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The electron spectral function is calculated for a model including electron-phonon coupling to
Einstein phonons. The spectrum is studied as a function of the electronic bandwidth and the
energy e& of the level from which the electron is removed. A cumulant expansion is used for the
time-dependent Green's function, and the second- and fourth-order cumulants are studied. This
approach is demonstrated to give accurate results for an exactly solvable two-level model with two
electronic levels coupling to local phonons. For a one-band, infinite, three-dimensional model the
cumulant expansion gives one satellite in the large-bandwidth limit. As the bandwidth is reduced,
the spectrum calculated with the fourth-order cumulant develops multiple satellites, if eq is close to
the Fermi energy E~, and as the bandwidth becomes small, results similar to the two-level model are
obtained. If e& is more than a phonon energy below Ez, the spectrum instead shows a very broad
peak, due to the decay of the hole into a hole closer to Ez and a phonon. If the spin degeneracy of
the electrons is taken into account, the broadening due to the decay of a hole into a hole closer to EF
and an electron-hole pair becomes important, even if ez is closer to Ez than the phonon energy. The
validity of Migdal s theorem for AsCso (A=K,Rb) is discussed. The intersubband electron-phonon
coupling is appreciable for A3Cgp, and it may be argued that the efFective bandwidth is large. It is
shown that Migdal's theorem is, nevertheless, not valid for A3C6p.

I. INTRODUCTION

The treatment of the electron-phonon coupling in or-
dinary metals is greatly simplified for systems where
Migdal's theoremi is valid. This theorem states that for
systems where the electronic energy scale is much larger
than the phonon energy scale, it is s»Scient to calculate
the lowest-order self-energy diagram. This diagram can
furthermore be calculated using the bare electron Green's
function. i Since the energy scale of typical metals is of
the order of several eV while the phonon energies are
typically only a f'raction of an eV (0.01—Q.l eV), Migdal's
theorem is usually assumed to be well satisfied for such
systems. The electron spectral function has been exten-
sively studied by Engelsberg and Schrieffer2 for systems
where Migdal's theorem is assumed to be valid.

For doped Cso compounds, AsCso (A=K,Rb), the situ-
ation is very different. The intramolecular phonons have

energies extending up to about 0.2 eV, and the width of
the partly occupied t,„band is about 1/2 eV, accord-
ing to band structure calculations. It is therefore highly
questionable if Migdal's theorem can be used for doped
C60 compounds. For high-T compounds the applicabil-
ity of Migdal's theorem has also been questioned. It is
therefore desirable to include higher-order diagrams for
these systems. We note, however, that it has been ar-
gued that the relevant bandwidth for A3C6o is not the

bandwidth but the width of all the vr-derived bands
extending over some 15 eV. It has therefore been argued

H = eoctc+ ~obtb+ g(bt + b)(ctc —1).

Here eo is the core-level energy, ~o is the boson energy,
and g is the electron-boson coupling. c and b are the
annihilation operators for the electron and the boson,
respectively. The exact spectral function p is a Poisson
distribution of b functions,

p(e) —e (&/~0 i ). 1 fg)'"
n. I (do)

xb(e —eo + n~o —g /~o). (2)

The spectrum has boson satellites displaced by
—2~0, and so on towards lower energies. Calculating the
self-energy to lowest order,

that Migdal's theorem may be valid for AsCso after all.
We discuss this below. Corrections to Migdal's theorem
have been studied by Pietronero and Strassler in the con-
text of the superconductivity of AsCso. s Corrections for
two-dimensional systems have also been studied. 4

An interesting limiting case is a system where a core
level couples to bosons (phonons or plasmons). This
is in some sense the opposite limit to the one above,
since the dispersional width of the core level can be as-
sumed to be zero. This limit has been extensively stud-
ied in the past. A particular simple model is obtained
if the bosons are assumed to be dispersionless (Einstein
phonons). We then consider the Hamiltonian
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g2
Z2(s) =

6' —6'p + 4)p —$g

where ri is an infinitesimal positive nnmber gives reason-
able results for the main peak but it replaces all the satel-
lites by one single satellite at some averaged energy. s If
(g/up) ) 1, the higher satellites have an appreciable
weight and the lowest-order diagram is therefore not suf-
Scient.

