PHYSICAL REVIEW B

VOLUME 50, NUMBER 15

15 OCTOBER 1994-1

Corrections to Migdal’s theorem for spectral functions: A cumulant treatment

of the time-dependent Green’s function

O. Gunnarsson
Maz-Planck-Institut fiir Festkorperforschung, D-70506 Stuttgart,Germany

V. Meden and K. Schénhammer
Institut fiir Theoretische Physik, Universitdt Gottingen, D-37073 Géttingen, Germany
(Received 23 March 1994)

The electron spectral function is calculated for a model including electron-phonon coupling to
Einstein phonons. The spectrum is studied as a function of the electronic bandwidth and the
energy € of the level from which the electron is removed. A cumulant expansion is used for the
time-dependent Green’s function, and the second- and fourth-order cumulants are studied. This
approach is demonstrated to give accurate results for an exactly solvable two-level model with two
electronic levels coupling to local phonons. For a one-band, infinite, three-dimensional model the
cumulant expansion gives one satellite in the large-bandwidth limit. As the bandwidth is reduced,
the spectrum calculated with the fourth-order cumulant develops multiple satellites, if €, is close to
the Fermi energy Er, and as the bandwidth becomes small, results similar to the two-level model are
obtained. If e is more than a phonon energy below Er, the spectrum instead shows a very broad
peak, due to the decay of the hole into a hole closer to Er and a phonon. If the spin degeneracy of
the electrons is taken into account, the broadening due to the decay of a hole into a hole closer to Er
and an electron-hole pair becomes important, even if € is closer to Er than the phonon energy. The
validity of Migdal’s theorem for A3Cgo (A=K,Rb) is discussed. The intersubband electron-phonon
coupling is appreciable for A3Cgo, and it may be argued that the effective bandwidth is large. It is

shown that Migdal’s theorem is, nevertheless, not valid for A3Ceo.

I. INTRODUCTION

The treatment of the electron-phonon coupling in or-
dinary metals is greatly simplified for systems where
Migdal’s theorem! is valid. This theorem states that for
systems where the electronic energy scale is much larger
than the phonon energy scale, it is sufficient to calculate
the lowest-order self-energy diagram. This diagram can
furthermore be calculated using the bare electron Green’s
function.! Since the energy scale of typical metals is of
the order of several eV while the phonon energies are
typically only a fraction of an eV (0.01-0.1 eV), Migdal’s
theorem is usually assumed to be well satisfied for such
systems. The electron spectral function has been exten-
sively studied by Engelsberg and Schrieffer? for systems
where Migdal’s theorem is assumed to be valid.

For doped Cgo compounds, A3Cgo (A=K ,Rb), the situ-
ation is very different. The intramolecular phonons have
energies extending up to about 0.2 eV, and the width of
the partly occupied ¢, band is about 1/2 eV, accord-
ing to band structure calculations.® It is therefore highly
questionable if Migdal’s theorem can be used for doped
Ceo compounds. For high-T. compounds the applicabil-
ity of Migdal’s theorem has also been questioned. It is
therefore desirable to include higher-order diagrams for
these systems. We note, however, that it has been ar-
gued that the relevant bandwidth for A3Cgo is not the
t1, bandwidth but the width of all the w-derived bands
extending over some 15 eV. It has therefore been argued
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that Migdal’s theorem may be valid for A3Cgo after all.
We discuss this below. Corrections to Migdal’s theorem
have been studied by Pietronero and Strissler in the con-
text of the superconductivity of A3Cgo.2 Corrections for
two-dimensional systems have also been studied.*

An interesting limiting case is a system where a core
level couples to bosons (phonons or plasmons). This
is in some sense the opposite limit to the one above,
since the dispersional width of the core level can be as-
sumed to be zero. This limit has been extensively stud-
ied in the past.®7 A particular simple model is obtained
if the bosons are assumed to be dispersionless (Einstein
phonons). We then consider the Hamiltonian

H = eoctc + wob'd + g(bT + b)(cte — 1). (1)

Here € is the core-level energy, wy is the boson energy,
and g is the electron-boson coupling. ¢ and b are the
annihilation operators for the electron and the boson,
respectively. The exact spectral function p is a Poisson

distribution of é functions,”
> 4 2n
ple) = e=(9/w0)? Zo - (i)
x8(e — €0 + nwo — g% /wo). (2)

The spectrum has boson satellites displaced by —wp,
—2wp, and so on towards lower energies. Calculating the
self-energy to lowest order,
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g2 3 ered the spectrum broadens due to the decay of the hole
Tae) = €—€o+wo—in’ 3) into a phonon and a hole closer to the Fermi energy. As

where 7 is an infinitesimal positive number, gives reason-
able results for the main peak but it replaces all the satel-
lites by one single satellite at some averaged energy.®” If
(9/wo)? > 1, the higher satellites have an appreciable
weight and the lowest-order diagram is therefore not suf-
ficient.

It may then seem natural to calculate the self-energy to
next order (fourth) in g, but this leads to problems.® For
the model discussed above, for instance, the fourth-order
self-energy has a double pole.

4

_ g
Za(e) = (e — €0 + wo — in)2(e — &0 + 2wp — i)’

(4)
The corresponding Green’s function therefore has incor-
rect analytical properties and the spectral function may
be negative. An alternative approach is to expand the
time-dependent Green’s function in powers of the cou-
pling constant,®®% and to use a cumulant expansion.”1°
In this approach, the second-order cumulant expansion
already gives the exact result for the core-level problem
discussed above.”

