whereas
here there is a clear suppression for P ) 10. The sup-
pression is therefore caused by the disorder and not by
the finite size. For e~ = 2, the asymptotic form (3) also
seems to apply in a fairly wide temperature regime, but
at low temperatures the slope decreases. For e„= 4,
the response is very strongly suppressed. There is a nar-

row regime where ln [y, (7r)]/ ln (P) ~ increases slightly.
There is then a leveling off and the low-temperature be-
havior is consistent with K~ = 1, which would correspond
to a logarithmic divergence of y, (7r). Clearly, larger sys-
tems at lower temperatures have to be studied in order
to determine the low-temperature behavior more accu-
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FIG. 4. The q = 2k& —— m spin susceptibility for
half-filled systems with hopping disorder, graphed so that
the points should follow straight lines if the asymptotic form

T r
I ln(T)I ~ is obeyed. The disorder strengths are

e& ——0 (open ssqussres), 0.3 {solid squares), 0.6 (open circles),
and 0.9 (solid circles). The solid lines are least-squares fits,
giving K~ = 0.00 + 0.02 (es = 0), 0.22 + 0.02 (cs = 0.3),
0.39 + 0.04 (es = 0.6), and 0.50 + 0.04 (es ——0.9).
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FIG. 5. The logarithm of the long-wavelength spin sus-
ceptibility (qi —— 2m/N) versus the logarithm of the in-
verse temperature for half-filled systems with hopping dis-
order strengths es ——0 (apen squares), 0.3 {solid squares),
0.6 (open circles), and 0.9 (solid circles). The straight lines
are least-squares fits, with slopes cs = 0.29 + 0.07 (cs ——0.3),
0.72 6 0.04 (es ——0.6), and 0.89 + 0.04 (es = 0.9).
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FIG. 8. The logarithm of the long-wavelength spin sus-
ceptibility (qi ——2s'/N) versus the logarithm of the inverse
temperature for half-filled systems with random potential
strengths e„= 0 (opeu squares), 1.0 (solid squares), 2.0
(opeu circles), and 4.0 (solid circles). The straight line is
a least-squares fit to the e„= 4.0 points and has slope
o. = 0.64 6 0.06.

FIG. 6. The spin susceptibility at half-filling in the short-
(top) aud long- (bottom) wavelength regimes for random po-
tential strengths s„= 0 (opeu squares), 1.0 (solid squares),
2.0 (open circles), aud 4.0 (solid circles). The inverse temper-
ature is P = 16. In the bottom graph, the results for e„= 0,
1, and 2 are indistinguishable within statistical errors.

rately. The results shown in Fig. 7 do, however, indicate
that the pure-system asymptotic form does not apply at
low temperatures, suggesting that y, (z) might saturate
as T -+ O.

The q m 0 spin susceptibility is analyzed in Fig. 8.
Here a divergence is seen only for e~ = 4. For the weaker
disorder strengths the results are indistinguishable from
the pure system susceptibility. In Ref. 20 we reported
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]

I I I I
]

I I I 1
]

I I I

calculations of the lowest-order effects of disorder on the
q-dependent susceptibility in terms of the second deriva-
tive with respect to the disorder strength

(22)

'x. (a)
8~

-[ ( )]=

(the first derivative vanishes). As defined above, D is
independent of the distribution p and is thus a prop-
erty of the pure system which can be calculated in a sin-