It may then seem natural to calculate the self-energy to
next order (fourth) in g, but this leads to problems. s For
the model discussed above, for instance, the fourth-order
self-energy has a double pole.

4

Z4(s) = (4)
(s —E'p + Ap —2'g) (s —E'p + 2(dp —l'g)

ered the spectrum broadens due to the decay of the hole
into a phonon and a hole closer to the Fermi energy. As
the bandwidth is increased the multiple phonon satellites
disappear and only the lowest satellite remains. Intro-
ducing a spin degeneracy for the electronic levels leads to
a substantial additional broadening, also for states where
—eg ( ~p. For certain sets of parameters, in particular
without spin degeneracy, the approximation can give un-

physical negative spectral weights for certain energies.
The reasons are discussed below.

In Sec. II we present the cumulant expansion and in
Sec. III some details about the calculation of the cumu-
lants. In Sec. IV we study the two-level model and in
Sec. V the continuous model. We discuss Migdal's theo-
rem for AsCsp in Sec. VI and the results are discussed in
Sec. VII.

The corresponding Green's function therefore has incor-
rect analytical properties and the spectral function may
be negative. An alternative approach is to expand the
time-dependent Green's function in powers of the cou-
pling constant, s s ~P and to use a cumulant expansion. r ~P

In this approach, the second-order cumulant expansion
already gives the exact result for the core-level problem
discussed above. r

To test the cumulant expansion, we first consider a
two-level model, for which we can easily obtain the exact
solution. Two electronic levels couple to each other via
a hopping matrix element t and each level couples to a
local boson with the energy up and the coupling constant
g. The system has one electron. Even in the limit when t
goes to zero, this problem is difFerent from the core-level
problem, in the sense that the second-order cumulant ex-
pansion does not give the exact result. This illustrates
that the valence problem is more difficult than the core
problem, due to the partial filling of the levels and due to
the hopping of the electron between the electronic levels.
By increasing t we can furthermore simulate aspects of
a system with a finite bandwidth. The two-level model
is therefore a nontrivial test case for the formalism. For
(g/up) & 2, we illustrate that the second-order cumu-
lant expansion is rather accurate and that the fourth-
order expansion gives excellent results for the two-level
model.

We then apply the formalism to a continuous, three-
dimensional, one-band, tight-binding model. We study
the spectrum as a function of bandwidth and the momen-
tum k or energy eq of the removed electron (the Fermi
energy E~ is taken as zero). According to the calcula-
tions, such a system also has multiple phonon satellites
for bandwidths of the order of or somewhat larger than
the phonon &equency, if —eI, & up and the coupling is not
too weak. As the energy of the one-particle level is low-

I

II. CUMULANT EXPANSION

We consider the time ordered Green's function

iG(k, t) = (4 ~T[cg(t)ct~j~O),

where cq a»ihilates an electron in the state k, c~(t) is
a time-dependent Heisenberg operator, ~4) is the ground
state, and T is the time-ordering operator. We consider
a general Hamiltonian of the type

H ) sgc~qcg + ) (uqbtbq + ) g(q)ct+ cg(bt + b~)
k, q

Here

OO

G(k, t) = ) —,G„(k,t).
n=p

(8)

ie "" for e~ & E~
0 fore~) E~,

where Ez = 0 is the Fermi energy and t & 0. We there-
fore write the cumulant expansion as

where b~ an»hilates a boson with the energy u~ and g(q)
is the electron-phonon coupling strength. We are inter-
ested in the photoemission spectrum p~(k, s), which is
described by G(k, t) for t & 0,

p

p&(k, s) = —Im dte*"+"'G(k, t).
QQ

We use a c»mulant expansion for the time-dependent
Green's function. ~ Let us assume that the expansion of
the Green's function in powers of the coupling constant
g is known,

G(k, t) = )

rie ""'exp ) (g"/n!)C„(k, t)

ie ""' exp ) (g"/n!)C„(k, t)
n=1

for c~ (E~

—1 for eg, & E~.
(10)
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and

—'C(k )
——'

41 4 ' 4l ~e
—it.] t , ,C,'(k, t). (12)

For the core-level problem [Eq. (1)] we calculate the
second-order diagram (la) in Fig. 1 and, since the con-
tribution of diagram (1b) vanishes, we obtain

2! gid —eo —z0) a —eo + ~o —t0

Fourier transformation of G2(~) gives

2

—,G2(t) = i(g/(uo)2(e* "—i~ot —1)e '"'.