To test the cumulant expansion, we first consider a
two-level model, for which we can easily obtain the exact
solution. Two electronic levels couple to each other via
a hopping matrix element ¢ and each level couples to a
local boson with the energy wy and the coupling constant
g. The system has one electron. Even in the limit when ¢
goes to zero, this problem is different from the core-level
problem, in the sense that the second-order cumulant ex-
pansion does not give the exact result. This illustrates
that the valence problem is more difficult than the core
problem, due to the partial filling of the levels and due to
the hopping of the electron between the electronic levels.
By increasing t we can furthermore simulate aspects of
a system with a finite bandwidth. The two-level model
is therefore a nontrivial test case for the formalism. For
(9/wo)? < 2, we illustrate that the second-order cumu-
lant expansion is rather accurate and that the fourth-
order expansion gives excellent results for the two-level
model.

We then apply the formalism to a continuous, three-
dimensional, one-band, tight-binding model. We study
the spectrum as a function of bandwidth and the momen-
tum k or energy &; of the removed electron (the Fermi
energy Ep is taken as zero). According to the calcula-
tions, such a system also has multiple phonon satellites
for bandwidths of the order of or somewhat larger than
the phonon frequency, if —e} < wp and the coupling is not
too weak. As the energy of the one-particle level is low-
|

n=1

G(k,t) =

n=1

[ ie~***texp (i(g"/n!)Cﬂ(k, t)) for e, < EFp
e tent [exp (i(g"/n!)Cn(k, t)) - 1] for ex > EF.

the bandwidth is increased the multiple phonon satellites
disappear and only the lowest satellite remains. Intro-
ducing a spin degeneracy for the electronic levels leads to
a substantial additional broadening, also for states where
—¢&p < wp. For certain sets of parameters, in particular
without spin degeneracy, the approximation can give un-
physical negative spectral weights for certain energies.
The reasons are discussed below.

In Sec. IT we present the cumulant expansion and in
Sec. III some details about the calculation of the cumu-
lants. In Sec. IV we study the two-level model and in
Sec. V the continuous model. We discuss Migdal’s theo-
rem for A3Cgo in Sec. VI and the results are discussed in
Sec. VII.

II. CUMULANT EXPANSION

We consider the time ordered Green’s function
iG(k,t) = (®B|T[ck(t)cl]|®), (5)

where ¢; annihilates an electron in the state k, ci(t) is
a time-dependent Heisenberg operator, |®) is the ground
state, and T is the time-ordering operator. We consider
a general Hamiltonian of the type

H= Zekclck + qubzbq + Zg(q)c{_,_qck(bt_q +by),
k q

(6)

where b, annihilates a boson with the energy w, and g(q)
is the electron-phonon coupling strength. We are inter-
ested in the photoemission spectrum p<(k,¢), which is
described by G(k,t) for t <0,

(1]
p<(k,e) = %Im / dte Gk, 1). )

We use a cumulant expansion for the time-dependent
Green’s function.!! Let us assume that the expansion of
the Green’s function in powers of the coupling constant
g is known,

-\
G(k,t) = n;) ] Gn(k,t). (8)
Here
_ [ie7*t fore, < Ep
Go(k,t) - { 0 for Ex > EF, (9)

where Er = 0 is the Fermi energy and ¢t < 0. We there-
fore write the cumulant expansion as

(10)
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For the Hamiltonian (6) the odd terms G5, vanish. By
expanding Eq. (10) and identifying terms of a given order
in g one obtains

2 2
g _g° Gat)
a1 %260 = 5y e (1)
and
4 4 4
g _ 9t Gut) gt
R = e ~ Gk (12)

For the core-level problem [Eq. (1)] we calculate the
second-order diagram (1a) in Fig. 1 and, since the con-
tribution of diagram (1b) vanishes, we obtain

2 2

: ) g (13)

w—€9—10 ) w—eg+wy—1i0

2
g
gGZ(W) = (
Fourier transformation of Ga(w) gives
g . 2/ i . ;
an(t) =1(g/wo)?(e*°t — twot — 1)e ™" (14)

Dividing by Go(t) = iexp(—ieot) yields Ca(t) and the
second-order cumulant expansion

(1a) (1b)

(2a) (2b)

(29) (3)

FIG. 1. Second- (1) and fourth-order (2) diagrams con-
tributing to the cumulant expansion. The solid lines describe
electrons, the wiggly lines bosons, and the dashed lines con-
necting to crosses describe the shift operator (40). (3) shows
the lowest-order vertex correction in Eq. (45).
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G(t) = ieieote(9/wo) (€10 ~iwot=1) (15)

Fourier transformation of Eq. (15) leads to the exact core-
level spectrum in Eq. (2). The term —1 in the parenthe-
ses in the exponent provides the prefactor e~ (9/ @0)* and
the term —iwot gives the relaxation energy g2/wo. Ex-
panding exp[(g/wo)?e“°t] gives the boson satellites. The
nonzero fourth-order contribution G4 is obtained by cal-
culating the fourth-order diagrams (2a)-(2d) in Fig. 1, as
all diagrams containing a tadpole [diagram (1b)] vanish,
due to the special form of the Hamiltonian (1). When
combined with G,(t) according to Eq. (14), the corre-
sponding Cy4(t) = 0, as it should, since the second-order
cumulant expansion already leads to the exact result for
the core hole problem.