gle Monte Carlo simulation, without disorder averaging.
In Fig. 9 D&[g, ] and D„[y,] are shown versus the wave
number for a N = 64 system at P = 24. The hopping
disorder derivative D&[y, (q)] in the limit q ~ 0 is large
and positive, indicating that any finite amount of hop-
ping disorder leads to an enhancement of y, (q ~ 0) and
presumably a divergence as T ~ 0 (Di[y(q ~ 0)] grows
rapidly as the temperature is lowered o). In contrast, the
random potential derivative Dt [y, (q ~ 0)] is zero within
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g
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2 2, 5
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FIG. 7. The q = 2A;& spin susceptibility for half-filled sys-
tems with random potentials, graphed as in Fig. 4. The
disorder strengths are e~ = 0 (opeu squares), 1.0 (solid
squares), 2.0 (opeu circles), aud 4.0 (solid circles). The solid
line is a least-squares fit to the pure-system results, giving
K~ = 0.00 + 0.02. The dashed line is a fit to e„= 2 results
for P & 6 aud corresponds to K~ = 0.25.
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FIG. 9. The disorder derivatives Di[y, (q)] (solid circles)
aud D~[g, (q)] (opeu circles) for a half-filled N = 64 system
at inverse temperature P = 24.
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statistical errors. If the disorder is weak the enhancement
of y, (q ~ 0) may occur only at very low temperatures.
However, in view of the fact that no effects are seen for a
potential disorder as strong as e„=2 at P = 16 (Fig. 6)
and that the corresponding disorder derivative vanishes,
we conjecture that a finite critical strength of this type
of disorder is needed to cause a divergence.

To further investigate the differences in the effects of
the two types of disorder on the uniform magnetic sus-
ceptibility, we carried out exact diagonalizations for small
systems (N = 4 and 6). In order to be able to observe
the effect on y, (0) directly, we studied ensembles with
n = nt + n~ fixed, but nt and n~ allowed to Buctuate.
Averages over 200—500 realizations of random hopping
and random potentials were calculated. Due to the large
gap between the ground state and the excited states in
the small systems studied, the uniform susceptibility of
the pure system vanishes rapidly as the temperature is
lowered below T = 0.5t. Nevertheless, the results give
some additional insights into the effect of the disorder.
In Fig. 10 results for random hopping are compared to
pure-system results. For T ( 0.5, the susceptibility is en-
hanced for all disorder strengths studied. The enhance-
ment is stronger for N = 6 than for N = 4. In Fig. 11 re-
sults for random potentials are shown. Here the suscepti-
bility of weakly disordered systems is actually suppressed
at all temperatures. The high-temperature susceptibility
decreases as the disorder strength is increased, refiect-
ing a lowered local magnetic moment due to an increased
density of doubly occupied sites. At a size-dependent dis-
order strength the low-temperature susceptibility starts
to increase with the disorder. These results are consistent
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FIG. 11. Exact diagonalization results for the uniform spin
susceptibility versus the temperature for N = 4 and 6 systems
with random potentials. The solid lines are for pure systems.
Solid squares are for 6p: 1 open squares for t p: 2 solid
circles for 6p = 4 and open circles for 6p: 6.

with the quantum Monte Carlo results for N = 32, where
an enhancement of y, (q ~ 0) was noted for e~ = 4, but
not for e~ = 2 (Figs. 6 and 8). It seems likely that a
critical potential disorder strength indeed is required for
the susceptibility of an infinite system to diverge.

The behavior of the charge-density susceptibility y, (q)
in the q + 0 limit (the compressibility) signals the pres-
ence or absence of a charge gap. Figure 12 shows the q-
dependent low-temperature charge susceptibility for hop-
ping disordered systems. In the pure system, and for
et ——0.3, the susceptibility vanishes as q ~ 0, indicat-
ing that there is a charge gap also in a weakly hopping
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FIG. 10. Exact diagonalization results for the uniform spin
susceptibility versus the temperature for N = 4 and 6 systems
with random hopping. The solid lines are for pure systems.
Solid squares are for e&

——0.1, open squares for e&
——0.3, solid

circles for eg ——0.6, and open circles for eq ——0.9.