(13)

(14)

Dividing by Go(t) = iexp( —isot) yields C2(t) and the
second-order cumulant expansions

For the Hamiltonian (6) the odd terms G2„+i vanish. By
expanding Eq. (10) and identifying terms of a given order
in g one obtains

G(t)
i—~ot (g/~o)'(e'"o' —idiot —i)

Fourier transformation of Eq. (15) leads to the exact core-
level spectrum in Eq. (2). The term —1 in the parenthe-
ses in the exponent provides the prefactor e {si ') and
the term —iuot gives the relaxation energy g2/uo. Ex-
panding exp[(g/uo)2e' "]gives the boson satellites. The
nonzero fourth-order contribution G4 is obtained by cal-
culating the fourth-order diagrams (2a)—(2d) in Fig. 1, as
all diagrams containing a tadpole [diagram (1b)] vanish,
due to the special form of the Hamiltonian (1). When
combined with G2(t) according to Eq. (14), the corre-
sponding C4(t)—:0, as it should, since the second-order
cumulant expansion already leads to the exact result for
the core hole problem.

For the general Hamiltonian (6), the q = 0 coupling
term gives nonvanishing tadpole contributions for finite
systems. In order to avoid the corresponding abundance
of diagrams, it is favorable to treat the q = 0 term sepa-
rately. We write the Hamiltonian (6) as

H = H'+ idobotbo + g(0)N(bo + bo) = H' + Hq o, (16)—

where N = P„ctc„is the total number operator. Since

[H', H, ,] =0,

we can write the ground state for N electrons in the
product form

(1a) (1b)

(2a (2b)

where ~4') is the ground-state to H' and ~0) is the ground
state to Ho(N) = urobotbo + g(0)N(bot + bo). The ground-
state energy is Eo(N) = Eo(N) + Eo(N). In photoemis-
sion, studied below, we use G(k, t) for t ( 0,

(2c

—iG(k, t) = (C~ct.*("- {"))",~e)
i[H' E{Nol]t-

&& (0~e*'!H &N —»-&0{»!t[0)
(19)

(2e) (2t)

The first factor on the right hand side corresponds to
the spectrum for the Hamiltonian H' and it is calculated
using a cumulant expansion, as discussed above. The
second factor can be calculated exactly and we obtain

-iG(k, t) = (C'~".'!"'- '{"))".~e')

i(2N —])g g (& ) ) (e'~0 —])xe o e (20)

(2O)

FIG. 1. Second- (1) and fourth-order (2) diagrams con-
tributing to the cumulant expansion. The solid lines describe
electrons, the wiggly lines bosons, and the dashed lines con-
necting to crosses describe the shift operator (40). (3) shows
the lowest-order vertex correction in Eq. (45).

For a large system, g(0) 1/~M, where M is the num-
ber of sites. If N M, only an uninteresting constant
shift remains of the second factor in Eq. (20), as the size
M of the system goes to in6nity. For the two-level model
discussed in Sec. IV this separation of the q = 0 term
simpli6es the calculations.

As a comparison, we also calculate the second-order
self-energy and the corresponding Green's function and
spectral function

p(k, s) = —ImG(k, c) = —Im . (21)
1 1 1

7r 7c E' —E'Ic —Z2 A:) 6'
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III. CALCULATION OF THE CUMULANTS

To obtain the expansion of the Green's function (8)
corresponding to H', we calculate the diagrams (la) and

(2a)—(2d) in Fig. 1. We calculate the Green's func-

tions using the Matsubara finite T formalism in the limit
T ~ 0 to obtain G„(k,p) ). The Green's function is then
continued analytically to real frequencies, and a Fourier
transformation is performed to obtain G„(k, t)

For instance, the diagram (2a) is given by

4 4 d3 3 I

4 (&«)= —,f,f,) ) Go(t —q, ~ —«.)G«( —q —q', ~ —«. —«„)
Vt3 P~ I

xG()(k —q', (d —v t)D()(q, v )Dp(q', & t)Gp(k, (d )2, (22)

where

1
Gp(k, (u ) = .

1 1
Dp(q ~-) =

XP~ —4Pp ZP~ + (dp

(23)

(24)

forward, it would obviously be impractical to perform
them by hand, due to the large number of terms. We
have therefore written a computer program which per-
forms these analytical integrations and generates the re-
sulting terms, which now depend on egt sg ~t e'~ ~ ~ t

and s~ ~t. It then remains to perform the integrals over

q and q'. These integrals are performed using a Monte
Carlo integration method.

are the unperturbed electron and phonon Green's func-
tions, respectively, and P = 1/T. Since each electron
Green's function provides one factor and each phonon
Green's function two factors, the diagram (2a) gives four
terms. In total the diagrams (2a)—(2d) give 16 terms.