For the general Hamiltonian (6), the ¢ = 0 coupling
term gives nonvanishing tadpole contributions for finite
systems. In order to avoid the corresponding abundance
of diagrams, it is favorable to treat the ¢ = 0 term sepa-
rately. We write the Hamiltonian (6) as

H = H' + woblbo + g(0)N (bl + bo) = H' + Hy—p, (16)
where N = Yoo c;',cp is the total number operator. Since
[H',Hy=0] =0, 17)

we can write the ground state for NV electrons in the
product form

) = |2)0), (18)

where |®') is the ground-state to H' and |0) is the ground
state to Ho(N) = wobfbo + g(0)N (b} + bo). The ground-
state energy is Eo(N) = E}(N) + Eo(N). In photoemis-
sion, studied below, we use G(k,t) for t <0,

—iG(k,t) = (q;|cil;ei[H-Eo(N)]tck|¢>
= <(I~,Ilc’1;ei[H'_E(’,(N)]tck|¢.t> (19)
X<6Iei[Ho(N—1)—Eo(N)]t|6>_

The first factor on the right hand side corresponds to
the spectrum for the Hamiltonian H' and it is calculated
using a cumulant expansion, as discussed above. The
second factor can be calculated exactly” and we obtain

—iG(k,t) = (®'|cfelH ~ BNt |

BN L R0 (g

For a large system, g(0) ~ 1/y/M, where M is the num-
ber of sites. If N ~ M, only an uninteresting constant
shift remains of the second factor in Eq. (20), as the size
M of the system goes to infinity. For the two-level model
discussed in Sec. IV this separation of the ¢ = 0 term
simplifies the calculations.

As a comparison, we also calculate the second-order
self-energy and the corresponding Green’s function and
spectral function

1

1 1
plk,e) = JImG(k,e) = Im———5 -

(21)
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III. CALCULATION OF THE CUMULANTS

To obtain the expansion of the Green’s function (8)
corresponding to H', we calculate the diagrams (1a) and
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tions using the Matsubara finite 7" formalism in the hmit
T — 0 to obtain G, (k,wm). The Green’s function is then
continued analytically to real frequencies, and a Fourier
transformation is performed to obtain Gn(k,t).

For instance, the diagram (2a) is given by

9* ~(2a) g* [ _d’ '
9-GL (k,wm) = ﬂz/( / 322001; @ Wm — n)Go(k — @ — @', Wm — U — V)

XGo(k — q',wm — un:)Do(q, vn)Do(q' ,V,,:)Go(k,wm)z, (22)

(2a)—(2d) in Fig. 1. We calculate the Green’s func-
J

where

1
m) = T——— 23
Go(k,wm) W — €k (23)
and
1 1

Do(q,vn) = W, —we  iUn + wo (24)

are the unperturbed electron and phonon Green’s func-
tions, respectively, and 8 = 1/T. Since each electron
Green’s function provides one factor and each phonon
Green’s function two factors, the diagram (2a) gives four
terms. In total the diagrams (2a)—-(2d) give 16 terms.
We then perform the boson sums by the replacement!?

1 1
B 2,,: ~ /c exp(Bz) — 1’ (@)

i.e., the frequency summation is replaced by a contour
integral, where the contour C runs on both sides of the
imaginary axis.!? For the fermion sum in diagram (2d) a
similar replacement is introduced. All the frequency in-
tegrals can then be performed analytically in a standard
way. The number of resulting terms is, however, large,
namely, 128 fourth-order terms.

We next continue the Green’s function to the real axis
by replacing iw,, by the real frequency w and perform
the Fourier transform

® dw —iwt
G(k,t) = /_ GG k). (26)

Typically, G(k,w) may have a pole of the order n at
some energy €. We are interested in photoemission and
therefore in ¢ < 0. We therefore close the contour in
the upper half plane. If ¢ < Ep, where Ep is the Fermi
energy, the pole corresponding to ¢ is located in the upper
half plane and it therefore contributes to the integral. Let
the behavior of G(k,w) around w = € be (w — €)™ f(w).
Then the contribution from the pole at w = ¢ is

] 1 d"—l —iwt
D) [@w)i® d @le=e
After performing these integrals, we obtain 656 terms

from the diagrams (2a)—(2d).
Although these calculations are in principle straight-

(27)

[

forward, it would obviously be impractical to perform
them by hand, due to the large number of terms. We
have therefore written a computer program which per-
forms these analytical integrations and generates the re-
sulting terms, which now depend on &y, ex_q, Ek—q—q'»
and €y_g'. It then remains to perform the integrals over
q and q'. These integrals are performed using a Monte
Carlo integration method.

IV. TWO-LEVEL MODEL

As a test of the formalism, we consider the two-level
model

H=eoic:r

+9 57 (b] + bi)cle;. (28)

2
i +wo Z btb - t(6162 + 0201)

Here t > 0 is the hopping between the two levels, and the
separation 2t between the bonding and antibonding levels
plays the role of the bandwidth for an infinite system.
This type of model has also been studied by Ranninger
and Thibblin.!? By introducing bonding and antibonding
combinations of the operators

ct = \/_(cl + c2),

(29)
1
ﬁ(bl + by)

we can transform the Hamiltonian to the standard form

H= Z enc}\lcn + wp Z b:"b,,
n=+ n=%

9
2

+(chem +cley)®l +b2)). (30)

by =

[(cher +cle )(bh +4)

Here €4 = g9 F¢t. The Hamiltonian H’' without the g =0
mode is given by
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H = enchen + wobl b
g (i 1 1
+——=(chc_+clcy)(bl +0b_). 31
\/5( + +)( ) (31)
To obtain the exact spectral functions, we make the
ansatz for the ground state

N-1

|®') = Z an_cl |Vac)|n_), (32)

n_=0

where |n_) are eigenstates of wob! b_ and ¢, is cy if
n_ is even and c_ otherwise. This leads to an eigen-
value problem for an N x N matrix. With increasing N
this converges to the exact solution. In the final state
there is no electron, and the eigenstates are of the type
[nt)|n_)|Vac). The spectral functions py(e), for the
bonding (+) and antibonding (—) levels, are then given

by (8 = ¢%/w})

pe(e) =Y

ny=0n_=0

x6{e + [n4 + 2n_(+1)]wo — Eo}, (33)

e A" |ag, (+1) 2

where (+1) applies to the antibonding (—) level and E, =
E{ — g*/wo is the ground-state energy.