FIG. 12. The charge-density susceptibility versus the wave
number for half-61led systems with hopping disorder strengths
ss ——0 (open squares), 0.3 (solid squares), 0.6 (open circles),
and 0.9 (solid circles). The inverse temperature is P = 16.
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disordered system. For e& ——0.9 the q
—+ 0 response is en-

hanced, indicating that the disorder is strong enough to
destroy the gap. For ~~

——0.6 the response also seems to
be slightly enhanced at q = qi ——2ir/K, but the statisti-
cal error is rather large. The critical strength at U = 4t is
probably quite close to ~& ——0.6. The charge response in
the presence of random potentials is graphed in Fig. 13.
Again, for the weakest disorder strength studied (e„= 1)
the gap is still present. The q

—i 0 behavior for e„= 2 is
different, extrapolating to a finite value at q = 0. Thus
the Mott-Anderson transition for U = 4t occurs for c„
between 1 and 2. With random potentials the response
is strongly enhanced for all q as the disorder strength is
increased above the critical strength, in contrast to the
random-hopping case where there is a strong effect only
at long wavelengths.

For a Gaussian distribution of random potentials, Ma' s
renormalization group result2s for the critical width W of
the distribution at U = 4t is W = 0.7. It would clearly be
interesting to compare the renormalization group phase
boundary with Monte Carlo results for this disorder dis-
tribution.
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FIG. 14. The q-dependent spin susceptibility at filling

(n) =
4 for hopping disorder strengths ei ——0 (open squares),

0.6 (solid squares), and 0.9 (open circles). The inverse tem-
perature is P = 16.

B. Doped systems

In this section, we will consider a doped system with
a filling (n) = s4. The q-dependent spin susceptibility
at P = 16 is graphed for systems with hopping disorder
in Fig. 14 and for potential disorder in Fig. 15. As
in the half-filled case, hopping disorder suppresses the

q = 2k~ peak and enhances the response at other wave-
lengths. Unlike in the half-filled case, random potentials
now slightly enhance the q -+ 0 response even for e„= l.
The response at q = x is also strongly enhanced. For
e~ = 4, y, (x) is actually larger than y, (2k+).

The temperature dependence of y, (2k~) in the pres-
ence of hopping disorder is analyzed in Fig. 16. The data
are consistent with a divergence of the pure-system form,
with K~ = 0.70 6 0.04 for ei ——0.6 and K~ = 0.73 + 0.04
for e&

——0.9. The results shown for a pure system with
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1 I I I
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FIG. 15. The q-dependent spin susceptibility at filling

(n) = — for site disorder strengths e„= 0 (open squares),
1 (solid squares), and 4 (open circles). The inverse tempera-
ture is P = 16.
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FIG. 13. The charge-density susceptibility versus the wave

number for half-filled systems with site disorder strengths
e~ = 0 (open squares), 1 (solid squares), and 2 (open circles).
The inverse temperature is P = 16.

FIG. 16. The q = 2k& spin susceptibility for (n)
in the presence of hopping disorder. This has been plotted
so that the points should follow straight lines if the asymp-
totic form X, T '

) ln(T)~ ~ is obeyed. The disorder
strengths are ei ——0 (open squares), 0.6 (solid squares), and
0.9 (open circles). The solid lines are least-squares fits, giv-

ing K~ = 0.65 + 0.02 (si ——0), 0.70 + 0.04 (e& ——0.6), and
0.73 + 0.04 (ci ——0.9).
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FIG. 17. The q = 2k+ spin susceptibility for (n) =
4 in the

presence of site disorder graphed as in Fig. 16. The disorder
strengths are e~ = 0 (open squares), 1 (solid squares), and
4 (open circles). The solid line is a fit to the pure-system
results, with K~ = 0.65 6 0.02.

FIG. 19. The logarithm of the long-wavelength spin sus-
ceptibility (qq

——2x/N) versus the logarithm of the inverse
temperature for systems at filling (n) = —,with site disorder
strengths e~ = 1 (open squares) and 4 (solid squares). The
straight line has slope a = 0.75 6 0.05.
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FIG. 18. The logarithm of the long-wavelength spin suscep-
tibility (qq ——2m/N) versus the logarithm of the inverse tem-
perature for systems at filling {n) = 4, with hopping disorder
strengths e& ——0.6 (open squares) and 0.9 (solid squares). The
straight lines are least-squares Sts with slopes a = 0.27+0.04
(eq ——0.6) and 0.71 + 0.04 (e~ ——0.9).