We then perform the boson sums by the replacement~3

1 . 1

P ~. c exp(Pz) —1' (25)

i.e., the frequency summation is replaced by a contour
integral, where the contour C runs on both sides of the
imaginary axis. ~z For the fermion sum in diagram (2d) a
similar replacement is introduced. All the frequency in-

tegrals can then be performed analytically in a standard
way. The number of resulting terms is, however, large,
namely, 128 fourth-order terms.

We next continue the Green's function to the real axis
by replacing iu by the real frequency ur and perform
the Fourier transform

IV. TWO-LEVEL MODEL

As a test of the formalism, we consider the two-level
model

2 2

H =op) c,.c;+(up) b, b; —t(c,cz+c2cg)
i=1 i=1

2

+g ) (bt + b;)ctc; (28)

Here t ) 0 is the hopping between the two levels, and the
separation 2t between the bonding and antibonding levels

plays the role of the bandwidth for an infinite system.
This type of model has also been studied by Ranninger
and Thibblin. ~3 By introducing bonding and antibonding
combinations of the operators

G(t, t) = f e ' 'G(k, t«). (26)

1
C~ = (Cy + Cz),

2

(29)

Typically, G(k, ur) may have a pole of the order n at
some energy e. We are interested in photoemission and
therefore in t & 0. We therefore close the contour in
the upper half plane. If e & E~, where E~ is the Fermi
energy, the pole corresponding to s is located in the upper
half plane and it therefore contributes to the integral. Let
the behavior of G(k, (tt) around ur = e' be ((t) —e) f(m)
Then the contribution &om the pole at u = e is

1 dn —1

(n —1)' (Cku)"
—'

After performing these integrals, we obtain 656 terms
from the diagrams (2a)—(2d).

Although these calculations are in principle straight-

1
b~ = (b~ +b2)

2

we can transform the Hamiltonian to the standard form

H = ) e„ctc„+(dp ) btb„

+ [(c+c+ + ct c ) (bt+ + b+)
2

+(c+c +c c+)(bt +b )j.

Here E'~ = E'p +C. The Hamiltonian H' without the q = 0
mode is given by
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0' = ) s„ctc„+urpbt b

(c+c + ct c+)(bt + b )
2

(31)

Antibonding

To obtain the exact spectral functions, we make the
ansatz for the ground state

N —1

l4') = ) a„ct lVac)ln ),

3 g 2

(='.) ='
2t=o. 1

0

Ch
Bonding

Q)

C

where ln ) are eigenstates of upb b and c„ is c+ if
n is even and c otherwise. This leads to an eigen-
value problem for an N x X matrix. With increasing X
this converges to the exact solution. In the final state
there is no electron, and the eigenstates are of the type
ln+)ln )lVac). The spectral functions p~(s), for the
bonding (+) and antibonding (

—
) levels, are then given

by (/3 = g'/~p)

~+(s) = ). ). e &"'la2- (+i)l'
n+ —on =o

x8(s + [n+ + 2n (+1)]top —Ep),

where (+1) applies to the antibonding (—) level and Ep ——

Ep —g2/idp is the ground-state energy.
Due to the interaction with the phonons, the antibond-

ing level is also occupied in the ground state. This level
therefore contributes to the photoemission spectrum. In
the t m 0 limit, the sum of the spectra for the bonding
and antibonding levels is identical to the spectrum for
the core-level model, while the spectrum of the bonding
level alone differs Rom the core-level spectrum.