Due to the interaction with the phonons, the antibond-
ing level is also occupied in the ground state. This level
therefore contributes to the photoemission spectrum. In
the t — 0 limit, the sum of the spectra for the bonding
and antibonding levels is identical to the spectrum for
the core-level model, while the spectrum of the bonding
level alone differs from the core-level spectrum.

We also calculate the second-order self-energy corre-
sponding to the diagrams (1la) and (1b) in Fig. 1,

%= 5 (craritemu )—9—2. (34)

2 \e+wo+t €—wo—1 Wo

Inserting this result into the Green’s function (21), we
obtain the second-order spectral function.

In Fig. 2 we show results for the spectrum of the two-
level model. We have used wg = 0.2 eV, which is the
energy of the highest phonon in Cgp and g = wp, which
may be a typical value for the electron-phonon coupling
in Cgo.'* We have chosen ¢ = 0.05 eV, which corresponds
to a small bandwidth.

For the bonding level (lower part of figure), the second-
order cumulant expansion (dashed curve) provides a
rather accurate solution and the fourth-order (dotted
curve) result is almost exact. Thus the agreement is
within the plotting accuracy except for the two satellites
below —0.5 eV. The spectrum for the antibonding level
is shown in the upper part of the figure. The accuracy of
this spectrum is substantially worse. The second-order
result gives rather accurate weights, but the energies are
less accurate than for the bonding level. The fourth-order
result gives negative spectral weights, and it is in many
respects worse than the second-order result.

To analyze the reason for the poor fourth-order result
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2 - Antibonding
1 —
0 ra = 1
Z
k7
c
2
£
-08 -06 -04 -0.2 0
e+t
FIG. 2. The photoemission spectrum from the bond-

ing (lower part) and antibonding (upper part) level of
the two-level model. The parameters are wo = 0.2 eV,
(g/wo)?> = 1, and 2t = 0.1 eV. The energy scale has been
displaced so that the peak for the bonding level would have
appeared at 0 for a noninteracting system (g = 0). The shift
operator (40) described in the text has not been included.
The full curve shows the exact result, the dashed and dotted
curves show the result of a second- and fourth-order cumu-
lant expansion, respectively. A Lorentzian broadening with
the half-width 0.035 eV has been used.

for the antibonding level, we first show the results for
C>(t) and C4(t) for the bonding level. We obtain

2
g . —1€
gG2(+, t) = (—0.22 + 0.073t)e **+t, (35)
which leads to
'S .

Here the term —0.22 reduces the weight of the spectrum,
reflecting that in the interacting system the occupancy of
the bonding level is smaller than unity. The term 0.07:¢
leads to a shift of the peak, taking relaxation effects into
account. The satellites in Fig. 2 are caused by the second
factor in Eq. (20). The fourth-order result is

4
g . .
7y Cal+:1) = —0.082 + 0.008it - 0.003(it)?
+0.056e~#(—0-40)¢ (37)

The first two terms slightly reduce the weights of the
peaks and slightly shift them, respectively. The fourth
term adds weight to the second satellite (at about —0.57
eV). For the antibonding level we obtain

2
g —i(—0.

57 Ca(—,t) = 0.22e (=0-3)¢, (38)
Expanding exp[C2(—,t) —1] produces the first satellite in
the second-order spectrum. The energy of this satellite
is not very accurate, and one may expect this to be fixed
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by the fourth-order result, which is
4 . .
%04(—, t) = 0.015e (03t _ 0254 (=0-)  (3)

C4(—,t) indeed contains a term linear in it, which would
have led to a shift if the factor -3 had not been present.
For the bonding level, the exponent in G multiplying the
term linear in it was removed by the division by ie~i*¢
in the definitions (11) and (12). For the antibonding
level € is above the Fermi energy, while, of course, all
pieces of the spectral function contributing to photoemis-
sion are below. Thus C2(—,t) and C4(—,t) must contain
exponential functions. After Fourier transformation, a
function of the type (it)e~**=* leads to a double pole at
€ = €4. This results in a negative contribution to the
spectral function on one side of ¢ = ¢, and a positive
contribution on the other side. This leads to a shift
of a satellite located at e,, as desired, at least if the
spectrum has some broadening. However, if the needed
shift is large, and therefore the amplitude of the double
pole is large, this can lead to negative pieces of the total
spectral function, which is, of course, unphysical. This
problem could have been avoided if we hiad used the pre-
factor exp(i0.3t) instead of exp(—iext) in the definition
of the cumulant expansion [Eq. (10)] for the antibond-
ing level. Although this approach would work for the
two-level model, it would be less obvious what prefactor
to use for a continuous model, which is our real inter-
est. Thus we have not used such an approach here. The
expansion could, however, be improved, even for a con-
tinuous model, by replacing € by EF in the prefactor in
Eq. (10) ifer, > Ep.