N = 64 give K~ = 0.65 6 0.02, which is slightly lower
than the known value K~ = 0.70. The results shown in

Fig. 1 indicate that this discrepancy is a finite-size effect.
The dependence of K~ on the hopping disorder strength
is thus very weak away from half-filling, and in fact our
results are consistent with a K~ which is not changed by
the disorder in this case.

Results for the temperature dependence of y, (2k~) in
the presence of random potentials are shown in Fig. 17.
For e~ = 1 there is an intermediate temperature regime
where the pure-system asymptotic form is approximately
obeyed. At lower temperatures the growth with I9 be-
comes much slower, however, indicating that y, (2k~)
does not diverge in the disordered system. For e~ = 4 the
response is very strongly suppressed, but still increases
slightly with I9 in the temperature regime studied.

In Figs. 18 and 19 the long-wavelength spin suscep-
tibility is graphed for hopping- and site-disordered sys-

tems, respectively. Again the form (2) seems to describe
the e„=4 data well at low temperatures. For e~ = 1 the
susceptibility does not appear to diverge, although it is
slightly enhanced over the pure-system value (Fig. 15).
It seems likely that a critical disorder strength is required
to cause a divergence, as was suggested above to be the
case at half-filling. For hopping disorder, least-squares
fits give the exponents n = 0.27 + 0.04 for eq

——0.6 and
a = 0.71 + 0.04 for eq ——0.9. For random potentials of
strength e„=4 the exponent obtained is a = 0.75 +0.05.

IV. SUMMARY AND DISCUSSION

In summary, the 1D Hubbard model with random-
hopping matrix elements and random potentials has been
studied numerically using the brute-force method of av-
eraging quantum Monte Carlo results for a large number
of realizations of the disorder. Results for the static spin-
and charge-density susceptibilities in the presence of the
two types of disorder have been presented.

Both disorder types lead to a T m 0 divergence of the
uniform magnetic susceptibility. However, the results in-
dicate that any finite amount of randomness in the hop-
ping matrix elements causes a divergence, whereas a crit-
ical random potential strength appears to be required.
In both cases the divergence is consistent with the formT, which is the form found experimentally in a
class of TCNQ compounds. ~ s

The temperature dependence of the q = 2k& spin sus-
ceptibility was also studied. In a pure system, this sus-
ceptibility is the strongest diverging one, having the low-
temperature form yg(2k~) ~

ln (T) ~~~ T ~, with K~
dependent on the band filling and U.~ The results pre-
sented here indicate that y, (2k~) diverges also in the
presence of hopping disorder. The low-temperature be-
havior is consistent with the above form for the diver-
gence. At half-filling K~ depends strongly on the dis-
order, whereas away &om half-filling our results show
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no statistically significant dependence on the disorder
strength. In a pure system with a filling (n) = I + b,
K~ -+

2 as b ~ 0, whereas exactly at half-filling (8 = 0)
umklapp scattering causes the exponent to change to
K~ = 0, i.e. , it is different from the b —+ 0 value. Hence
our results for hopping disorder indicate that this kind of
disorder mainly affects the umklapp processes, thereby
increasing K~ significantly at half-filling, but not away
from half-filling. For the largest disorder strength studied
here, the value of K~ is consistent with the pure-system
value in the limit b' —i 0 (K~ = 0.5), indicating that
umklapp plays no role. It would clearly be of importance
to investigate the behavior for even stronger disorder, to
make clear whether K~ = 0.5 is indeed the limiting value

as 6g M 1.
For random potentials, the results for g, (2k~) are

not consistent with the pure-system form at the low-

est temperatures studied and it seems most likely that
g, (2k~) does not diverge in this case. The reasons for

the markedly difFerent effects of the two types of disorder
deserve further investigations.

In order to obtain information on the presence or ab-
sence of a Mott-Hubbard gap at half-filling, the q ~ 0
limit of the charge-density susceptibility was studied.
The results indicate that a finite amount of disorder is
needed to cause the transition from the gapped (Mott)
to the gapless (Anderson) insulating state, in agreement
with Ma's renormalization group results. 2s
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