We also calculate the second-order self-energy corre-
sponding to the diagrams (la) and (1b) in Fig. 1,

0
s

-0.6

for the antibonding level, we first show the results for

C2(t) and C4(t) for the bonding level. We obtain

2

—,G, (+, t) = (
—0.22+ 0.07it)e "+', (35)

which leads to

FIG. 2. The photoemission spectrum from the bond-
ing (lower part) and antibonding (upper part) level of
the two-level model. The parameters are up = 0.2 eV,
(g/&up) = 1, and 2t = 0.1 eV. The energy scale has been
displaced so that the peak for the bonding level would have
appeared at 0 for a uouinteractiug system (g = 0). The shift
operator (40) described in the text has not been included.
The full curve shows the exact result, the dashed and dotted
curves show the result of a second- and fourth-order cumu-
lant expansion, respectively. A Lorentzian broadening with
the half-width 0.035 eV has been used.

~()= —
l

g ( 1 +
1 ) g

2 i s+(dp+t s' —(dp —t) (dp
(34) —,C, (+, t) = —0.22+ 0.07it. (36)

Inserting this result into the Green's function (21), we
obtain the second-order spectral function.

In Fig. 2 we show results for the spectrum of the two-
level model. We have used ~o ——0.2 eV, which is the
energy of the highest phonon in Csp and g = up, which

may be a typical value for the electron-phonon coupling
in Csp. i4 We have chosen t = 0.05 eV, which corresponds
to a small bandwidth.

For the bonding level (lower part of figure), the second-
order cumulant expansion (dashed curve) provides a
rather accurate solution and the fourth-order (dotted
curve) result is almost exact. Thus the agreement is
within the plotting accuracy except for the two satellites
below —0.5 eV. The spectrum for the antibonding level
is shown in the upper part of the figure. The accuracy of
this spectrum is substantially worse. The second-order
result gives rather accurate weights, but the energies are
less accurate than for the bonding level. The fourth-order
result gives negative spectral weights, and it is in many
respects worse than the second-order result.

To analyze the reason for the poor fourth-order result

—,C4(+, t) = —0.082 + 0.008it —0.003(it)

+0 056
—c(—0.4o)t

The first two terms slightly reduce the weights of the
peaks and slightly shift them, respectively. The fourth
term adds weight to the second satellite (at about —0.57
eV). For the antibonding level we obtain

2—C (—t) = 0222 (38)

Expanding exp[C2( —,t) —1] produces the first satellite in
the second-order spectrum. The energy of this satellite
is not very accurate, and one may expect this to be 6xed

Here the term —0.22 reduces the weight of the spectrum,
refiecting that in the interacting system the occupancy of
the bonding level is smaller than unity. The term 0.07it
leads to a shift of the peak, taking relaxation effects into
account. The satellites in Fig. 2 are caused by the second
factor in Eq. (20). The fourth-order result is
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by the fourth-order result, which is

4—C4(—t) = 0.015e ' 'it —0.25e ' ' (39)4 —, — . e

0 '-

Antibonding

C4(—,t) indeed contains a term linear in it, which would
have led to a shift if the factor e'o st had not been present.
For the bonding level, the exponent in G multiplying the
term linear in it was removed by the division by ie
in the definitions (11) and (12). For the antibonding
level sz is above the Fermi energy, while, of course, all
pieces of the spectral function contributing to photoemis-
sion are below. Thus C2(—,t) and C4( —,t) must contain
exponential functions. After Fourier transformation, a
function of the type (it)e "' leads to a double pole at

This results in a negative contribution to the
spectral function on one side of s = s and a positive
contribution on the other side. This leads to a shift
of a satellite located at r, as desired, at least if the
spectrum has some broadening. However, if the needed
shift is large, and therefore the amplitude of the double
pole is large, this can lead to negative pieces of the total
spectral function, which is, of course, unphysical. This
problem could have been avoided if we had used the pre-
factor exp(i0. 3t) instead of exp( —isi, t) in the definition
of the cumulant expansion [Eq. (10)j for the antibond-
ing level. Although this approach would work for the
two-level model, it would be less obvious what prefactor
to use for a continuous model, which is our real inter-
est. Thus we have not used such an approach here. The
expansion could, however, be improved, even for a con-
tinuous model, by replacing s& by Ez in the prefactor in
Eq. (10) if s» E~.

To avoid the problem with the double pole and to im-
prove the second-order peak positions, we add and sub-
tract a constant shift s'i to the part of the Hamiltonian
involving the antibonding level. Thus the level position

is replaced by s' —s'i and we add as a perturbation
the shift operator

4 Bonding

3 g 2

2t=0. 1

~s~0-
-0.8 -0.6 -0.2

FIG 4 Same as in Fig 3 but treating "q = 0" explicitly

in the cumulant expansion.