To avoid the problem with the double pole and to im-
prove the second-order peak positions, we add and sub-
tract a constant shift ¢; to the part of the Hamiltonian
involving the antibonding level. Thus the level position
€_ is replaced by €_ — &; and we add as a perturbation
the shift operator

2 Antibonding /,/'\

\
\
> 4
‘@ dﬁ Bonding
&
- 3 2
R
2

I 2t=0.1

-08 -06 -0.4 -0.2 0
€+t

FIG. 3. Same as in Fig. 2 but with the shift operator (40)
included. Also shown is the result using the second-order
self-energy (dashed-dotted curve).
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2 Antibonding £\
1 -

B

4 Bonding

Intensity

FIG. 4. Same as in Fig. 3 but treating “q = 0” explicitly
in the cumulant expansion.

eict c_, (40)

which does not change the Hamiltonian. This additional
term leads to the diagrams (2e)—(2g) in Fig. 1. These di-
agrams also generate terms proportional to &;(it)e~et,
and we can choose ¢; in such a way that terms of this
type cancel. The result of such a calculation is shown in
Fig. 3. For the bonding level and for the second-order
calculation for the antibonding level nothing is changed,
by definition. However, for the fourth-order antibonding
calculation, the negative parts of the spectral function
are now gone and the peak positions are greatly improved
compared with the second-order calculation. The agree-
ment with the exact solution, although not as good as
for the bonding level, is quite satisfactory.

Finally, we show in Fig. 4 the result for the case when
the “q = 0” term is treated explicitly in the cumulant
expansion and not via the last factor in Eq. (20). There
is a substantial difference in the second-order cumulant
result for the antibonding level between Figs. 3 and 4. In

1 Antibonding
O | I
> 1 Bonding
= 4
o
= 3r 2
g
) (@) -
2 2t=05
] —
0 .
-08

e+t

FIG. 5. Same as in Fig. 3 but with 2¢ = 0.5 eV.
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Antibonding

Intensity

FIG. 6. Same as in Fig. 3 but with (g/wo)® = 2 and
2t =0.1 eV.

Fig. 4 the energy of the first satellite is somewhat better
but the weight is worse. For the fourth-order cumulant
treatment the difference is much smaller, in particular for
the first satellite. For the second satellite the result is,
however, better in Fig. 3 in terms of the weight. There is
a slight negative contribution to the spectral function at
about —0.67 eV. This is not due to a double pole but due
to a single pole with a slightly negative weight. This neg-
ative weight results from the subtraction of (1/2)C3(—,t)
from the contribution of G4(—,t). For the bonding level
there is no noticeable difference between the two treat-
ments.

In Fig. 5 we show results for a larger splitting, 2t = 0.5
eV, of the bonding and antibonding levels. The con-
tribution from the antibonding level is now very small.
For the bonding level the accuracy of both the second-
and fourth-order cumulant expansions is excellent. The
second-order self-energy gives a rather good description
of the main peak for both 2t = 0.5 (Fig. 5) and 2t = 0.1
eV (Fig. 3), but a poor description of the satellites
in both cases. For a continuous system, according to

Antibonding

Intensity

FIG. 7. Same as in Fig. 6 but with 2¢t = 0.5 eV.
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Migdal’s theorem, the description by the second-order
self-energy should improve as the bandwidth is increased,
but this apparently does not happen for the discrete two-
level model. Nevertheless, both the second- and fourth-
order cumulant expansions become better as the “band-
width” 2t is increased for the two-level model (see Figs.
3 and 5).

Figures 6 and 7 show results for a stronger coupling,
(g/wo)? = 2. For 2¢t = 0.1 eV (Fig. 6), the second-order
cumulant expansion is less accurate. The fourth-order
cumulant still gives accurate results for the bonding level,
while the results are less satisfactory for the antibonding
level. For the larger splitting, 2t = 0.5 eV (Fig. 7), both
the second and fourth cumulant expansions are substan-
tially improved and the fourth-order results are satisfac-
tory for both the bonding and antibonding levels. The
second-order self-energy gives a poor description of both
levels for both values of t.

V. THREE-DIMENSIONAL MODEL

We have considered a Holstein model with a half-filled
band, which corresponds to a Hamiltonian of the type
considered in Eq. (16),

— t =
H= ;akckck +3 " woblibq +§ kz Cf 4 qCi (B! o + bq),
q 4

(41)

where the sums over k and q extend over the first Bril-
louin zone, e.g., —7/a < k, < 7/a. As appropriate for
the intramolecular phonons of Cgg, we have assumed that
wq = wo and g(q) = g are independent of q. We use a
dispersion €, which essentially corresponds to a nearest
neighbor tight-binding model. In order to avoid a charge
density instability at arbitrary weak coupling g, due to
perfect nesting, we include, however, a weak next nearest
neighbor hopping in the dispersion ;. We introduce the

coupling constant
? =37 (42)
q

In the broad bandwidth limit, the self-energy close to
the Fermi energy is proportional to g2/B, where B is the
bandwidth.? In this limit it is therefore sensible to keep
g%/ B fixed as B is varied. In the limit of small B, on the
other hand, the weights of the satellites depend on g2,
and in this limit it is more sensible to keep g? fixed when
B is varied. Below we therefore study the spectrum as
a function of B, both when g?/B and when g2 is kept
fixed.

In Fig. 8 we show results for the spectrum as a function
of the bandwidth B when g2 is kept fixed. We have
considered a one-particle level with the energy —0.05 eV
relative to the Fermi energy, except for B = 0.05 eV,
where the lowest possible level is at —0.025 eV. At the
bottom of the figure, we show results for B = 6 eV. In
this case the bandwidth is much larger than the phonon
frequency wo = 0.2 eV. The second-order theory is very
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close to the second- and fourth-order cumulants, where
the latter two are identical within the plotting accuracy.
For this value of B Migdal’s theorem is apparently valid.
As the bandwidth is reduced, the difference between the
different orders increases. For B = 1.5 eV, a second
satellite starts to form for the fourth-order cumulant and
for B = 0.6 eV, this satellite is quite pronounced. For
B = 0.6 eV, the result using the second-order cumulant
also starts to show signs of a second satellite, which for
B = 0.05 is very clear also for the second-order cumulant.
For B = 0.05 there are large similarities with the results
for the two-level model for a small value of t.