E')C C (40)

which does not change the Hamiltonian. This additional
term leads to the diagrams (2e)—(2g) in Fig. 1. These di-
agrams also generate terms proportional to si(it)e
and we can choose s& in such a way that terms of this
type cancel. The result of such a calculation is shown in
Fig. 3. For the bonding level and for the second-order
calculation for the antibonding level nothing is changed,
by definition. However, for the fourth-order antibonding
calculation, the negative parts of the spectral function
are now gone and the peak positions are greatly improved
compared with the second-order calculation. The agree-
ment with the exact solution, although not as good as
for the bonding level, is quite satisfactory.

Finally, we show in Fig. 4 the result for the case when
the "q = 0" term is treated explicitly in the cumulant
expansion and not via the last factor in Eq. (20). There
is a substantial difference in the second-order cumulant
result for the antibonding level between Figs. 3 and 4. In

Antibonding

Antibonding

0,
Bonding

C
3 g 2g

2 2t=0. 1

/'~

I I,

1—

-0.8 -0.6 -0.4 -0.2

Bonding
4

V)

+ 3 g 2
0)

2 2t=0.5

-0.8 -0.6 -0.4 -0.2

FIG. 3. Same as in Fig. 2 but with the shift operator (40)
included. Also shown is the result using the second-order
self-energy (dashed-dotted curve). FIG. 5. Same as in Fig. 3 but with 2t = 0.5 eV.
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li
/

/

Antibonding

~~
lb
CI
C Bonding

0
-1.0 -0.8 -0.6 -0.2

FIG. 6. Same as in Fig. 3 but with (g/us) = 2 and
2t = 0.1 eV.

Migdal's theorem, the description by the second-order
self-energy should improve as the bandwidth is increased,
but this apparently does not happen for the discrete two-
level model. Nevertheless, both the second- and fourth-
order cumulant expansions become better as the "band-
width" 2t is increased for the two-level model (see Figs.
3 and 5).

Figures 6 and 7 show results for a stronger coupling,
(g/too) = 2. For 2t = O. l eV (Fig. 6), the second-order
cumulant expansion is less accurate. The fourth-order
cumulant still gives accurate results for the bonding level,
while the results are less satisfactory for the antibonding
level. For the larger splitting, 2t = 0.5 eV (Fig. 7), both
the second and fourth cumulant expansions are substan-
tially improved and the fourth-order results are satisfac-
tory for both the bonding and antibonding levels. The
second-order self-energy gives a poor description of both
levels for both values of t

V. THREE-DIMENSIONAL MODEL

Fig. 4 the energy of the first satellite is somewhat better
but the weight is worse. For the fourth-order cumulant
treatment the difference is much smaller, in particular for
the first satellite. For the second satellite the result is,
however, better in Fig. 3 in terms of the weight. There is
a slight negative contribution to the spectral function at
about —0.67 eV. This is not due to a double pole but due
to a single pole with a slightly negative weight. This neg-
ative weight results &om the subtraction of (1/2) C22 (—,t)
from the contribution of G4( —,t). For the bonding level
there is no noticeable difference between the two treat-
ments.

In Fig. 5 we show results for a larger splitting, 2t = 0.5
eV, of the bonding and antibonding levels. The con-
tribution &om the antibonding level is now very small.
For the bonding level the accuracy of both the second-
and fourth-order cumulant expansions is excellent. The
second-order self-energy gives a rather good description
of the main peak for both 2t = 0.5 (Fig. 5) and 2t = 0.1
eV (Fig. 3), but a poor description of the satellites
in both cases. For a continuous system, according to

We have considered a Holstein model with a half-filled
band, which corresponds to a Hamiltonian of the type
considered in Eq. (16),

II = ) sgc„cI, +) (uobtb~+g) c„+ ci, (b +b~),
k k,g

(41)

where the sums over k and q extend over the first Bril-
louin zone, e.g. ,

—x/a & k & n/a. As appropriate for
the intramolecular phonons of Cso, we have assumed that
~~—:uo and g(q)—:g are independent of q. We use a
dispersion sA, which essentially corresponds to a nearest
neighbor tight-binding model. In order to avoid a charge
density instability at arbitrary weak coupling g, due to
perfect nesting, we include, however, a weak next nearest
neighbor hopping in the dispersion sl, . We introduce the
coupling constant

(42)
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FIG. 7. Same as in Fig. 6 but with 2t = 0.5 eV.