We observe that in Fig. 8, the spectrum becomes nega-
tive in the fourth-order cumulant solution for certain en-
ergies for B = 0.05 and to some extent also for B = 0.6
eV. This happens for somewhat similar reasons as for
the antibonding level in the two-level model. Apparently
the second-order cumulant places the main peak and the
first satellite too close together. In the fourth-order cu-
mulant solution, weight is subtracted to the right of an
energy which roughly agrees with the satellite position
and weight is added to the left. The result is a shift of
the satellite towards lower energies. For B = 0.05 eV, so
much weight is subtracted, however, that the spectrum
becomes negative at some energies. The same also hap-
pens to a much smaller extent for B = 0.6 eV. If the

Intensity

FIG. 8. Spectrum for the three-dimensional model Eq.
(41), as a function of the full bandwidth B, keeping g°
fixed. We have considered a state with the one-particle en-
ergy €x = —0.05 eV relative to the Fermi energy Er = 0,
except for B = 0.05 eV, where €, = —0.025 eV has its lowest
possible value. The parameters are wo = 0.2 eV and g = 0.2
eV. We have used a Gaussian broadening with the half-width
0.05 eV. The figure shows the result using the second-order
self-energy (dotted), and the second (dashed) and the fourth
(full line) cumulant expansion.
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one-particle level is lowered further, this effect can be-
come quite large, and the spectrum can show large neg-
ative pieces. Although these negative pieces are clearly
unphysical and signal a breakdown of the approximation,
there is a clear indication in what direction the correct re-
sult is. In Fig. 8, for instance, it is clear that the satellite
in the second-order cumulant result is at too high ener-
gies, and that the fourth-order cumulant tries to shift it
towards lower energies.
Technically, this shows up as a contribution

de(—it)eentwolt (43)
to the fourth-order cumulant. If the term wo had not
been present in the exponent, the exponent would have
been divided away when calculating C4(t) according to
Eq. (12). Then only a term é¢(—it) would remain in the
exponent of Eq. (10), which would result in a shift of the
whole spectrum. Such a term could not cause a negative
spectral weight, but it also could not change the relative
separation of two peaks. Instead there are contributions
of the type
be(—it)e ot (44)
to C4(t), which, after reexpanding the exponent in Eq.
(10), lead to double poles and subtraction of weight on
one side of the poles and addition of weight on the other
side. Such a contribution does not shift the main peak,
but effectively shifts the first satellite.
In Fig. 9 we show the spectrum as a function of B,

Intensity

FIG. 9. Same as in Fig. 8, but keeping g?/B fixed. We have
used the value g?/B = 0.041, which corresponds to g = 0.16
for B = 0.6.
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when g%/B is kept fixed. We do not show values of B
smaller than 0.6 eV, since the satellites for small values of
B become very small. For B = 0.6, the spectrum shows
multiple satellites as in Fig. 8, although the satellites are
weaker here. As B is increased, the multiple satellites
disappear and the spectrum has only one single satel-
lite, as in Fig. 8, although in the present case the weight
of this satellite remains appreciable. The difference be-
tween the different calculations in Fig. 9 is reduced as B
is increased, but the difference does not go to zero. The
second- and fourth-order cumulant results are, however,
rather similar. In the second- and fourth-order cumu-
lants, the satellite has been shifted towards lower bind-
ing energies. It would be interesting to perform a self-
consistent calculation of the second-order self-energy, in-
cluding the dressing of the phonon Green’s function, since
the electron-phonon interaction should tend to reduce the
energy of the pole in the phonon Green’s function.

We have next considered the case when the spin degen-
eracy of the electrons is taken into account. This simply
requires that the diagram (2d) in Fig. 1 is multiplied by
a factor 2. The results are shown in Fig. 10. We have
first considered a rather weak coupling (g/wo)? = 0.5.
We first consider €, = —0.05 eV. We can see that the
main peak is substantially broader in the fourth-order
cumulant expansion than in the other approximations
or in the case without spin degeneracy. The reason is

Intensity

-0.6 -0.4 -0.2

FIG. 10. Spectrum for the three-dimensional model Eq.

(41), including spin, as a function of the one-particle en-
ergy ex. The parameters are (g/wo)® = 0.5, wo = 0.2 eV,
and B = 0.6 eV. The figure shows the result using the sec-
ond-order self-energy (dotted), and the second (dashed) and

the fourth (full line) cumulant expansion.
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that the diagram (2d) allows the decay of a hole into two
holes and one electron, even in the case when the hole
energy is smaller than the phonon energy. This happens
by exciting a virtual phonon by simultaneous scattering
of the hole, followed by the decay of the phonon in an
electron-hole pair. Without spin degeneracy, the broad-
ening of the peak from diagram (2d) is to a large extent
canceled by diagram (2a), but with spin degeneracy such
a cancellation cannot take place due to the multiplica-
tion of diagram (2d) by a factor 2. The reason is that
the broadening mechanism is not efficient if both holes
have the same spin, due to exchange effects. Obviously,
this broadening cannot show up in the approximation in-
cluding the second-order self-energy or the second-order
cumulant. As e; becomes more negative this broaden-
ing is increased. For —e&; > wq an additional channel for
broadening opens, since the hole can then decay into a
phonon and a hole closer to the Fermi energy.? In the top
part of the figure £, = 0.05 eV is above the Fermi energy,
and the photoemission spectrum only shows a phonon
satellite at about —0.2 eV. This spectrum has been cal-
culated without including a linear shift of the type used
for the unoccupied level in the two-level model.

In Fig. 11 we show results for a stronger coupling
(g/wo)? = 1. For g, = —0.05 eV, the broadening is more
pronounced than in Fig. 10, due to the stronger coupling.
There is still, however, a shoulder due to the first phonon
satellite, which contains an appreciable weight. Already
for €, = —0.15, the spectrum is so broad that no sign of
a satellite can be seen, although much weight is moved
towards large binding energies.

The problem of obtaining negative pieces of the spec-

Intensity

FIG. 11. Same as in Fig. 10 but with (g/wo)? = 1.
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tral function is greatly reduced when the spin degeneracy
is introduced. This problem can, nevertheless, appear for
certain parameters. For instance, for (g/wo)? = 1 and &
close to —wq, we have found appreciable negative contri-
butions to the spectral function. For very small values
of B we also find that the width of the spectrum is too
large and the weight from the occupied part is too small.

VI. MIGDAL’S THEOREM

As mentioned in the Introduction, it has been argued
that the relevant bandwidth for A3Cgo is not the #;,
bandwidth (1/2 eV), but the total width (~ 15 eV) of all
the m-derived subbands, since the electron-phonon cou-
pling connects the t;, subband to all the other 7-derived
subbands. We have performed simple calculations of the
electron-phonon coupling,!® using an empirical model for
the phonons'® and a 60x 60 tight-binding model'” for the
electronic structure. Inside the ¢;,, band the phonons of
H, symmetry give the main contribution to the electron-
phonon coupling. The H, phonons also couple the elec-
tronic state in the t;, band to states in the h, band
directly below the t,,,. The Hy phonon, however, cannot
couple the £, states to the next two bands above ¢, or
the next two bands below the k, band, due to symmetry
reasons. There are, however, other phonons which give a
coupling to these bands. We find that if all intramolec-
ular phonons are considered, the t;,, band couples to all
the other 7-derived bands with a strength that is com-
parable to the coupling in the ¢, band itself. If we are
allowed to neglect the small band gaps between the sub-
bands, we would then arrive at the conclusion that the
relevant bandwidth is large (~ 15 eV) for A3Cego.

This might suggest that Migdal’s theorem is actually
valid for Cgo, i.e., that the vertex corrections are small.
On the other hand, it is hard to see how the vertex correc-
tions could be large if we only consider the t,,, band, but
would become small if we open up additional channels
by considering the other subbands. Below, we show that
including a few more subbands indeed makes Migdal’s
theorem worse, not better.

We have calculated the lowest-order vertex correction
(3) in Fig. 1 using the T' = 0 formalism. Thus we calcu-
late the vertex function for the incoming electron energy
and momentum py and p, and the incoming phonon en-
ergy and momentum go and q,

4
F1=@a/(ik 1 1

27)% ko — ex + ik ko + go — Ex+q + k+q

ZWQ
Po — ko) — (o — im)?" (45)

1

where the first two factors are electron Green’s functions
and the last factor is the phonon Green’s function. Here 5
is an infinitesimal positive number and 7, is infinitesimal
and positive if ) is above the Fermi energy and negative
otherwise. Due to the very singular nature of the inte-
grand a reliable estimate of I'; and its dependence on the
variables qo, q, and po for a given value of p is difficult
without actually performing the integral numerically. It
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is important to know the dependence on gy and q as one
has to integrate over these variables in order to calculate
the self-energy diagram (2a). In his famous attempt to
obtain an order of magnitude estimate of I';,! Migdal’s
main argument is that the integral over ko gives a large
contribution if |ko| is of order wq or less, and the phonon
Green’s function is then of order 2/wy. If we follow his
arguments, we arrive at the vertex correction relative to
the bare vertex (g),

2ol (46)

for the model considered here, where we have assumed
that the electron energies in the denominators of the
two electron Green’s functions typically are some frac-
tion of the bandwidth B. The actual numerical calcula-
tions show that as a function of go, q, and po the vertex
correction changes by an order of magnitude relative to
its average value and even changes sign, where C ~ 20
presents an average value. We notice that I'y /g goes to
zero as B — oo, even when g2/B is kept constant.

These arguments illustrate how the vertex corrections
become small as B increases, simply because the phonons
couple to states which are increasingly far away from the
Fermi energy, and therefore the energy denominators be-
come large.

The estimates above assume that q # 0. For q = 0,
the vertex function is larger,2 and goes as g?/B. The
range of q where this happens is, however, not very large,
at least not for large values of B. In the following we
neglect the q = 0 limit.

If we insert B = 0.6 eV and g = 0.2 eV, as may be
reasonable for A3Cgo, we find that the vertex correction
may be of the order 2, and that it cannot be neglected. If
we now increase B, without changing the total number of
states in the band, it is clear that the vertex correction
rapidly becomes small, and Migdal’s theorem becomes
valid. This was also illustrated in Fig. 8. If, on the other
hand, we increase the total bandwidth by adding extra
bands, keeping the width of the t, subband fixed, we
expect the vertex correction to increase.

To illustrate this, we have performed calculations for
a model with three or five subbands, with the middle
band half filled and the separations of the centers of the
bands 1.5 eV. The results are shown in Fig. 12. The dif-
ference between the second-order self-energy calculation
and the second-order cumulant expansion is unchanged
as the number of bands is increased. The difference be-
tween these two calculations, on the one hand, and the
fourth-order cumulant calculation, on the other hand,
slightly increases with the number of bands considered,
in particular, the broadening of the main peak increases
somewhat with the number of bands. Thus we conclude
that the validity of the assumptions behind Migdal’s the-
orem is not improved when more subbands are taken into
account.