In the broad bandwidth limit, the self-energy close to
the Fermi energy is proportional to g2/8, where 8 is the
bandwidth. 2 In this limit it is therefore sensible to keep
g2/8 fixed as 8 is varied. In the limit of small 8, on the
other hand, the weights of the satellites depend on g2,
and in this limit it is more sensible to keep g fixed when
B is varied. Below we therefore study the spectrum as
a function of 8, both when g~/8 and when g2 is kept
fixed.

In Fig. 8 we show results for the spectrum as a function
of the bandwidth B when g~ is kept fixed. We have
considered a one-particle level with the energy —0.05 eV
relative to the Fermi energy, except for B = 0.05 eV,
where the lowest possible level is at —0.025 eV. At the
bottom of the figure, we show results for B = 6 eV. In
this case the bandwidth is much larger than the phonon
&equency coo ——0.2 eV. The second-order theory is very
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tral function is greatly reduced when the spin degeneracy
is introduced. This problem can, nevertheless, appear for
certain parameters. For instance, for (g/uo) = 1 and sq
close to —~o, we have found appreciable negative contri-
butions to the spectral function. For very small values
of B we also find that the width of the spectrum is too
large and the weight from the occupied part is too small.

VI. MIGDAL'S THEOREM

d 'k 1 1
Fg ——zg

(2n)4 ko —eg+i~ ko+ qp
—E),+~+ i~+~

2')p

(po —kp) 2 —((up —iq) 2 ' (45)

where the 6rst two factors are electron Green's functions
and the last factor is the phonon Green's function. Here g
is an in6nitesimal positive number and gg, is in6nitesimal
and positive if e~ is above the Ferxni energy and negative
otherwise. Due to the very singular nature of the inte-
grand a reliable estimate of j. q and its dependence on the
variables qo, q, and po for a given value of p is difficult
without actually performing the integral numerically. It

As mentioned in the Introduction, it has been argued
that the relevant bandwidth for AsCso is not the tq„
bandwidth (1/2 eV), but the total width ( 15 eV) of all
the m-derived subbands, since the electron-phonon cou-
pling connects the tq„subband to all the other z-derived
subbands. We have performed simple calculations of the
electron-phonon coupling, ~s using an empirical model for
the phonons~s and a 60x60 tight-binding model~~ for the
electronic structure. Inside the tq„band the phonons of
H~ synnnetry give the main contribution to the electron-
phonon coupling. The H~ phonons also couple the elec-
tronic state in the tq„band to states in the h„band
directly below the tq„. The Hs phonon, however, cannot
couple the tq„states to the next two bands above tq„or
the next two bands below the h„band, due to synnnetry
reasons. There are, however, other phonons which give a
coupling to these bands. We find that if all intramolec-
ular phonons are considered, the tq„band couples to all
the other n-derived bands with a strength that is com-
parable to the coupling in the tq„band itself. If we are
allowed to neglect the small band gaps between the sub-
bands, we would then arrive at the conclusion that the
relevant bandwidth is large ( 15 eV) for AsCso.

This might suggest that Migdal's theorem is actually
valid for Ceo, i.e., that the vertex corrections are small.
On the other hand, it is hard to see how the vertex correc-
tions could be large if we only consider the tz„band, but
would become small if we open up additional channels
by considering the other subbands. Below, we show that
including a few more subbands indeed makes Migdal's
theorem worse, not better.

We have calculated the lowest-order vertex correction
(3) in Fig. 1 using the T = 0 formalism. Thus we calcu-
late the vertex function for the incoming electron energy
and momentum po and p, and the incoming phonon en-

ergy and momentum qo and q,

is important to know the dependence on qo and q as one
has to integrate over these variables in order to calculate
the self-energy diagram (2a). In his famous attempt to
obtain an order of magnitude estimate of I'q, ~ Migdal's
main argument is that the integral over ko gives a large
contribution if ~ko~ is of order ~0 or less, and the phonon
Green's function is then of order 2/uo. If we follow his
arguments, we arrive at the vertex correction relative to
the bare vertex (g),

I,
g

21 (46)

for the model considered here, where we have assumed
that the electron energies in the denominators of the
two electron Green's functions typically are some frac-
tion of the bandwidth B The. actual numerical calcula-
tions show that as a function of qo, q, and po the vertex
correction changes by an order of magnitude relative to
its average value and even changes sign, where C 20
presents an average value. We notice that I'q/g goes to
zero as B ~ oo, even when g2/B is kept constant.