The reason Migdal’s theorem is violated in A3Cgq is
therefore not directly related to the bandwidth, which
may be argued to be large. More important is that the
t1, band, containing six states, has a small width (1/2
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FIG. 12. Spectrum for a model with one, three, or five sub-
bands, using the fourth- (full line) and second-order (dashed
line) cumulant expansions compared with the second-order
self-energy (dotted) result. The subbandwidths are 0.6 eV
and the separations of their centers are 1.5 eV. The coupling
is (g/wo)2 = 0.5 with wp = 0.2 eV. A Gaussian broadening
with the half-width 0.05 eV has been introduced.

eV), which means that the density of states close to Ep
is very large. Furthermore the coupling to t;, states is
relatively strong. The result is that the net coupling is
so strong that vertex corrections cannot be neglected.
Finally, we notice that for our one-band model, the su-
perconductivity coupling X is given by A = 2N (0)g?/wy,
where N(0) is the density of states. Since the band takes
one electron per atom in our model, we have N(0) ~ 1/B.
Using the previous estimate Eq. (46) for the vertex cor-
rection we then find
Iy

—_—~

wo

-2 (47)

2
g
20—372 ~ 10\

Thus it would be possible to have a fairly large A but
still have a small vertex correction, if wy << B. This is,
however, not the case for A3Cqp.

VII. DISCUSSION

We have presented results for the photoemission spec-
trum for models including electron-phonon coupling.
We have considered the spectra obtained from the
second-order self-energy as well as from the second- and
fourth-order cumulant expansions of the time-dependent
Green’s function. We first considered a two-level model,
and showed that the fourth-order cumulant expansion
gives an excellent agreement with the exact solution even
for rather strong couplings [(g/wo)? < 2]. The continu-
ous (infinite) model is more difficult, and the accuracy of
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the spectra is less clear. This is, in particular, the case
when the energy ¢ of the unperturbed level, from which
the electron is removed, is above but close to —wy. The
second-order cumulant solution then underestimates the
separation of the main peak and the first satellite. The
fourth-order solution improves this separation by remov-
ing weight above the satellite and adding it below. This
shifts the satellite downwards, but can lead to a nega-
tive spectral weight if the required shift is large. Nev-
ertheless, the formalism seems to give clear indications
in which direction to change the second-order cumulant
solution to obtain the exact result. The problem of ob-
taining negative spectral weight for certain parameters
is greatly reduced when the spin of the electron is taken
into account.

We have first studied the spectrum as a function of the
bandwidth B for the case when ¢y, is close to (but below)
the Fermi energy (Figs. 8 and 9). As B is increased the
difference between the second-order self-energy and the
fourth-order cumulant is reduced, and both spectra show
only a single satellite. If, however, g2/B is kept fixed, a
finite quantitative difference remains even for very large
B. As B is reduced, multiple satellites start to form in
the fourth-order cumulant solution, and for small values
of B, the results are qualitatively similar to those for the
two-level model. It therefore seems likely that the fourth-
order cumulant expansion gives a qualitatively correct
picture of the dependence on B. As g is moved below
—wyp, the spectrum is greatly broadened (Figs. 10 and
11) due to the decay of the hole into a phonon and a
hole closer to Ep. The inclusion of spin makes the decay
of a hole into an electron and two holes important, even
for €, > —wo (Figs. 10 and 11). This shows up as a
substantial broadening even for states rather close to Fp.
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FIG. 13. Spectrum (full line) for B=0.6 eV, (g/wo)? = 0.5,
wo = 0.2 eV using the fourth-order cumulant compared with
the spectrum (dashed line) from the core-level model. A
Gaussian broadening with the half-width 0.05 eV was used.
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Photoemission spectra from A3Cgo (A=K,Rb) show
an unexpectedly large width for the partly occupied ¢;,,
band,'®!® which is found to be many times (approxi-
mately a factor 5) larger than what has been predicted
from band structure calculations.2° We have shown that
this large width may be understood in terms of multiple
phonon and plasmon satellites.'® This was done within
a model which essentially corresponds to the core-level
model (1) discussed in the Introduction. This model rep-
resents an oversimplification of the real system.!® It is
therefore interesting to ask to what extent the earlier
oversimplifications!® influenced the conclusions. In par-
ticular, we have to ask how the weight at larger binding
energies is influenced by the dynamics due to the band
being only partly filled and having a finite width.

In Fig. 13 we show results using the fourth-order cu-
mulant expansion for B = 0.6 eV and (g/wp)? = 0.5 for
two values of e (—0.05 ¢V and —0.25 eV). Since there are
also contributions from the levels which are unoccupied
in the absence of the electron-phonon coupling, we have
added the spectra for €, = 0.05 eV and g, = 0.25 eV
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to those for €, = —0.05 eV and & = —0.25 eV, respec-
tively. These spectra are compared with the results for
the core-level model. As in our earlier work,'® we have
assumed that “polaronic effects” shift the main peak to-
wards the Fermi energy, and considered energies of the
order €/[1 + (g/wo)?]. Thus we have placed the main
peak at —0.03 eV and —0.17 eV, respectively, in the two
“core-level” spectra. As expected, for the band model
the spectra are broadened, in particular for e, = —0.25
eV, where the hole can decay in a phonon and a hole
closer to the Fermi energy. It therefore seems unlikely
that the individual phonon satellites can be resolved ex-
perimentally. The shift of weight towards higher binding
energies due to satellites is, however, similar in the two
spectra. Thus the centers of gravity are at —0.12 eV
(band case) and —0.13 eV (core case) in the upper part
of the figure and —0.28 eV (band case) —0.26 eV (core
case) in the lower part. These results are therefore con-
sistent with our earlier interpretation that phonon and
plasmon satellites cause the large width of the photoe-
mission spectrum in A3Cgg.1°
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