These arguments illustrate how the vertex corrections
become small as B increases, simply because the phonons
couple to states which are increasingly far away from the
Fermi energy, and therefore the energy denominators be-
come large.

The estimates above assume that q g 0. For q = 0,
the vertex function is larger, and goes as g /B The.
range of q where this happens is, however, not very large,
at least not for large values of B. In the following we
neglect the q = 0 limit.

If we insert B = 0.6 eV and g = 0.2 eV, as may be
reasonable for AsCso, we find that the vertex correction
may be of the order 2, and that it cannot be neglected. If
we now increase B, without changing the total number of
states in the band, it is clear that the vertex correction
rapidly becomes small, and Migdal's theorem becomes
valid. This was also illustrated in Fig. 8. If, on the other
hand, we increase the total bandwidth by adding extra
bands, keeping the width of the tq„subband fixed, we
expect the vertex correction to increase.

To illustrate this, we have performed calculations for
a model with three or five subbands, with the middle
band half filled and the separations of the centers of the
bands 1.5 eV. The results are shown in Fig. 12. The dif-
ference between the second-order self-energy calculation
and the second-order cumulant expansion is unchanged
as the number of bands is increased. The difFerence be-
tween these two calculations, on the one hand, and the
fourth-order cumulant calculation, on the other hand,
slightly increases with the number of bands considered,
in particular, the broadening of the main peak increases
somewhat with the n»aber of bands. Thus we conclude
that the validity of the ass»mptions behind Migdal's the-
orem is not improved when more subbands are taken into
account.

The reason Migdal's theorem is violated in A3C6p is
therefore not directly related to the bandwidth, which
may be argued to be large. More important is that the
tq„b nd, acontaining six states, has a small width (1/2
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Photoemission spectra from AsCso (A=K,Rb) show
an unexpectedly large width for the partly occupied tz„
band, ~s ~s which is found to be many times (approxi-
mately a factor 5) larger than what has been predicted
&om band structure calculations. We have shown that
this large width may be understood in terms of multiple
phonon and plasmon satellites. ~s This was done within
a model which essentially corresponds to the core-level
model (1) discussed in the Introduction. This model rep-
resents an oversimplification of the real system. It is
therefore interesting to ask to what extent the earlier
oversimplifications infiuenced the conclusions. In par-
ticular, we have to ask how the weight at larger binding
energies is influenced by the dynamics due to the band
being only partly filled and having a finite width.

In Fig. 13 we show results using the fourth-order cu-
mulant expansion for B = 0.6 eV and (g/uo) = 0.5 for
two values of sl, (—0.05 eV and —0.25 eV). Since there are
also contributions from the levels which are unoccupied
in the absence of the electron-phonon coupling, we have
added the spectra for ss = 0.05 eV and e'q = 0.25 eV

to those for sq ———0.05 eV and sl, = —0.25 eV, respec-
tively. These spectra are compared with the results for
the core-level model. As in our earlier work, we have
assumed that "polaronic effects" shift the main peak to-
wards the Fernu energy, and considered energies of the
order s'~/[1+ (g/ufo)z]. Thus we have placed the main
peak at —0.03 eV and —0.17 eV, respectively, in the two
"core-level" spectra. As expected, for the band model
the spectra are broadened, in particular for s'1, = —0.25
eV, where the hole can decay in a phonon and a hole
closer to the Fermi energy. It therefore seems unlikely
that the individual phonon satellites can be resolved ex-
perimentally. The shift of weight towards higher binding
energies due to satellites is, however, similar in the two
spectra. Thus the centers of gravity are at —0.12 eV
(band case) and —0.13 eV (core case) in the upper part
of the figure and —0.28 eV (band case) —0.26 eV (core
case) in the lower part. These results are therefore con-
sistent with our earlier interpretation that phonon and
plasmon satellites cause the large width of the photoe-
mission spectrum in AsCso.
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